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Wilson Lines

y

x
W (x , y) = P exp

{
−ig

∫ x

y
Aµ(z) dzµ

}

=
∏

i

e−igAµ(zi )∆zµ
i

(t · D) W (x , y) = δ(x − y)

W (x , y)→ U(x)W (x , y)U(y)† show this

W (x , y)ψ(y)→ U(x) W (x , y)ψ(y)

Transports charge from y to x

A Manohar (UCSD) ICTP-SAIFR School 05.2013 2 / 31



Wilson Loop

WC(x) = P exp
{
−ig

∮

C
Aµ(z) dzµ

}

WC(x)→ U(x) WC(x) U(x)†

Tr WC(x)

is gauge invariant. Depends on the curve C, but not on the starting
point x . show this
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Collinear Wilson Lines
n-collinear Wilson line:

Wn(x) = P exp

{
−ig

∫ 0

−∞
n̄ · An(x + sn̄) ds

}

An integral along the n̄ direction from −∞ to x .

Wn(x) is the Green’s function for i n̄ · Dn.

Wn(x)†n̄ · PWn(x) = n̄ · Dn

convert an ordinary derivative into a covariant derivative.

Cannot do this in a normal gauge theory because there is no preferred
path to x . Around closed loops

P exp ig
∮

Aµ(z)dzµ 6= 0

Here we have direction labels n, n̄.
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L = ξn,p(x)

{
[in · (Dus + Dn)] +

(
i /Dn,⊥

)
Wn(x)

1
i n̄ · PW †

n (x)
(
i /D⊥,n

)} /̄n
2
ξn,p(x)

You can also show that the Wilson lines are needed by collinear gauge invariance.
Under gauge transformations,

ψ → Uψ

g Aµ → U g AµU† + i∂µU U†

Under n-collinear gauge transformations, the x dependence on Un(x) has
momentum (1, λ2, λ)Q.

ξn,p(x)→ Un(x) ξn,p(x)

ξn̄,p → ξn̄,p

Aus → Aus

Wn(x)→ Un(x) Wn(x)

so

Wn(x)†ξn,p(x)

is n-collinear gauge invariant.
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86

= i
n̄/

2

n̄ · p̃

n · k n̄ · p̃ + p̃2
⊥ + iε

= igTAnµ
n̄/

2

= igTA

(
nµ +

γ⊥
µ p̃/⊥
n̄ · p̃ +

p̃/′
⊥γ

⊥
µ

n̄ · p̃′ −
p̃/′

⊥p̃/⊥
n̄ · p̃ n̄ · p̃′ n̄µ

)
n̄/

2

p̃ + k

p̃ p̃′

Figure 3.1: Feynman rules involving collinear quarks in SCETI. The collinear particles are
shown with label momenta p̃, p̃′ and residual momentum k.

derivatives in the collinear quark Lagrangian (3.26) can be split up:

A = Ac + As + Aus, (3.27)

where the collinear, soft, and ultrasoft fields are assigned the power countingas:

Ac ∼ Q(λ2, 1,λ), As ∼ Q(λ,λ,λ), Aus ∼ Q(λ2,λ2,λ2), (3.28)

to match the scalings of the corresponding momenta. Note that interactions of soft gluons

with collinear quarks leave the quark with the momentum scaling Q(λ, 1,λ), which does

not exist in the effective theory. So soft gluons should not appear in the Lagrangian (3.26).

Collinear quarks do interact with ultrasoft gluons. The effective theory collinear gluon fields

Ac
n,q are defined by:

Ac(x) =
∑

q̃

e−iq̃·xAc
n,q(x), (3.29)

factoring out the large label momentum q̃.

In the Lagrangian (3.26), the components D⊥ and n̄ · D of the covariant derivative

contain both ultrasoft and collinear gluons. Due to the power counting in Eq. (3.28), the

ultrasoft gluon fields give a subdominant contribution compared to that of the collinear

i
n/

2

n̄·p̃
n·k n̄·p̃ + p̃2

? + i✏

Notation for fields

A Manohar (UCSD) ICTP-SAIFR School 05.2013 6 / 31



What makes EFT complicated?
HQET:

p = mQv + k

v is constant, i.e. the label is conserved.

NRQCD/NRQED and SCET:

Can have label-changing interactions, so the label is a dynamical
variable, and not a constant.

quarks can change direction, n-collinear interactions can change p.
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SCET Matching for the Current

Suppose you have a current ψγµψ in QCD, as in e+e− → qq.

