Effective Field Theories

Aneesh Manohar

University of California, San Diego

May 2013 / Brazil

A Manohar (UCSD)

ICTP-SAIFR School 05.2013 1 / 30

A b

Outline

- Introduction
- Reasons for using an EFT
- Dimensional Analysis and Power Counting
- Examples
- Loops
- Decoupling
- Field Redefinitions and the Equations of Motion
- One-loop matching in a HQET example
- SCET

A > + = + + =

Basic Idea

You can make quantitative predictions of observable phenomena without knowing everything.

The computations have some small (non-zero) error.

Can improve on the accuracy by adding a finite number of additional parameters, in a systematic way.

Key concept is locality — as a result one can factorize quantities into some short distance parameters (coefficients in the Lagrangian), and long distance operator matrix elements.

(人間) トイヨト イヨト ニヨ

Examples

Chemistry and atomic physics depend on the interactions of atoms.

The interaction Hamiltonian contains non-relativistic electrons and nuclei interacting via a Coulomb potential, plus electromagnetic radiation.

The only property of the nucleus we need is the electric charge Z.

The quark structure of the proton, weak interactions, GUTs, etc. are irrelevant.

A more accurate calculation includes recoil corrections and needs m_p .

The Hyperfine interaction needs μ_p

Charge radius, ...

Weak interactions, ...

If one is interested in atomic parity violation, weak interactions are the leading contribution, and cannot be treated as a small correction.

Multipole Expansion

The field far away looks just like a point charge.

ICTP-SAIFR School 05.2013 6 / 30

A (10) A (10)

$$V(r) = \sum c_{lm} Y_{lm}(\Omega) \frac{1}{r} \left(\frac{a}{r}\right)^{l}$$

At the classical level, expand in a/r.

 c_{lm} expected to be of order unity, once a^{l} has been factored out.

Need more multipoles for a better description of the field.

Effective theory is a local quantum field theory with a finite number of low energy parameters.

There is a systematic expansion in a small parameter like a/r for the multipole expansion. [called power counting]

Keep as many terms as you need to reach the desired accuracy.

It is a quantum theory — one can compute radiative corrections (loops), renormalize the theory, etc. just as for QED or QCD.

ICTP-SAIFR School 05.2013

8/30

All the non-trivial effects are due to quantum corrections. Otherwise, just series expand. EFT is the low-energy limit of a "full theory"

It is not a Lagrangian with form-factors $e \rightarrow e F(q^2/M^2)$

These are non-local, contain an infinite amount of information, and lead to a violation of power counting.

It is not just a series expansion of amplitudes in the full theory

$$F(q^2/M^2) \to F(0) + F'(0) rac{q^2}{M^2} + \dots$$

though it looks like this at tree-level.

The EFT is an interacting quantum theory in its own right.

One can compute using it without ever referring to the full theory from which it came.

The EFT has a different divergence structure from the full theory. The renormalization procedure is part of the definition of a field theory, not some irrelevant detail.

If you are given a full theory, can compute the EFT Lagrangian — matching.

Examples of EFT

In some cases, one can compute the EFT from a more fundamental theory (typically, if it is weakly coupled).

- The Fermi theory of weak interactions is an expansion in p/M_W , and can be computed from the $SU(2) \times U(1)$ electroweak theory in powers of $1/M_W$, $\alpha_s(M_W)$, $\alpha(M_W)$ and $\sin^2 \theta$.
- The heavy quark Lagrangian (HQET) can be computed in powers of $\alpha_s(m_Q)$ and $1/m_Q$ from QCD.
- NRQCD/NRQED
- SCET

く 戸 と く ヨ と く ヨ と …

Examples

Chiral perturbation theory: Describes the low energy interactions of mesons and baryons.

The full theory is QCD, but the relation between the two theories (and the degrees of freedom) is non-perturbative.

 $\chi {\rm PT}$ has parameters that are fit to experiment. Has been enormously useful.

Standard Model — don't know the more fundamental theory, and we all hope there is one.

Can use EFT ideas to parameterize new physics in terms of a few operators in studying, for example, precision electroweak measurements.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

12/30

Dependence on high energy

High energy dynamics irrelevant:

H energy levels do not depend on m_t — but this depends on what is held fixed as m_t is varied.

