Effective Field Theories

Lecture 4

Aneesh Manohar

University of California, San Diego

May 2013 / Brazil

SCET

Soft-Collinear Effective Theory — describes energetic particles.

$$e^+e^- o q\overline{q} o {\sf jet} + {\sf jet}$$

Two-Jet events

$$E_{\text{CM}}^2 = \textit{Q}^2 \gg \textit{M}_{\text{iet}}^2 \gg \Lambda_{\text{QCD}}^2$$

Narrow energetic jets.

Power counting:

$$M_{
m jet}^2 = Q^2 \lambda^2$$
 $\Lambda_{
m QCD}^2 = Q^2 \lambda^4 = \frac{M^4}{Q^2}$ λ

$$\lambda = \sqrt{\frac{\Lambda_{
m QCD}}{Q}}$$

Theory is called SCET_I.

Infrared Singularities in Radiation

The intermediate propagator is

$$\frac{1}{(p+k)^2 - m^2} = \frac{1}{2p \cdot k + k^2} = \frac{1}{2E_p \, \omega_k - 2 \, |\mathbf{p}| \, |\mathbf{k}| \cos \theta}$$

For massless particles, $E_p = |\mathbf{p}|$ and $\omega_k = |\mathbf{k}|$

$$2E\omega\left(1-\cos\theta\right)$$

singularities as $\omega \to 0$ (soft) and $\theta \to 0$ (collinear).

ロト (個) (注) (注) 注 り(で

SCET degrees of freedom (modes)

$$p^+ = E - p_z, \qquad p^- = E + p_z$$

- Light Cone Coordinates:
- Hard Modes: p² ~ Q²
 integrated out
- Collinear modes: $p^2 \sim M^2$
- Ultra-Soft modes: $p^2 \sim M^4/Q^2$

Sudakov Double Logs

In exclusive processes, there are two powers of

$$L = \ln Q^2/M^2$$

at each order in perturbation theory.

These are the Sudakov double-logarithms. Lead to a large radiative corrections and a rapid breakdown of fixed order perturbation theory.

General perturbative structure of $F_E(Q)$

$$L = log\,Q^2/M^2$$

$$F_{E}(Q) = 1 \qquad LO$$

$$+ \alpha_{s}^{1} \left(L^{2} + L^{1} + L^{0} \right) \qquad NLO$$

$$+ \alpha_{s}^{2} \left(L^{4} + L^{3} + L^{2} + L^{1} + L^{0} \right) \qquad N^{2}LO$$

$$+ \alpha_{s}^{3} \left(L^{6} + L^{5} + L^{4} + L^{3} + L^{2} + L^{1} + L^{0} \right) \qquad N^{3}LO$$

The α_s^n term has powers of L up to L²ⁿ. 2n + 1 terms at order n

- The $\alpha_s L^2$, $\alpha_s^2 L^4$, $\alpha_s^3 L^6$ series is called LL_{FO}.
- The α_s L, α_s^2 L³, α_s^3 L⁵ series is called NLL_{FO}.

A Manohar (UCSD) ICTP-SAIFR School 05.2013 7 / 1

Structure of series

The series for $\log F_E(Q^2)$ takes a simpler form

$$\log F_E = \alpha_s \left(L^2 + L + L^0 \right)$$
$$+\alpha_s^2 \left(L^3 + L^2 + L + L^0 \right)$$
$$+\alpha_s^3 \left(L^4 + \dots + L^0 \right) + \dots$$

with the α_s^n term having power of L upto Lⁿ⁺¹. n+2 terms at order n.

