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Today we will derive the HQET Lagrangian to O(1/mQ) and the SCET La-
grangian to O(λ0).

1 HQET Lagrangian

Exercise 1 Show that the Dirac propagator for a heavy quark with momentum
p = mQv + k, where k � mQ, is, to leading order in O(1/mQ),

i
1 + v/

2v ·k + iε
. (1)

Exercise 2 Write the Dirac Lagrangian for a heavy quark Q(v) in terms of the
projections Qv,Qv, defined by:

Q(x) = e−imQv·x[Qv(x) +Qv(x)] , (2)

where

Qv = eimQv·x1 + v/

2
Q , Qv = eimQv·x1− v/

2
Q . (3)

The phase in Eq. (2) removes the large part of the momentum from the fields, and
the fields Qv,Qv only have momentum fluctuations of order k. The two projections
pick out the large and small components of a heavy quark field at low momentum.

Exercise 3 Look at the Lagrangian you got in Exercise 2. Why can you “integrate
out” the field Qv? Find its classical equation of motion.

Exercise 4 Define the transverse component of an arbitrary vector Xµ by

Xµ
⊥ = Xµ −X ·v Xµ . (4)

Using this notation, show that to O(1/mQ),

LHQET = Q̄v

(
iv ·D − 1

2mQ

D/⊥D/⊥

)
Qv . (5)

What is the Feynman rule for the quark-gluon interaction vertex at O(1/m0
Q)?
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Exercise 5 Show that, in the HQET Lagrangian, you can use

D/⊥D/⊥ = D2
⊥ +

g

2
σµνG

µν , (6)

where σµν = i
2
[γµ, γν ]. Why don’t you need to put ⊥ labels on the Gµν?

Exercise 6 HQET obeys reparameterization invariance, that is, under small
changes in the label and residual momenta that leave the total momentum invariant:

v → v +
ε

mQ

k → k − ε .
(7)

Find a constraint that must be satisfied by the 4-vector εµ. Work to linear order in
ε.

Exercise 7 The heavy quark spinor field transforms under RPI as:

Qv → Qv + δQv . (8)

Find a constraint that must be satisfied by δQv (hint: consider what condition Qv

satisfies before the reparametrization Eq. (7)). Find an explicit form for δQv that
satisfies this constraint.

Exercise 8 Show to O(1/mQ) that LHQET from is invariant under RPI.

2 SCET Lagrangian

In SCET we decompose the momenta in light-cone coordinates along a direction
n = (1, 0, 0, 1) and its conjugate n̄ = (1, 0, 0,−1) so that n2 = n̄2 = 0 and n·n̄ = 2.
Namely,

pµ = n̄·pn
µ

2
+ n·pn̄

µ

2
+ pµ⊥ , (9)

where

pµ⊥ =
(
gµν −

nµn̄ν + nνn̄µ
2

)
pν . (10)

For a collinear particle, we divide the momentum in a large label component and a
small residual component, similar to HQET:

pµc = p̃µc + kµ , (11)

where

p̃µc = n̄·p̃µc
nµ

2
+ p̃µc⊥ (12)

contains the large O(Q) and O(Qλ) components of the collinear momentum, and k
is the O(λ2) residual momentum.
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Exercise 9 Start from the QCD Dirac Lagrangian,

L = q̄(x)iD/ q(x) . (13)

Factor out the large label momenta from the field:

q(x) =
∑
p̃

e−ip̃·xqn,p(x) , (14)

with a sum over nonzero labels p̃. By convention we don’t write the tilde in the field
subscript. What is the QCD Lagrangian in terms of qn,p fields?

Exercise 10 Project out the large and small components of the fields:

ξn,p =
n/n̄/

4
qn,p , Ξn,p =

n̄/n/

4
qn,p . (15)

Write the Lagrangian in terms of ξn,p and Ξn,p fields.

Exercise 11 Argue why you can integrate out the Ξn,p fields. What is its classical
equation of motion? Use it to obtain the form of the Lagrangian,

L =
∑
p̃,p̃′

e−i(p̃−p̃
′)·xξ̄n,p̃′

[
in·D + (p̃⊥/ + iD/⊥)

1

n̄·p̃+ in̄·D
(p̃⊥/ + iD/⊥)

] n̄/
2
ξn,p(x) . (16)

Exercise 12 The gluon field in the covariant derivatives above are also divided into
collinear and soft fields:

A→ An + As , (17)

where the collinear and soft gluon fields scale just like the corresponding momenta:

An ∼ Q(1, λ2, λ) , As ∼ Qλ2(1, 1, 1) , (18)

in light-cone components (n̄ · A, n · A,A⊥). Drop the soft gluons everywhere you
can in the Lagrangian Eq. (16) to leading order in λ. You should be left with the
Lagrangian,

LSCET =
∑
p̃,p̃′

e−i(p̃−p̃
′)·xξ̄n,p̃′

[
in·D+ (p̃⊥/ + iD/ c⊥)

1

n̄·p̃+ in̄·Dc
(p̃⊥/ + iD/ c⊥)

] n̄/
2
ξn,p(x) , (19)

where Dc = ∂ + igAn is the purely collinear covariant derivative. This is one form
of the SCET Lagrangian, from which you can derive the Feynman rules shown in A.
Manohar’s lecture this morning.

3



Exercise 13 Define the label operators acting on collinear fields as:

Pµφn,p = p̃µφn,p , (20)

where φ can be ξ or A. Using these operators, show that the SCET Lagrangian can
be written in the form

LSCET = ξ̄n(x)
[
in·D + iD⊥/ c

1

in̄·D/ c
iD⊥/ c
] n̄/

2
ξn(x) , (21)

where now
Dcµ = Pµ + igAµn , (22)

and
ξn(x) =

∑
p̃

e−ip̃·xξn,p(x) . (23)

Note Eq. (21) contains arbitrarily many n̄·An gluons coupling to the collinear quarks
because the component n̄ ·An is not suppressed by any powers of λ and thus can
appear arbitrarily many times in the O(λ0) Lagrangian.

Exercise 14 Using the collinear Wilson lines

Wn(x) = P exp
[
−ig

∫ x

−∞
ds n̄·An(x)

]
, (24)

show that
W †
n(x)n̄·PWn(x) = n̄·Dc . (25)

Show that the SCET Lagrangian can then be written:

LSCET = ξ̄n(x)
[
in·D + iD⊥/ cW †

n(x)
1

in̄·P
Wn(x)iD⊥/ c

] n̄/
2
ξn(x) , (26)

which now has no derivatives or gluons in the denominator of the second term.

Exercise 15 Show the gauge transformation properties of Wilson lines given in A.
Manohar’s lecture this morning.

Now you should be able to read papers in HQET and SCET! Muito obrigado for
your hard work and attentive interest in the EFT activities this week. If you have
any questions about them after we part ways from São Paulo feel free to contact me.
Best of luck in your future research!
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