

Broad-area lasers, laser solitons and patterns in optics

Thorsten Ackemann

SUPA and Department of Physics, University of Strathclyde, Glasgow, Scotland, UK

Agenda

- Aim: Overview on and understanding of the formation and selection of spatial modes in nonlinear optical systems
 - in particular broad-area lasers
 - connections to nonlinear dynamics and complexity science
- Broad-area and high-power semiconductor lasers
 - Modal behaviour, beam quality and instabilities
- > Exercise: Modulational instabilities in lasers and beam propagation
- Pattern in VCSELs
 - Pattern selection in lasers
 - quantum billiards
- Cavity soliton laser (VCSEL with feedback or saturable absorption)
 - optical control of self-localized microlasers
 - significance of disorder and phase-locking
 - high-order solitons and vortices
 - connection to dissipative solitons

Agenda II

- Other optical pattern forming systems
 - Single-mirror setup
 - Counterpropagating beams
- Spontaneous symmetry breaking and pattern selection
 - Hexagons as the "second harmonic generation" of transverse nonlinear optics
- One new direction: Optomechanical patterns

University of Strathclyde

situated at the heart of Glasgow, a thriving cultural city on the west coast of Scotland and only a short distance from the Scottish Highlands

John Anderson, Prof. of Natural Philosophy at Glasgow University (Jolly Jack Phosphorus), left instructions in his will for "a place of useful learning"

 \rightarrow Anderson's institution 1796 $\rightarrow \dots \rightarrow$

 \rightarrow Royal Charter for University of Strathclyde 1964

- still characterized by stimulating and engaging research and knowledge exchange culture
- > 2012: UK University of the Year
- > 2013: UK Entrepeneurial University of the Year

Department of Physics

- In John Anderson building
- Research divisions: Nanoscience, Plasmas, Optics
 - Computational Nonlinear and Quantum Optics Group
 - Photonics Group
 - Cold atoms and Bose-Einstein condensation
 - Quantum information (single atom imaging in optical lattices)
 - High precision (quantum) measurements
 - Mid-infrared sensing with quantum cascade lasers
 - Nonlinear photonics
- Part of the Scottish Universities Physics Alliance SUPA
- Strathclyde leading centre for photonics innovation and photonics at the academic-industrial interface: Institute of Photonics, Centre for Biophotonics, Fraunhofer Institute for Applied Photonics

University of

Student opportunities

- > > 350 undergraduate students
- > 110 postgraduate students PhD, MRes and MSc
- Taught MSc degrees in
 - Nanoscience
 - Optical Technologies
 - Photonics and Microfabrication
- SCOPE: OSA Student Chapter
 - Social and scientific networking
 - Company visits
 - Outreach work
 - International student conferences
 - OSA leadership conferences

SCOPE

student community for optics & photonics engineering

World-wide OSA student chapters

University of

Strathclyde

OSA student chapters

DS/

- ✓ \$ 250 start-up funding
- \checkmark education and activity grants
- ✓ traveling lecturer program
- ✓ participation at IONs conference (International OSA Network for Students)
 - organized by students, for students
- ✓ Leadership conferences
- ✓ Information, networking, career service
 - Myself member since 1992 (first international conference)
 - Faculty adviser to SCOPE since 2009
 - IONS conference in Glasgow 2009
 - ➢ OSA fellow 2013
 - current visit thanks to travel grant from OSA Fellow Lecturer Program
 - contact me for any questions!