RGE counting: L f_0 is LL, f_1 is NLL, etc.

$$\log F_E = \mathsf{L} f_0(\alpha_s \mathsf{L}) + f_1(\alpha_s \mathsf{L}) + \alpha_s f_2(\alpha_s \mathsf{L}) + \dots$$

Resummation

$$A = \begin{pmatrix} 1 \\ \alpha_s L^2 & \alpha_s L & \alpha_s \\ \alpha_s^2 L^4 & \alpha_s^2 L^3 & \alpha_s^2 L^2 & \alpha_s^2 L & \alpha_s^2 \\ \alpha_s^3 L^6 & \dots & \dots \\ \vdots & & & \end{pmatrix}$$

In the leading-log regime L $\sim 1/\alpha_s$, the various terms are of order

$$A = \begin{pmatrix} 1 & & & \\ \frac{1}{\alpha_{s}} & 1 & \alpha_{s} & & \\ \frac{1}{\alpha_{s}^{2}} & \frac{1}{\alpha_{s}} & 1 & \alpha_{s} & \alpha_{s}^{2} \\ \frac{1}{\alpha_{s}^{3}} & & \cdots & & \\ \vdots & & & & \end{pmatrix}.$$

Resummation: Exponentiated Form

Exponentiated form:

$$\log A = \begin{pmatrix} \alpha_s \mathsf{L}^2 & \alpha_s \mathsf{L} & \alpha_s \\ \alpha_s^2 \mathsf{L}^3 & \alpha_s^2 \mathsf{L}^2 & \alpha_s^2 \mathsf{L} & \alpha_s^2 \\ \alpha_s^3 \mathsf{L}^4 & \alpha_s^3 \mathsf{L}^3 & \alpha_s^3 \mathsf{L}^2 & \alpha_s^3 \mathsf{L} & \alpha_s^3 \\ \alpha_s^4 \mathsf{L}^5 & & \dots \\ \vdots & & & \end{pmatrix}$$

In the leading-log regime:

$$\log A = \begin{pmatrix} \frac{1}{\alpha_s} & 1 & \alpha_s \\ \frac{1}{\alpha_s} & 1 & \alpha_s & \alpha_s^2 \\ \frac{1}{\alpha_s} & 1 & \alpha_s & \alpha_s^2 & \alpha_s^3 \\ \frac{1}{\alpha_s} & & \cdots \\ \vdots & & & \end{pmatrix}.$$

Resummation: Exponentiated Form

$$\log A = \frac{1}{\alpha_s} f_0 + f_1 + \alpha_s f_2 + \dots$$
$$= \frac{1}{\alpha_s} \left[f_0 + \alpha_s f_1 + \alpha_s^2 f_2 + \dots \right]$$

so that f_1 and f_2 are corrections to log A. However,

$$A = \exp \left[\frac{1}{\alpha_s} f_0 + f_1 + \alpha_s f_2 + \dots \right]$$
$$= e^{\frac{1}{\alpha_s} f_0} \times e^{f_1} \times e^{\alpha_s f_2} \times \dots$$

Must include the LL and NLL series.

Notation

Introduce null vectors

$$n^{\mu}=(1,\mathbf{n})$$
 $\overline{n}^{\mu}=(1,-\mathbf{n})$ $\mathbf{n}\cdot\mathbf{n}=1$

which satisfy

$$n^2 = 0,$$
 $\overline{n}^2 = 0,$ $\overline{n} \cdot n = 2.$

If there are many directions, use

$$\eta_i^\mu = (1, \mathbf{n}_i) \qquad \qquad \overline{\eta}_i^\mu = (1, -\mathbf{n}_i)$$

In the back-to-back case, $\overline{n}_1 = n_2$, $\overline{n}_2 = n_1$.

Light-Cone Coordinates

$$p^+ = n \cdot p$$
 $p^- = \overline{n} \cdot p$, $n \cdot p_{\perp} = \overline{n} \cdot p_{\perp} = 0$

 \perp only has two components.

$$\begin{split} \rho^{\mu} &= \frac{1}{2} \left(\overline{n} \cdot p \right) n^{\mu} + \frac{1}{2} \left(n \cdot p \right) \overline{n}^{\mu} + p_{\perp}^{\mu} \\ &= \frac{1}{2} p^{-} n^{\mu} + \frac{1}{2} p^{+} \overline{n}^{\mu} + p_{\perp}^{\mu} \end{split}$$

$$a \cdot b = \frac{1}{2}a^{+}b^{-} + \frac{1}{2}a^{-}b^{+} + a_{\perp} \cdot b_{\perp}$$