It matches to

ψγµψ → C
[
ξn̄,pWn̄

]
γµ
[
W †

nξn,p(x)
]

by collinear gauge invariance.

C = 1 +O (αs)
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High scale matching: µ ∼ Q

full theory:

p1

p2

(a)

EFT:

p1

p2

(a)

p1

p2

(b)

p1

p2

(c)
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SCET Matching: Jµ → qq

Jµ = ψ γµψ

In the EFT, this matches to

Jµ = C
[
ξn,pW

]
γµ
[
W †ξn,p

]

Compute the on-shell matrix element at one loop.

Start with scattering kinematics q2 = −Q2 < 0.

√
Rψ +
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iRψ
/p

as p → 0

I1 = i /p

Use Feynman gauge

I2 = −g2CF

∫
ddk

(2π)d γ
α /p + /k

(p + k)2γα
1
k2

= CF
αs

4π
i /p
[

1
εUV
− 1
εIR

]

R−1
ψ = 1 + CF

αs

4π
i /p
[
− 1
εIR

]
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p1

p2

IV = −g2CF

∫
ddk

(2π)d γ
α /p2 + /k

(p2 + k)2γ
µ /p1 + /k

(p1 + k)2γα
1
k2

We want the graph on-shell, so . . . /p1 = 0, /p2 . . . = 0.

Combine (p1 + k)2 and (p2 + k)2 first using x , and then k2 using z.
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The entire integral is

CF
αs

4π
γµ(4πµ̃2)ε

∫ 1

0
dx
∫ 1

0
dz z

{
(2− d)2

2
Γ(ε)

[
Q2x(1− x)z2

]−ε

+ Q2Γ(1 + ε)
[
Q2x(1− x)z2

]−1−ε
×

[
2(1− xz)((1− x)z − 1)− (d − 4)x(1− x)z2

]}

= CF
αs

4π
γµ
[
− 2
ε2IR
− 2
εIR

ln
µ2

Q2 +
1
εUV
− 4
εIR
− ln2 µ

2

Q2

− 3 ln
µ2

Q2 +
π2

6
− 8
]
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The on-shell matrix element is

1 + CF
αs

4π
γµ
[
− 2
ε2IR
− 2
εIR

ln
µ2

Q2 −
3
εIR
− ln2 µ

2

Q2 − 3 ln
µ2

Q2 +
π2

6
− 8
]

No UV divergence since the current has no anomalous dimension.

The EFT graphs are

p1

p2

p1

p2

p1

p2

p1

p2
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The n-collinear graph gives

In = −ig2µ2εCF

∫
ddk

(2π)d

/̄n nα

2
/n n̄ · (p2 − k)

2(p2 − k)2 γµ
1

−n̄ · k n̄α
1
k2

= −2ig2µ2εCF

∫
ddk

(2π)d
n̄ · (p2 − k)

(p2 − k)2 γµ
1

−n̄ · k
1
k2

The only scale is p−2 , so the integral vanishes.

The ultrasoft graph is

Is = −ig2CF

∫
ddk

(2π)d nα
1

[n · (p2 − k)]
γµ

1
[n̄ · (p1 − k)]

n̄α
1
k2

and also vanishes.
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QCD:

1 + CF
αs

4π
γµ
[
− 2
ε2IR
− 2
εIR

ln
µ2

Q2 −
3
εIR
− ln2 µ

2

Q2 − 3 ln
µ2

Q2 +
π2

6
− 8
]

SCET:

1 + CF
αs

4π
γµ
[ 2
ε2UV
− 2
ε2IR

+
2
εUV

ln
µ2

Q2 −
2
εIR

ln
µ2

Q2 +
3
εUV
− 3
εIR

]

Matching:

C(µ) = 1 + CF
αs

4π

[
− ln2 µ

2

Q2 − 3 ln
µ2

Q2 +
π2

6
− 8
]

Anomalous dimension:

µ
dC(µ)

dµ
= CF

αs

4π

[
−4 ln

µ2

Q2 − 6
]
C(µ)
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ln Q2 in the anomalous dimension: Sums the Sudakov double logs.