Nonlinear Photonics at Strathclyde

Understand nonlinearities and complexity in nonlinear optics,
 Control especially semiconductor-based photonic devices
 Utilize as vertical-cavity lasers (VCSEL)

Combine fundamental physics with applications and devices

Cavity soliton laser

- Polarization and spintronics in VCSELs
 - ultrafast self-oscillations due to spin dynamics
 - broad-area VCSELs, coupling of spatial and polarization degrees of freedom: quantum chaos, optical spin-orbit coupling
 - dynamics of telecommunication VCSELs
- Self-organization and opto-mechanical coupling in cold atomic vapors
- Terahertz generation by difference frequency mixing (heat sinking)
- Quantum dot devices (nonlinear optics, lasers, THz …)

VCSEL patterns:

- Experiment: M. Schulz-Ruhtenberg (Muenster)
- Devices: K. F. Huang (National Chiao Tung University, Hsinchu)
- Theory: I. V. Babushkin (Minsk, now WIAS, Berlin), N. A. Loiko (Minsk)
- Funding: Deutsche Forschungsgemeinschaft, DAAD

Cavity soliton laser:

- Experiment: Y. Noblet^{*}, J. Jimenez^{**}, N. Radwell^{*}, Y. Tanguy
- Devices: R. Jaeger (Ulm Photonics)
- > Theory: C. McIntyre^{*}, W. J. Firth, G.-L. Oppo (Strathclyde), P. V. Paulau (Minsk,
- Strathclyde, Palma, now University of Oldenburg), D. Gomila, P. Colet (IFISC, Palma de Mallorca), N. A. Loiko (Minsk), N. N. Rosanov (St. Petersburg)
- \sim Eunding: *EPSPC DTA ** Consyst ELLEP6 EunEACS British Council
- Funding: *EPSRC DTA, ** Conayt, EU FP6 FunFACS, British Council, Royal Society, DAAD

Solitons and patterns in atomic vapors with feedback:

- Experiment, theory + devices: M. Schaepers, A. Aumann, W. Lange (Muenster)
- Funding: Deutsche Forschungsgemeinschaft, DAAD

Propagation and diffraction

Stability diagram

High order spatial modes

Divergence and brightness

- ➢ For the quality of a laser beam not only initial size w₀, but also the divergence ⊖ is important!
- > Divergence of high order modes ~ $\sqrt{m} \Theta_0$
- Brightness B = power / (mode area × emission angle)

= $P / (\pi w_0^2 \times \pi \Theta^2)$ [W cm⁻² str⁻¹]

Relevance for applications

(micromachining, medical, nonlinear optics ...)

Focused spot size ~ Θ f; need low divergence to focus tightly

Product w₀ × Θ can't decrease in passive homogeneous or lens-like optical systems

if you got it wrong at the start, you can't improve brightness any more

 \rightarrow get it right at the start (in the laser!)

Engineers/applied physicist use beam quality factor M²

beam size - divergence product normalized to the one of an ideal beam

- For fundamental, TEM₀₀, mode $Θ_0 = λ / (πw_0)$ → M² = 1
- ➢ for high-order, TEM_{m0}, mode apparent size ~ √m w₀ divergence ~ √m Θ₀ → M² ≈ m highest mode order

Cavities for high power lasers

17

- > Engineers and most other people do not like high order modes
- Design for fundamental mode operation by matching mode area to active gain area
- Not easy, but possible by using the degrees of freedom of stability diagram often possible (in reality in multi-mirror resonators)
- You can get solid-state (e.g. Nd:YAG) and semiconductor disk lasers with > 10 W of single spatial mode power

Schematics of a semiconductor laser Strathclyde

Broad-area edge-emitting lasers (BA

High Pow	Best lasers	
	Features: InAs/GaAs Quantum Dot based diode laser CW operation C-mount open heatsink	980 nm 11 W out of 90 µm stripes M²≈20
	Applications: • Medical • Direct materials processing	
	Specification for engineering samples DATE: 10 th Jun. 2008	

SPECIFICATIONS Test conditions: C-mount temperature 25°C, output power 8 W in CW operation						
Parameters		Min.	Тур.	Max.	Unit	
Output power		8.0			w	
Central wavelength		1200	1210	1220	nm	
Wavelength temperature tunability		0.4	0.45	0.55	nm/°C	
Spectral width (FWHM)			10	14	nm	
Operating current			14	18	Α	
Threshold current			1.2	1.5	Α	
Forward voltage	M²≈3	50-40	1.5	1.5	V	
Aperture size			250x1		μm ²	
Divergence parallel to p-n junction (FWHM)		8	11	13	Deg.	
Divergence perpendicular to p-n junction (FWHM)		34	37	40	Deg.	