Usually, one takes low energy parameters such as m_p , m_e , α from low energy experiments, and then uses them in the Schrödinger equation.

But instead, hold high energy parameters such as $\alpha(\mu)$ and $\alpha_s(\mu)$ fixed at $\mu \gg m_t$.

$$m_t \frac{\mathrm{d}}{\mathrm{d}m_t} \left(\frac{1}{\alpha}\right) = -\frac{1}{3\pi}$$

The proton mass also depends on the top quark mass,

$$m_p \propto m_t^{2/27}$$

There are constraints from the symmetry of the high energy theory:

For example, the chiral lagrangian preserves C, P and CP because QCD does.

More interesting case: Non-relativistic quantum mechanics satisfies the spin-statistics theorem because of causality in QED.

A (10) A (10)

Reasons for using EFT

- Every theory is an effective theory: Can compute in the standard model, even if there are new interactions at (not much) higher energies.
- Greatly simplifies the calculation by only including the relevant interactions: Gives an explicit power counting estimate for the interactions.
- Deal with only one scale at a time: For example the *B* meson decay rate depends on M_W , m_b and $\Lambda_{\rm QCD}$, and one can get horribly complicated functions of the ratios of these scales. In an EFT, deal with only one scale at a time, so there are no functions, only constants.

く 同 ト く ヨ ト く ヨ ト

- Makes symmetries manifest: QCD has spontaneously broken chiral symmetry, which is manifest in the chiral Lagrangian, and heavy quark spin-flavor symmetry which is manifest in HQET. These symmetries are only true for certain limits of QCD, and so are hidden in the QCD Lagrangian.
- Sum logs: Use renormalization group improved perturbation theory. The running of constants is not small, e.g. α_s(M_Z) ~ 0.118 and α_s(m_b) ~ 0.22. Fixed order perturbation theory breaks down. Sum logs of the ratios of scales (such as M_W/m_b).

- Efficient way to characterize new physics: Can include the effects of new physics in terms of higher dimension operators. All the information about the dynamics is encoded in the coefficients. [This also shows it is difficult to discover new physics using low-energy measurements.]
- Include non-perturbative effects: Can include Λ_{QCD}/m corrections in a systematic way through matrix elements of higher dimension operators. The perturbative corrections and power corrections are tied together. [Renormalons]

くぼう くほう くほう

Dimensional Analysis

Effective Lagrangian (neglect topological terms)

$$L=\sum c_i O_i=\sum L_D$$

is a sum of local, gauge and Lorentz invariant operators.

The functional integral is

$$\int \mathcal{D}\phi \; \boldsymbol{e}^{\boldsymbol{i} \boldsymbol{S}}$$

so S is dimensionless.

Kinetic terms:

$$S = \int \mathrm{d}^d x \; \bar{\psi} \; i \not \! D \; \psi, \qquad S = \int \mathrm{d}^d x \; \frac{1}{2} \partial_\mu \phi \; \partial^\mu \phi$$

SO

$$0 = -d + 2[\psi] + 1,$$
 $0 = -d + 2[\phi] + 2$

Dimensions given by

$$[\phi] = (d-2)/2,$$
 $[\psi] = (d-1)/2,$ $[D] = 1,$ $[gA_{\mu}] = 1$

Field strength $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + \dots$ so A_{μ} has the same dimension as a scalar field.

$$[g] = 1 - (d - 2)/2 = (4 - d)/2$$

3

• (10) + (10)

 $\ln d = 4,$

 $[\phi] = 1,$ $[\psi] = 3/2,$ $[A_{\mu}] = 1,$ [D] = 1, [g] = 0

Only Lorentz invariant renormalizable interactions (with $D \le 4$) are

<i>D</i> = 0 :	1
<i>D</i> = 1 :	ϕ
D = 2 :	ϕ^{2}
D = 3 :	$\phi^{3}, ar{\psi}\psi$
<i>D</i> = 4 :	$\phi \bar{\psi} \psi, \phi^4$

21/30

ICTP-SAIFR School 05.2013

and kinetic terms which include gauge interactions.

Renormalizable interactions have coefficients with mass dimension \geq 0.