If $\mathbf{n} = \hat{\mathbf{z}}$

$$p^+ = E - p_z$$
 $p^- = E + p_z$

$$p^2 = p^+ p^- + p_\perp^2 = m^2$$

For an energetic particle $E \gg m$ moving in the +z direction,

$$p^+ = E - \rho_z \approx \frac{m^2}{2E}$$
 $p^- = E + \rho_z \approx 2E$

Pick **n** to be near the direction of the particle:

SCET power counting $\lambda \ll 1$

$$n-$$
 collinear : $\left(p^+ \sim \lambda^2 Q, p^- \sim 1Q, p_\perp \sim \lambda Q\right)$
 $\overline{n}-$ collinear : $\left(p^+ \sim 1Q, p^- \sim \lambda^2 Q, p_\perp \sim \lambda Q\right)$

n and \overline{n} collinear quarks and gluons.

Can also have ultrasoft gluons:

$$\left(p^+ \sim \lambda^2 Q, p^- \sim \lambda^2 Q, p_\perp \sim \lambda^2 Q \right)$$

◆□▶ ◆□▶ ◆ き ▶ ◆ き * り へ ○

$$n-$$
 collinear : $p_n=\left(p^+\sim \lambda^2 Q, p^-\sim 1Q, p_\perp\sim \lambda Q\right)$

$$\overline{n}-$$
 collinear : $p_{\overline{n}}=\left(p^+\sim 1Q, p^-\sim \lambda^2Q, p_\perp\sim \lambda Q
ight)$

usoft :
$$p_{us} = \left(p^+ \sim \lambda^2 Q, p^- \sim \lambda^2 Q, p_\perp \sim \lambda^2 Q\right)$$

$$p_n^2 \sim p_{ar n}^2 \sim Q^2 \lambda^2$$
 $p_{us}^2 \sim Q^2 \lambda^4$

$$p_n + p_n o p_n$$
 $p_{\bar{n}} + p_{\bar{n}} o p_{\bar{n}}$ $p_{us} + p_{us} o p_{us}$

$$ho_n +
ho_{us}
ightarrow
ho_{ar{n}} \qquad \qquad
ho_{ar{n}} +
ho_{us}
ightarrow
ho_{ar{n}}$$

$$p_n + p_{\bar{n}} \rightarrow (Q, Q, \lambda Q)$$
 $(p_n + p_{\bar{n}})^2 \sim Q^2$ hard

γ -matrix convention

$$\gamma = \begin{pmatrix} 0 & \sigma \\ -\sigma & 0 \end{pmatrix}, \qquad \gamma^0 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Then

$$\gamma_5 = i\gamma^0\gamma^1\gamma^2\gamma^3 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\sigma^{0i} = i\gamma^{0}\gamma^{i} = \begin{pmatrix} -i\sigma^{i} & 0\\ 0 & i\sigma^{i} \end{pmatrix}$$
$$\sigma^{ij} = i\gamma^{i}\gamma^{j} = \begin{pmatrix} \sigma^{k} & 0\\ 0 & \sigma^{k} \end{pmatrix}$$

$$n = (1, 0, 0, 1), \bar{n} = (1, 0, 0, -1)$$

$$\not p = \begin{pmatrix} 0 & 1 - \sigma^3 \\ 1 + \sigma^3 & 0 \end{pmatrix} \qquad \vec{p} = \begin{pmatrix} 0 & 1 + \sigma^3 \\ 1 - \sigma^3 & 0 \end{pmatrix}$$

$$\vec{h} = \begin{pmatrix} 0 & 1 + \sigma^3 \\ 1 - \sigma^3 & 0 \end{pmatrix}$$

$$P_n = \frac{\rlap/n\vec{n}}{4} = \begin{pmatrix} \frac{1-\sigma^3}{2} & 0\\ 0 & \frac{1+\sigma^3}{2} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 \end{pmatrix}$$

17 / 1

A Manohar (UCSD)

$$P_n = rac{\rlap/n ec n}{4} P_{ar n} = rac{\rlap/n ec n}{4} rac{\rlap/n}{4}$$

 P_n and $P_{\bar{n}}$ are two orthogonal projection operators.

