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Low energy weak interactions

− ig√
2

Vij q̄i γ
µ PL qj ,
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1
p2 −M2

W
= − 1

M2
W

(
1 +

p2

M2
W

+
p4

M4
W

+ . . .

)
,

and retaining only a finite number of terms.

A =
i

M2
W

(
ig√
2

)2

VcbV ∗ud (c̄ γµ PL b)
(
d̄ γµ PL u

)
+O

(
1

M4
W

)
.

L = −4GF√
2

VcbV ∗ud (c̄ γµ PL b)
(
d̄ γµ PL u

)
+O

(
1

M4
W

)
,

GF√
2
≡ g2

8M2
W
.

A Manohar (UCSD) ICTP-SAIFR School 05.2013 3 / 33



Effective Lagrangian for µ decay

L = −4GF√
2

(ē γµ PL νe) (ν̄µ γ
µ PL µ) +O

(
1

M4
W

)
,

Gives the standard result for the muon lifetime at lowest order,

Γµ =
G2

F m5
µ

192π3 f

(
m2

e
m2
µ

)

EFT gives the full dependence on low energy parameters.

f (ρ) = 1− 8ρ+ 8ρ3 − ρ4 − 12ρ2 ln ρ

The advantages of EFT show up in higher order calculations
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Loops

Gives a contribution∫
d4k

(2π)4
1

k2 −M2
W

1
k2 −m2 ∼

1
M2

W

∫
d4k

(2π)4
1

k2 −m2 ∼
Λ2

M2
W
∼ O (1)

Similarly, a dimension eight operator has vertex k2/M4
W , and gives a

contribution

I′ ∼ 1
M4

W

∫
d4k

k2

k2 −m2 ∼
Λ4

M4
W
∼ O (1)
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Would need to know the entire effective Lagrangian, since all terms are
equally important. The reason for this breakdown is using a cutoff
procedure with a dimensionful parameter Λ.

More generally, need to make sure that dimensionful parameters at the
high scale do not occur in the numerator after evaluating Feynman
diagrams.

In doing weak interactions, one should not have MG or MP appear in
the numerator.

Need a renormalization scheme which maintains the power counting.
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Dimensional Regularization

∫
ddk

(2π)d

(
k2)a(

k2 −m2
)b

=
1

(4π)d/2
(−1)a−bΓ(d/2 + a)Γ(b − a− d/2)

Γ(d/2)Γ(b)

(
M2
)d/2+a+b

Integral defined by analytic continuation.

Convert all integrals to this form using Feynman parameters for the
denominator.
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MS

Need to use a mass independent subtraction scheme such as MS:

µ can only occur in logarithms, so

1
M2

W

∫
d4k

1
k2 −m2 ∼

m2

M2
W

log
µ2

m2 ,

1
M4

W

∫
d4k

k2

k2 −m2 ∼
m4

M4
W

log
µ2

m2 ,

Expanding 1/(k2 −M2
W ) in a power series ensures that there is no

pole for k ∼ MW , and so MW cannot appear in the numerator.

Dimensional regularization is like doing integrals using residues.
Relevant scales given by poles of the denominator.
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Toy Model (Integral)

Rather than do an explicit EFT example, look at a simple integral which
illustrates what happens

Integral arises as a one-loop graph in a field theory, has some
couplings in front.

IF =

∫
ddk

(2π)d
1

(k2 −m2)(k2 −M2)
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Expanding does not commute with loop integration

Do the integral exactly:

IF =

∫
ddk

(2π)d
1

(k2 −m2)(k2 −M2)

=
i

16π2

[
1
ε
− log

M2

µ2 +
m2 log(m2/M2)

M2 −m2 + 1
]

Expand, do the integral term by term, and then sum up the result:

Ieft =

∫
ddk

(2π)d
1

(k2 −m2)

[
− 1

M2 −
k2

M4 − . . .
]

=
i

16π2

[
−1
ε

m2

M2 −m2 +
m2

M2 −m2 log
m2

µ2 −
m2

M2 −m2

]
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Very Important Points

Missing the non-analytic terms in M.

The 1/ε terms do not agree, they are cancelled by counterterms which
differ in the full and EFT.

The two theories have different anomalous dimensions.

The term non-analytic in the IR scale, log(m2) agrees in the two
theories. This is the part which must be reproduced in the EFT.

The analytic parts are local, and can be included as matching
contributions to the Lagrangian.