For the time-like case,

ln Q2 = ln
(

Q2 − i0+
)
→ ln

(
−q2 − i0+

)
= ln q2 − iπ

Matching:

C(µ) = 1 + CF
αs

4π

[
− ln2 µ

2

q2 − 3 ln
µ2

q2 − 2iπ ln
µ2

q2 +
7π2

6
− 3iπ − 8

]
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µ
dC(µ)

dµ
= γ(µ)C(µ)

Then

ln
C(µ2)

C(µ1)
=

∫ µ2

µ1

dµ
µ
γ(µ)

γ(µ) = A(αs) ln
µ2

Q2 + B(αs)

Can prove only a single log to all orders in perturbation theory
Gives the Sudakov resummation: ln F = Lf0(αsL) + f1(αsL) + . . ..
A(αs) is the cusp anomalous dimension Γ(αs)
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Cusp Anomalous Dimension

A smooth Wilson line has renormalization of g and proportional to its
length (like mass renormalization).

If there are kinks, additional anomalous dimension Γ that depends on
the angle between tangent vectors at the point.
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SCET developed to study processes such as B → ππ with energetic
hadrons.

Applied to study jets.

Can also be used to study electroweak corrections at the LHC.

At high energies, W and Z are effectively massless. Can be used to
compute electroweak radiative corrections and sum the Sudakov
double logs.

αW log2 s
M2

W ,Z

Might think that these are tiny, but they are acutally relevant.
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Advantages are:
factored the scale s from MW , MZ , Mh.
Can do the calculation to NLL for all LHC scattering processes.
Much simpler than existing fixed order results
Can include the complete mass dependence on mt/MZ , MW/MZ
and Mh/MZ

Can include top-Yukawa corrections
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t t Invariant Mass distribution

AM, M. Trott, PLB711 (2012) 312

Solid black lines which are the corrections for 7 and 8 TeV LHC:

Seen in the data.

A Manohar (UCSD) ICTP-SAIFR School 05.2013 22 / 31



Event Shapes

Thrust:

τ = 1− T = 1−max
n

∑
i |n · pi |∑

i |pi |

C parameter:

C =
3
2

∑
i,j |pi |

∣∣pj
∣∣ sin2 θij

(
∑ |pi |)2

In the two jet region τ → 0, C → 0.
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Gehrmann et al

Becher and Schwartz

Abbate et al.

Compute fixed order to α3
s and resummation to N3LL and

1/Q power correction

Slides from I. Stewart talk.

Moments:

Mn =

∫ 1

0
τn p(τ) dτ
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order Ω̄1 (MS) Ω1 (R-gap)

NLL′ 0.264 ± 0.213 0.293 ± 0.203

NNLL 0.256 ± 0.197 0.276 ± 0.155

NNLL′ 0.283 ± 0.097 0.316 ± 0.072

N3LL 0.274 ± 0.098 0.313 ± 0.071

N3LL′ (full) 0.252 ± 0.069 0.323 ± 0.045

N3LL′
(QCD+mb) 0.238 ± 0.070 0.310 ± 0.049

N3LL′
(pure QCD) 0.254 ± 0.070 0.332 ± 0.045

TABLE V: Theory errors from the parameter scan and cen-
tral values for Ω1 defined at the reference scales R∆ = µ∆ =
2 GeV in units of GeV at various orders. The N3LL′ value
above the horizontal line is our final scan result, while the
N3LL′ values below the horizontal line show the effect of leav-
ing out the QED corrections, and leaving out both the b-mass
and QED respectively. The central values are the average of
the maximal and minimal values reached from the scan.

τ

σ
dσ
dτ

τ

0.300.10 0.15 0.20 0.25
0.0

0.4

0.3
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Fit at N LL3 ’

theory scan error

DELPHI

ALEPH

OPAL

L3

SLD

for &

FIG. 13: Thrust distribution at N3LL′ order and Q = mZ

including QED and mb corrections using the best fit values
for αs(mZ) and Ω1 in the R-gap scheme given in Eq. (66). The
pink band represents the perturbative error determined from
the scan method described in Sec. VI. Data from DELPHI,
ALEPH, OPAL, L3, and SLD are also shown.

method. The fit result is shown in comparison with data
from DELPHI, ALEPH, OPAL, L3, and SLD, and agrees
very well. (Note that the theory values displayed are
actually binned according to the ALEPH data set and
then joined by a smooth interpolation.)