$$1 = P_n + P_{\bar{n}}$$
 $P_n^2 = P_n$ $P_{\bar{n}}^2 = P_{\bar{n}}$ $0 = P_n P_{\bar{n}} = P_{\bar{n}} P_n$

Also

$$\psi = P_n \psi \qquad \overline{\psi} = \overline{\psi} P_{\overline{n}}$$

The Dirac equation is

$$\begin{pmatrix} -m & E - \boldsymbol{p} \cdot \boldsymbol{\sigma} \\ E + \boldsymbol{p} \cdot \boldsymbol{\sigma} & -m \end{pmatrix} \begin{pmatrix} \phi \\ \chi \end{pmatrix} = 0$$

Helicity $h = \pm 1$:

$$\mathbf{p} \cdot \mathbf{\sigma} \; \psi = h |\mathbf{p}| \, \psi$$

For E > 0, $\mathbf{p} = p \hat{\mathbf{z}}$, h = 1:

$$\sqrt{2E} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} e^{-iE(t-z)}$$

 $E > 0, \mathbf{p} = p \hat{\mathbf{z}}, h = -1$:

$$\sqrt{2E} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} e^{-iE(t-z)}$$

For antiparticles, E < 0.

For an antiparticle moving in the +z direction, $\mathbf{p}=-p\hat{\mathbf{z}}$ For an antiparticle with helicity h, $\mathbf{p}\cdot\boldsymbol{\sigma}\;\psi=h\,|\mathbf{p}|\,\psi$ For E<0, $\mathbf{p}=-p\,\hat{\mathbf{z}},h=1$:

$$\sqrt{2E} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} e^{iE(t-z)}$$

$$E < 0, \mathbf{p} = -\rho \hat{\mathbf{z}}, h = -1$$
:

$$\sqrt{2E} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} e^{iE(t-z)}$$

20 / 1

A Manohar (UCSD)

particle with h = +1 and antiparticle with h = -1 ($\gamma_5 = 1$):

$$\sqrt{2E} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} e^{\mp iE(t-z)}$$

particle with h = -1 and antiparticle with h = 1 ($\gamma_5 = -1$):

$$\sqrt{2E} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} e^{\mp iE(t-z)}$$

Which one decided by sign of *E* in $e^{\mp iEt}$.

21 / 1

A Manohar (UCSD)

$$1 = \frac{\rlap/n\rlap/n}{4} + \frac{\rlap/n\rlap/n}{4}$$
$$\psi = \xi_n + \Xi_n$$

 Ξ_n is the small component, and can be integrated out.

$$\xi_n = \frac{\rlap/n\rlap/n}{4} \, \xi_n = P_n \, \xi_n$$

is the SCET spinor.

$$\not h \, \xi_n = \not h P_n \, \xi_n = \not h \frac{\not h \not h}{4} \, \xi_n = 0$$

In HQET,

$$P^{\mu}=m_{O}v^{\mu}+k^{\mu}$$

In SCET,

$$P^\mu = (0, \rho^-, \rho_\perp) + k^\mu$$

$$p^- \sim 1$$

$$p_{\perp} \sim \lambda$$

$$k^{\mu} \sim \lambda^2$$

p is called the label momentum. Note that $p \neq 0$ (zero-bin)

$$\int \mathrm{d}P \to \sum_{p} \int \mathrm{d}k$$

In dimensional regularization, can integrate over $k \in (-\infty, \infty)$

At a vertex:

$$\delta(P_1-P_2) \rightarrow \delta_{p_1,p_2} \delta(k_1-k_2)$$

$$\psi(x) = \int \frac{\mathrm{d}^4 P}{(2\pi)^4} \delta(P^2) \theta(P^0) \left[u(p, h) a(p, h) e^{-iP \cdot x} + v(p, h) b^{\dagger}(p, h) e^{iP \cdot x} \right]$$
$$= \psi^{(+)}(x) + \psi^{(-)}(x)$$

$$\psi^{(+)}(x) = \sum_{p \neq 0} e^{-ip \cdot x} \, \xi_{n,p}^{(+)}(x)$$
$$\psi^{(-)}(x) = \sum_{p \neq 0} e^{ip \cdot x} \, \xi_{n,p}^{(-)}(x)$$