Sum log M2/m2 terms using RG evolution.
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No Non-Analytic Terms in M

log
m2

M2 = log
m2

µ2 − log
M2

µ2

IF =
i

16π2

[
1
ε

+
m2

M2 −m2 log
m2

µ2 −
M2

M2 −m2 log
M2

µ2 + 1
]

Ieft =
i

16π2

[
−1
ε

m2

M2 −m2 +
m2

M2 −m2 log
m2

µ2 −
m2

M2 −m2

]
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1/ε terms are different

IF =
i

16π2

[
1
ε

+
m2

M2 −m2 log
m2

µ2 −
M2

M2 −m2 log
M2

µ2 + 1
]

Ieft =
i

16π2

[
−1
ε

m2

M2 −m2 +
m2

M2 −m2 log
m2

µ2 −
m2

M2 −m2

]

Each theory has its own counterterms (renormalization).
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Different anomalous dimensions

Full theory:

1
ε

The amplitude has an anomalous dimensions

EFT:

−1
ε

m2

M2 −m2 = −1
ε

m2

M2 −
1
ε

m4

M4 + . . .

Each EFT order in 1/M has its own anomalous dimension.
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Non-analytic Terms in m Agree

IF =
i

16π2

[
1
ε

+
m2

M2 −m2 log
m2

µ2 −
M2

M2 −m2 log
M2

µ2 + 1
]

Ieft =
i

16π2

[
−1
ε

m2

M2 −m2 +
m2

M2 −m2 log
m2

µ2 −
m2

M2 −m2

]

The EFT reproduces the complete low-energy limit of the full theory,
including all the dependence on low energy (IR) scales.
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Infinite parts cancelled by counterterms.

The difference between the finite parts of the two results is

i
16π2

[
log

µ2

M2 +
m2 log(µ2/M2)

M2 −m2 +
M2

M2 −m2

]
=

i
16π2

[(
log

µ2

M2 + 1
)

+
m2

M2

(
log

µ2

M2 + 1
)

+ . . .

]
The terms in parentheses are matching coefficients to a coefficient of
order 1, order 1/M2, etc. They are analytic in m.

Note:
log

m
M
→ − log

M
µ

+ log
m
µ

with the first part in the matching, and the second part in the EFT.
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Summing Large Logs

The full theory has log M2/m2 terms. At higher orders, get

αn
s logn M2/m2

If M � m, perturbation theory breaks down as αs log M/m ∼ 1.
Full theory involves two widely separated scales.
Calculations become very difficult at higher orders.

Divide one calculation into two calculations, each involving one scale.
Each calculation much easer since it involves a single scale
For the matching to be accurate, want µ = M.
For the EFT to be accurate, want µ = m.

A Manohar (UCSD) ICTP-SAIFR School 05.2013 17 / 33



For the matching use µ = M

For the EFT calculation, pick µ = m.

Use the EFT renormalization group to convert the Lagrangian
from µ = M to µ = m.

RG perturbation theory valid as long as αs small. Do not need
αs log to be small.
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Matching

IM =
i

16π2

[(
log

µ2

M2 + 1
)

+
m2

M2

(
log

µ2

M2 + 1
)

+ . . .

]
We computed the matching from IF − Ieft.

But there is an easier way which does not involve computing the two
scale integral IF .

IM is analytic in m. Therefore, we can compute

IF (m = 0) =

∫
ddk

(2π)d
1

(k2)(k2 −M2)

∂IF
∂m2 (m = 0) =

∫
ddk

(2π)d
1

(k2)2(k2 −M2)

Keep only the finite terms. More and more IR divergent.
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Power Counting Formula

Manifest power counting in p/M.

Loop graphs consistent with the power counting, since one can never
get any M ’s in the numerator.

If the vertices have 1/Ma, 1/Mb, etc. then any amplitude (including
loops) will have

1
Ma

1
Mb . . . =

1
Ma+b+...

Correct dimensions due to factors of the low scale in the numerator,
represented generically by p. (Could be a mass)
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Power Counting Formula

Only a finite number of terms to any given order in 1/M.

Order 1/M: L5 at tree level

Order 1/M2: L6 at tree level,
or loop graphs with two insertions of L5.

General power counting result:
you can count the powers of M.
you can count powers of p

[Weinberg power counting formula for χPT]

A ∼ pr , r =
∑

k

nk (k − 4)

where nk is the number of vertices of order pk .
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Decoupling of Heavy Particles
Heavy particles decouple from low energy physics.
Obvious?