Band Method

It is useful to compare our scan method to determine the
perturbative errors with the error band method [26] that
was employed in the analyses of Refs. [20, 22, 25]. In the
error band method first each theory parameter is varied
separately in the respective ranges specified in Tab. III
while the rest are kept fixed at their default values. The
resulting envelope of all these separate variations with
the fit parameters αs(mZ) and Ω1 held at their best fit

Band Band Our scan
method 1 method 2 method

N3LL′ with ΩRgap
1 0.0004 0.0008 0.0009

N3LL′ with Ω̄MS
1 0.0016 0.0019 0.0021

N3LL′ without Smod
τ 0.0018 0.0021 0.0034

O(α3
s) fixed-order 0.0018 0.0026 0.0046

TABLE VI: Theoretical uncertainties for αs(mZ) obtained at
N3LL′ order from two versions of the error band method, and
from our theory scan method. The uncertainties in the R-gap
scheme (first line) include renormalon subtractions, while the
ones in the MS scheme (second line) do not and are therefore
larger. The same uncertainties are obtained in the analysis
without nonperturbative function (third line). Larger uncer-
tainties are obtained from a pure O(α3

s) fixed-order analysis
(lowest line). Our theory scan method is more conservative
than the error band method.

values determines the error bands for the thrust distri-
bution at the different Q values. Then, the perturbative
error is determined by varying αs(mZ) keeping all the-
ory parameters to their default values and the value of
the moment Ω1 to its best fit value. The resulting per-
turbative errors of αs(mZ) for our full N3LL′ analysis in
the R-gap scheme are given in the first line of Tab. VI.
In the second line the corresponding errors for αs(mZ)
in the MS scheme for Ω̄1 are displayed. The left column
gives the error when the band method is applied such
that the αs(mZ) variation leads to curves strictly inside
the error bands for all Q values. For this method it turns
out that the band for the highest Q value is the most
restrictive and sets the size of the error. The resulting
error for the N3LL′ analysis in the R-gap scheme is more
than a factor of two smaller than the error obtained from
our theory scan method, which is shown in the right col-
umn. Since the high Q data has a much lower statistical
weight than the data from Q = mZ , we do not consider
this method to be sufficiently conservative and conclude
that it should not be used. The middle column gives the
perturbative error when the band method is applied such
that the αs(mZ) variation minimizes a χ2 function which
puts equal weight to all Q and thrust values. This sec-
ond band method is more conservative, and for the N3LL′

analyses in the R-gap and the MS schemes the resulting
errors are only 10% smaller than in the scan method that
we have adopted. The advantage of the scan method we
use is that the fit takes into account theory uncertainties
including correlations.

Effects of QED and the bottom mass

Given the high-precision we can achieve at N3LL′ or-
der in the R-gap scheme for Ω1, it is a useful exercise
to examine also the numerical impact of the corrections
arising from the nonzero bottom quark mass and the
QED corrections. In Fig. 14 the distributions of the best
fit points in the αs-2Ω1 plane at N3LL′ in the R-gap
scheme is displayed for pure massless QCD (light green

thrust 
tail

C-param

12

50 100 150 200

0.05

0.07

0.09

0.11

Q !GeV"

!1!Q"
Fit at "3LL for Αs!mZ" and $1

theory scan error

ALEPH
OPAL
L3
DELPHI
JADE
AMY
TASSO

FIG. 8: First moment of the thrust distribution as a func-
tion of the center of mass energy Q, using the best-fit values
for αs(mZ) and Ω1 in the Rgap scheme as given in Eq. (34).
The blue band represents the perturbative uncertainty deter-
mined by our theory scan. Data is from ALEPH, OPAL, L3,
DELPHI, JADE, AMY and TASSO.

typically designed to eliminate initial state photon radi-
ation, while those of the TASSO, L3 and ALEPH collab-
orations eliminated initial and final state photon radia-
tion. It is straightforward to test for the effect of these
differences in the fits by using our theory code with QED
effects turned on or off depending on the data set. Using
our N3LL order code in the Rgap scheme we obtain the
central values αs(mZ) = 0.1143 and Ω1 = 0.376 GeV.
Comparing to our default results given in Tabs. I and II,
which are based on the theory code were QED effects are
included for all data sets, we see that the central value
for αs is larger by 0.0003 and the one for Ω1 is smaller
by 0.001 GeV. This shift is substantially smaller than
our perturbative uncertainty. Hence our choice to use
the theory code with QED effects included everywhere
as the default for our analysis does not cause an observ-
able bias regarding experiments which remove final state
photons.