25 / 1

ICTP-SAIFR School 05.2013

$$\psi^{(+)}(x) = \sum_{p} e^{-ip \cdot x} \xi_{n,p}^{(+)}(x)$$

$$\psi^{(-)}(x) = \sum_{p} e^{ip \cdot x} \xi_{n,p}^{(-)}(x)$$

where the labels on the fields are $n, p = (0, p^-, p_\perp)$

$$ar{n} \cdot p = p^- = E + p \approx 2E > 0.$$

 $\xi_{n,p}^{(\pm)}(x)$ is the field for *n*-collinear particles: P^{μ} close to p^{μ} (within λ^2).

Use spinors that satisfy

$$\not\! n\,\xi_{n,p}^{(\pm)}=0$$

The small corrections to the spinors are expanded out.

→ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 釣 久 ②

Define (note the minus sign)

$$\xi_{n,p}(x) = \xi_{n,p}^{(+)}(x) + \xi_{n,-p}^{(-)}(x)$$

So that

 $\bar{n} \cdot p > 0$: destroy particles

 $\bar{n} \cdot p < 0$: create antiparticles

Define label momentum operator \mathcal{P} ,

$$\mathcal{P}^{\mu} \, \xi_{n,p}(x) = p^{\mu} \xi_{n,p}$$

so that the total momentum is $\mathcal{P} + i\partial$.

$$\xi_n(x) = e^{-ip \cdot x} \, \xi_{n,p}(x)$$

and

$$i\partial^{\mu} \xi_{n}(x) = e^{-ip\cdot x} (\mathcal{P} + i\partial)^{\mu} \xi_{n,p}(x)$$

The $e^{-ip \cdot x}$ factors at an interaction vertex cancel by label momentum conservation.

Can apply the same procedure to gluons,

$$A_{n,q}^{\mu}(x), \qquad \qquad \left[A_{n,q}^{\mu}(x)\right]^* = A_{n,-q}^{\mu}(x),$$

 $\bar{n} \cdot q > 0$ destroy gluons, and $\bar{n} \cdot q < 0$ create gluons.

QCD propagator:

$$\frac{p}{p^2} = \frac{\frac{1}{2}p \, \bar{n} \cdot p + \frac{1}{2} \bar{n} \, n \cdot p + p_{\perp}}{p^+ p^- + (p_{\perp})^2}$$

$$n-$$
 collinear : $\left(p^+ \sim \lambda^2 Q, \; p^- \sim 1Q, \; p_\perp \sim \lambda Q\right)$

SCET propagator:

$$\begin{split} \frac{p}{p^2} & \to \frac{\frac{1}{2} \not h \; \bar{n} \cdot p}{p^+ p^- + (p_\perp)^2} \\ & \to \frac{\frac{1}{2} \not h \; \bar{n} \cdot p}{(p^+ + k^+) \; p^- + (p_\perp)^2} \end{split}$$

using $p \to p + k$, $k \sim \lambda^2 Q^2$.

$$\mathcal{L}=\overline{\psi}\left(\emph{i}\cancel{D}\right)\psi$$

$$\psi = e^{-ip \cdot x} \left[\xi_{n,p}(x) + \Xi_{n,p}(x) \right]$$

p is the label momentum, k is the Fourier transform of x.

$$\mathcal{L} = \left[\overline{\xi}_{n,p}(x) \; P_{\bar{n}} + \overline{\Xi}_{n,p}(x) \; P_{n} \right] \left(\not p + i \not D \right) \left[P_{n} \; \xi_{n,p}(x) + P_{\bar{n}} \; \overline{\Xi}_{n,p}(x) \right]$$

$$P_{ar{n}} \not\!p P_n = rac{ec{n} \not\!n}{4} \left[rac{1}{2} \not\!n ar{n} \cdot
ho + rac{1}{2} ec{n} n \cdot
ho + \not\!p_\perp
ight] rac{\not\!n ec{n}}{4}$$

$$h \not h = 0$$
 $h \not p_{\perp} \not h = 0$ $h \not h \not h = 2(n \cdot \bar{n}) \not h = 4 \not h$