Not explicit in a mass independent scheme such as MS.

p p

i
e2

2π2

(
pµpν − p2gµν

)[ 1
6ε
−
∫ 1

0
dx x(1− x) log

m2 − p2x(1− x)

µ2

]

and we want to look at p2 � m2.

The graph is UV divergent.
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Momentum Subtraction Scheme
Note that renormalization involves doing the integrals, and then
performing a subtraction using some scheme to render the amplitudes
finite.

Subtract the value of the graph at the Euclidean momentum point
p2 = −M2 (the 1/ε drops out)

−i
e2

2π2

(
pµpν − p2gµν

)[∫ 1

0
dx x(1− x) log

m2 − p2x(1− x)

m2 + M2x(1− x)

]
.

β (e) = −e
2

M
d

dM
e2

2π2

[∫ 1

0
dx x(1− x) log

m2 − p2x(1− x)

m2 + M2x(1− x)

]

=
e3

2π2

∫ 1

0
dx x(1− x)

M2x(1− x)

m2 + M2x(1− x)
.
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m� M (light fermion):

β (e) ≈ e3

2π2

∫ 1

0
dx x(1− x) =

e3

12π2 .

M � m (heavy fermion):

β (e) ≈ e3

2π2

∫ 1

0
dx x(1− x)

M2x(1− x)

m2 =
e3

60π2
M2

m2 .
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cross-over
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In the MS scheme:

−i
e2

2π2

(
pµpν − p2gµν

)[∫ 1

0
dx x(1− x) log

m2 − p2x(1− x)

µ2

]
.

β (e) = −e
2
µ

d
dµ

e2

2π2

[∫ 1

0
dx x(1− x) log

m2 − p2x(1− x)

µ2

]

=
e3

2π2

∫ 1

0
dx x(1− x) =

e3

12π2 ,

Is the first term in the β-function scheme independent?
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−i
e2

2π2

(
pµpν − p2gµν

)[∫ 1

0
dx x(1− x) log

m2

µ2

]
,

Large logs cancel the wrong β-function contributions.

Explicitly integrate out heavy particles and go to an EFT.

Full theory: Includes fermion with mass m.

EFT: drop the heavy fermion (it no longer contributes to β)
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p p

Present in theory above m, but not in theory below m. Assume that
p � m, so

∫ 1

0
dx x(1− x) log

m2 − p2x(1− x)

µ2

=

∫ 1

0
dx x(1− x)

[
log

m2

µ2 +
p2x(1− x)

m2 + . . .

]
=

1
6

log
m2

µ2 +
p2

30m2 + . . .
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So in theory above m:

i
e2

2π2

(
pµpν − p2gµν

)[ 1
6ε
− 1

6
log

m2

µ2 −
p2

30m2 + . . .

]
+ c.t .

Counterterm cancels 1/ε term (and also contributes to the β function).

i
e2

2π2

(
pµpν − p2gµν

)[
−1

6
log

m2

µ2 −
p2

30m2 + . . .

]
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The log term gives

Z = 1− e2

12π2 log
m2

µ2

so that in the effective theory,

1
e2

L(µ)
=

1
e2

H(µ)

[
1−

e2
H(µ)

12π2 log
m2

µ2

]

One usually integrates out heavy fermions at µ = m, so that (at one
loop), the coupling constant has no matching correction.
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The p2 term gives the dimension six operator

−1
4

e2

2π2
1

30m2 Fµν∂2Fµν

and so on.

Even if the structure of the graphs is the same in the full and effective
theories, one still needs to compute the difference to compute possible
matching corrections, because the integrals need not have the same
value. (next example)

This difference is independent of IR physics, since both theories have
the same IR behavior, so the matching corrections are IR finite.
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Note that nothing discontinuous is happening to any physical quantity
at m.

We have changed our description of the theory from the full theory
including m to an effective theory without m. By construction, the EFT
gives the same amplitude as the full theory, so the amplitudes are
continuous through m.

All m dependence in the effective theory is manifest through the
explicit 1/m factors and through logarithmic dependence in the
matching coefficients (in eL).

A Manohar (UCSD) ICTP-SAIFR School 05.2013 32 / 33



Have to treat the p2/m2 term as a perturbation

Otherwise

1
p2 − e2p4/(60π2m2)

has a pole at

p2 =
60π2m2

e2 =
15πm2

α

This new pole will violate the power counting. Also can get ghosts from
quantizing a higher derivative theory.
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