By comparing the N3LL (pure massless QCD) and
N3LL (QCD + mb) entries in Tabs. I and II we see that in-
cluding finite b-mass corrections causes a very mild shift
of ! +0.0004 to αs(mZ), and a somewhat larger shift
of ! −0.033 GeV to Ω1. In both cases these shifts are
within the 1-σ theory uncertainties. In the N3LL (pure
massless QCD) analysis the b-quark is treated as a mass-
less flavor, hence this analysis differs from that done by
JADE [23] where primary b quarks were removed using
MC generators.

D. Final Results

As our final result for αs(mZ) and Ω1, obtained at
N3LL order in the Rgap scheme for Ω1(R∆, µ∆), includ-

0.112 0.113 0.114 0.115 0.116 0.117

0.5

0.6

0.7

0.8

0.9

Αs!mZ"

2$1!GeV" first moment
thrust tail

full "3LL results

1 Σ&

1 Σ&

FIG. 9: Comparison of αs(mZ) and Ω1 determinations from
thrust first moment data (red) and thrust tail data (blue).
The plot corresponds to fits with N3LL accuracy and in the
Rgap scheme. The tail fits are performed with our improved
code which uses a new nonsingular two-loop function, and the
now known two-loop soft function. Dashed lines correspond to
theory uncertainties, solid lines correspond to ∆χ2 = 1 com-
bined theoretical and experimental error ellipses, and wide-
dashed lines correspond to ∆χ2 = 2.3 combined error ellipses
(corresponding to 1-σ uncertainty in two dimensions).

ing bottom quark mass and QED corrections we obtain

αs(mZ) = 0.1140 ± (0.0004)exp (34)

± (0.0013)hadr ± (0.0007)pert,

Ω1(R∆, µ∆) = 0.377 ± (0.013)exp

± (0.042)αs(mZ) ± (0.039)pert GeV,

where R∆ = µ∆ = 2 GeV and we quote individual 1-σ
uncertainties for each parameter. Here χ2/dof = 1.33.
Eq. (34) is the main result of this work.

In Fig. 8 we show the first moment of the thrust dis-
tribution as a function of the center of mass energy Q,
including QED and mb corrections. We use here the best-
fit values given in Eq. (34). The band displays the theo-
retical uncertainty and has been determined with a scan
on the parameters included in our theory, as explained in
App. A. The fit result is shown in comparison with data
from ALEPH, OPAL, L3, DELPHI, JADE, AMY and
TASSO. Good agreement is observed for all Q values.

It is interesting to compare the result of this analysis
with the result of our earlier fit of thrust tail distributions
in Ref. [8]. This is shown in Fig. 9. Here the red upper
shaded area and corresponding ellipses show the results
from fits to the first moment of the thrust distribution,
while the blue lower shaded area and ellipses show the

�

thrust 
moment

Global Fits

universality?Q = mZ

Q = mZ

ΩC
1 ↔ Ωτ

1

QCD only

with QED
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Jet Vetoes

Look at W + 0 jets, W + 1 jet, etc.

Similarly for the Higgs, there is a jet veto.
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23

Higgs and Jet Binning Jet Vetoes and Factorization NNLL�pT
+NNLO Resummation for p

jet
T

Summary

Jet Binning Uncertainties at Fixed Order

0
0

2

4

6

8
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Relevant experimental range
pcut

T = 20 − 40 GeV

NNLO is available numerically
from fully differential codes

� FEHiP [Anastasiou, Melnikov, Petriello]
� HNNLO [Grazzini]
� MCFM [Campbell, Ellis, Williams]

Naive scale variation at fixed order ignores ∆cut induced by log series
Can estimate ∆cut by FO scale variation of σ≥1 = σB(αsL

2 + · · · )
∆y

0 = ∆µ
total , ∆cut = ∆µ

≥1 ⇒ ∆2
0 = (∆µ

total)
2 + (∆µ

≥1)
2

⇒ Resum logs to obtain improved predictions and uncertainty estimates
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Introduction Resumming Jet Cross Sections in SCET Matching with Helicity Amplitudes Summary