$$P_{\bar{n}} \not\!p P_n = rac{ec{n}}{4} \left[4 \not\!n
ight] rac{ec{n}}{4} \, \left(rac{1}{2} n \cdot
ho
ight) = ec{n} \, P_n \left(rac{1}{2} n \cdot
ho
ight)$$

$$P_n \not\!p P_{\bar{n}} = \not\!n P_{\bar{n}} \left(\frac{1}{2} \bar{n} \cdot p \right)$$

$$P_{n} \not p P_{n} = \frac{\not n \vec{h}}{4} \left[\frac{1}{2} \not n \vec{h} \cdot p + \frac{1}{2} \vec{h} n \cdot p + \not p_{\perp} \right] \frac{\not n \vec{h}}{4}$$
$$= \frac{\not n \vec{h}}{4} \left[\not p_{\perp} \right] \frac{\not n \vec{h}}{4} = \not p_{\perp} P_{n}$$

$$\mathcal{L} = \overline{\xi}_{n,p}(x) \frac{\rlap{/}{n}}{2} (in \cdot D) \, \xi_{n,p}(x) + \overline{\Xi}_{n,p}(x) \frac{\rlap{/}{n}}{2} (\bar{n} \cdot p + i\bar{n} \cdot D) \, \Xi_{n,p}(x) + \overline{\Xi}_{n,p}(x) (\rlap{/}{p}_{\perp} + i\rlap{/}{p}_{\perp}) \, \xi_{n,p}(x) + \overline{\xi}_{n,p}(x) (\rlap{/}{p}_{\perp} + i\rlap{/}{p}_{\perp}) \, \Xi_{n,p}(x)$$

The Ξ field has a kinetic term of order Q, and can be integrated out:

$$\mathcal{L} = \overline{\xi}_{n,p}(x) \left[(in \cdot D) + (\not p_{\perp} + i \not D_{\perp}) \frac{1}{\overline{n} \cdot p + i \overline{n} \cdot D} (\not p_{\perp} + i \not D_{\perp}) \right] \frac{\vec{n}}{2} \, \xi_{n,p}(x)$$

A similar term for \bar{n} -collinear quarks with $n \leftrightarrow \bar{n}$

32 / 1

A Manohar (UCSD)

The gluon field A_{μ} is split into three pieces

$${\it A}^{\mu}
ightarrow {\it A}^{\mu}_{\it us} + {\it A}^{\mu}_{\it n} + {\it A}^{\mu}_{ar{\it n}}$$

The scaling is

$$\begin{aligned} & \boldsymbol{A}_{n}^{\mu}:\left(\boldsymbol{\lambda}^{2},\boldsymbol{1},\boldsymbol{\lambda}\right)\boldsymbol{Q} \\ & \boldsymbol{A}_{\bar{n}}^{\mu}:\left(\boldsymbol{1},\boldsymbol{\lambda}^{2},\boldsymbol{\lambda}\right)\boldsymbol{Q} \\ & \boldsymbol{A}_{n}^{\mu}:\left(\boldsymbol{\lambda}^{2},\boldsymbol{\lambda}^{2},\boldsymbol{\lambda}^{2}\right)\boldsymbol{Q} \end{aligned}$$

$$A_n^{\mu}(x) = e^{-iq\cdot x} A_{n,q}(x)$$

 \bar{n} -collinear gluons do not couple to n-collinear quarks, since the resultant quark is off-shell by Q^2 .

If we use the label operator \mathcal{P} , and define

$$iD_c^\mu=\mathcal{P}^\mu-gT^aA_c^\mu$$

$$\mathcal{L} = \overline{\xi}_{n,p}(x) \left\{ \left[in \cdot (D_{us} + D_n) \right] + \left(i \not D_{n,\perp} \right) \frac{1}{i \overline{n} \cdot D_n} \left(i \not D_{\perp,n} \right) \right\} \frac{\vec{n}}{2} \, \xi_{n,p}(x)$$

Drop the D_{us} in the \perp terms and denominator.

Infinite number of collinear gluon interactions from the $1/(i\bar{n} \cdot D_n)$ interaction.

34 / 1

A Manohar (UCSD) ICTP-SAIFR School 05.2013