 $\ln d = 2,$

 $[\phi] = 0,$ $[\psi] = 1/2,$ $[A_{\mu}] = 0,$ [D] = 1, [g] = 1

so an arbitrary potential $V(\phi)$ is renormalizable. Also $(\bar{\psi}\psi)^2$ is renormalizable.

 $\ln d = 6,$

 $[\phi] = 2,$ $[\psi] = 5/2,$ $[A_{\mu}] = 2,$ [D] = 1, [g] = -1

Only allowed interaction is ϕ^3 .

What Fields to use for EFT?

Not always obvious: Low energy QCD described in terms of meson fields.

NRQCD/NRQED and SCET: Naive guess does not work. Need multiple gluon fields.

A b

Effective Lagrangian:

$$L_D = \frac{O_D}{M^{D-d}}$$

so in d = 4,

$$L_{\text{eft}} = L_{D\leq 4} + \frac{O_5}{M} + \frac{O_6}{M^2} + \dots$$

An infinite number of terms (and parameters)

э

Power Counting

If one works at some typical momentum scale p, and neglects terms of dimension D and higher, then the error in the amplitudes is of order

$$\left(\frac{p}{M}\right)^{D-4}$$

A non-renormalizable theory is just as good as a renormalizable theory for computations, provided one is satisfied with a finite accuracy.

Usual renormalizable case given by taking $M \rightarrow \infty$.

Photon-Photon Scattering

$$L = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{\alpha^2}{m_e^4}\left[c_1\left(F_{\mu\nu}F^{\mu\nu}\right)^2 + c_2\left(F_{\mu\nu}\tilde{F}^{\mu\nu}\right)^2\right]$$

(Terms with only three field strengths are forbidden by charge conjugation symmetry.)

 e^4 from vertices, and $1/16\pi^2$ from the loop.

An explicit computation gives

$$c_1 = \frac{1}{90}, \qquad c_2 = \frac{7}{90}.$$

Scattering amplitude

$$A \sim rac{lpha^2 \omega^4}{m_e^4}$$

and

$$\sigma \sim \left(\frac{\alpha^2 \omega^4}{m_e^4}\right)^2 \frac{1}{\omega^2} \frac{1}{16\pi} \sim \frac{\alpha^4 \omega^6}{16\pi m_e^8} \times \frac{15568}{22275}$$
$$A \propto \frac{1}{m_e^4}$$

determined by the operator dimension.

э

▲帰▶ ▲ 国▶ ▲ 国▶ -

Proton Decay

The lowest dimension operator in the standard model which violates baryon number is dimension 6. Natural explanation of baryon number conservation.

$$L \sim rac{qqql}{M_G^2}$$

This gives the proton decay rate $ho o e^+ \pi^0$ as

$$\Gamma \sim rac{m_{
m p}^{
m 5}}{16\pi M_G^4}$$

or

$$au \sim \left(rac{M_G}{10^{15}\,{
m GeV}}
ight)^4 imes 10^{30} ~{
m years}$$

< 回 > < 回 > < 回 > -

Neutrino Masses

The lowest dimension operator in the standard model which gives a neutrino mass is dimension five,

$$\mathcal{L} \sim rac{(\mathit{HL})^2}{\mathit{M_S}}$$

This gives a Majorana neutrino mass of ($v \sim 246$ GeV)

$$m_
u \sim rac{v^2}{M_S}$$

or a seesaw scale of 6 imes 10¹⁵ GeV for $m_{\nu} \sim$ 10⁻² eV.

Absolute scale of masses not known. Only Δm^2 measured.

周 ト イ ヨ ト イ ヨ ト

Rayleigh Scattering

Scattering of light from atoms

$$\begin{split} L &= \psi^{\dagger} \left(i \partial_t - \frac{p^2}{2M} \right) \psi + a_0^3 \ \psi^{\dagger} \psi \left(c_1 E^2 + c_2 B^2 \right) \\ A &\sim c_i \ a_0^3 \ \omega^2 \end{split}$$

 $\sigma \propto a_0^6 \omega^4$.

Scattering goes as the fourth power of the frequency, so blue light is scattered about 16 times mores strongly than red.

 a_0^3 dimensional analysis.

< 回 > < 回 > < 回 >