Perturbative Structure of Jet Cross Sections

σtotal =

� pcut
T

0

dpT

dσ

dpT� �� �
+

� ∞

pcut
T

dpT

dσ

dpT� �� �
σ0(p

cut
T ) + σ≥1(p

cut
T )

σtotal = 1 + αs + α2
s + · · ·

σ≥1(p
cut
T ) = αs(L

2 + L + 1) + α2
s(L

4 + L3 + L2 + L + 1) + · · ·

σ0(p
cut
T ) = σtotal − σ≥1(p

cut
T )

=
�
1 + αs + α2

s + · · ·� − �
αs(L

2 + · · · ) + α2
s(L

4 + · · · ) + · · ·�

where L = ln(pcut
T /Q)

Logarithms are important for pT � Q ∼ hard-interaction scale
Same logarithms appear in the exclusive N-jet and inclusive (≥ N+1)-jet
cross section (and cancel in their sum)
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Uncertainty procedure: IS, Tackmann
NNLO Fixed Order: FeHIP, HNNLO

Resummation of Veto Logs

Higgs and Jet Binning Jet Vetoes and Factorization NNLL�pT
+NNLO Resummation for p

jet
T

Summary

Results

green: NLLpT

blue: NLL�
pT

+NLO
orange: NNLL�

pT
+NNLO

Including resummation and fixed-order uncertainties
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⇒ Uncertainties noticably larger for R = 0.4 than R = 0.7
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Resummation of Veto Logs

IS, Tackmann, Walsh, Zuberi (in prep)
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Jet Mass Distribution

Try and distinguish between quark and gluon jets.
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Jet Mass Distribution

48

Of course it is also tempting to 
compare to the ATLAS inclusive jet data

This is only meaningful at the level that their jet mass 
results are gluon dominated and process independent

(please read this apples to oranges comparison carefully)
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FIG. 16: Comparison of the Pythia jet mass spectrum for inclusive pp → jets to the corresponding ATLAS data [26].
Pythia results are shown at parton level (dotted), including hadronization (dashed), and including hadronization and multiple
interactions (solid). The final Pythia results reproduce the data well.
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FIG. 17: Comparison of our exclusive NNLL calculation with ATLAS inclusive jet mass data [26]. The peak position of our
gluon jets from gg → Hg agrees remarkably well with the inclusive dijet data. For the ATLAS date there is presumably a
shift to lower values due to quark jets which is compensated by a shift to higher values due to hadronization and multiple
interactions.

effect of the underlying event.

Given that Pythia agrees well with the ATLAS inclu-
sive dijet spectrum, one might wonder what the purpose
of a higher-order NNLL dijet calculation would be. An
advantage of our calculational framework over Pythia is
that it follows from first principles and does not involve
the modeling and tuning present in Pythia. Specifically,
the input to our calculation is limited to αs(mZ), the par-
ton distributions functions, and simple soft function pa-
rameters like Ω for the hadronic effects. Furthermore, we
have a rigorous estimate of the higher-order perturbative
uncertainty from scale variation, as well as from order-
by-order convergence, which enable us to fully asses the
reliability of the result. Finally, it should be emphasized
that our calculation is fully analytic (up to the numer-
ical convolution with the PDFs) and hence provides an
analytic QCD calculation of an LHC spectrum for jets.

To the extent that the normalized jet mass spectrum is
independent of the hard process and independent of using

an inclusive or exclusive jet sample, which Pythia seems
to suggest in Figs. 11 and 12, a comparison between jet
mass spectra involving different hard processes and with
and without jet veto cuts is appropriate. The approx-
imate hard process independence only holds separately
for gluon or quark jets, which themselves have fairly dif-
ferent jet mass spectra, see Fig. 4(b). Therefore when
varying the hard process we expect the dominant change
in the jet mass spectrum to be related to the process
dependent fraction of quark and gluon jets produced.

In Fig. 17 we compare our NNLL result for pp → H +1
jet and for gg → Hg to the ATLAS data for pp → jets.
Recall that the peak location of the NNLL H+1 jet calcu-
lation matches well with that from Pythia, see Fig. 14.
Because of the significant contribution from quark jets
the H + 1 jet spectrum peaks to the left of the spectrum
from dijets. On the other hand, the peak location with
pure gluon jets (gg → Hg) agrees remarkably well with
the data on dijets. From the results already obtained

underlying event
    pushes to right 

quark channels
    push to left

•

•
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