19

Broad-area edge-emitting lasers (BA

High Pov	Best lasers	
0	Features: InAs/GaAs Quantum Dot based diode laser CW operation C-mount open heatsink	980 nm 11 W out of 90 µm stripes M²≈20
	Applications: • Medical • Direct materials processing	
	Specification for engineering samples DATE: 10 th Jun. 2008	

SPECIFICATIONS Test conditions: C-mount temperature 25°C, output power 8 W in CW operation						
Parameters		Min.	Тур.	Max.	Unit	
Output power		8.0			w	
Central wavelength		1200	1210	1220	nm	
Wavelength temperature tunability		0.4	0.45	0.55	nm/°C	
Spectral width (FWHM)			10	14	nm	
Operating current			14	18	Α	
Threshold current			1.2	1.5	Α	
Forward voltage	M²≈3	30-40	1.5	1.5	V	
Aperture size			250x1		μm ²	
Divergence parallel to p-n junction (FWHM)		8	11	13	Deg.	
Divergence perpendicular to p-n junction (FWHM)		34	37	40	Deg.	

Vertical-cavity surface-emitting lasers

- short-haul data-communication (LAN, Ethernet etc.)
- optical mice

(

single-mode long-wavelength
 VCSELs in development

for telecommunications 25Gbps, BTB, PRBS 2²³-1

1 Level

But: very short → low gain single mode power limited to 0.5 -2 mW

<1Level

 \rightarrow Make devices wider than 2-3 μ m!

University of

Strathclyde

Very large area devices ("commercial"

Figure 3 : Brightness vs. power map for examplatory VCSEL modules (symbols) and the requirements of several applications.

Origin of instabilities

In a monolithic cavity, we can't design mode volume and gain volume independently

 \rightarrow high-order modes will overlap with gain distribution

Aggravated by spatial hole burning:

even assuming that fundamental mode is lasing at threshold, carriers will **clamp** where fundamental mode is strong but not in regions close to device boundary

- \rightarrow more gain for high order modes
- > nonlinear refractive index \rightarrow filamentation (next slides)
- in real devices augmented by a lot of other effects,
 in particular thermal lensing

Dominant nonlinearity with inversion Strathclyde

Gain spectrum of a semiconductor is asymmetric!

- → refractive index contribution at gain maximum (Kramers-Kronig)
- ➢ refractive index n depends on carrier density N → often used: Henry's α-factor

$$n \sim \chi \sim (i + \alpha) N$$
 with $\alpha = 1.5$ -7

n decreases with increasing N
 N decreases with increasing intensity
 n increases with increasing intensity
 n = n_b + n₂ I with n₂ > 0
 light is attracted to high n

Modulational instability

if your input beam is very broad, ideally a plane wave:

every beam has some ripples "noise": modulations, ripples

Abbi + Mahr 1971

nitrobenzene

Mamev et al. 199 photorefractive crystal

modulational instability, filamention, sometimes also "small-scale self-focusing" (compared to "whole-beam self-focusing")

 \succ besides mode volume another driver for low beam quality in semiconductors

VECSEL: Marry advantages of

Intermediate summary

broad-area, high power semiconductor lasers are great devices but suffer from poor beam quality

- Large aperture, high Fresnel number \rightarrow high order modes
- nonlinear refractive index (amplitude-phase-coupling) \rightarrow filamentation

- significant progress made by excellent engineering, but incremental (issues intrinsic to simple, monolithic design)
- but is there another, different approach to tame broad-area devices?
 - funnel instabilities in a self-localized robust entity? A soliton?
- Use as test bed for fundamentals of self-organization and pattern formation

Self-organization and pattern formation

Laser patterns and VCSEL: A closer look Strathclyde

- condensation water
- Temperature range at heat sink approx. 245-300K
- Spatially and wave number resolved Stokes parameters

Experiment: M. Schulz-Ruhtenberg (Muenster), TA Devices: K. F. Huang (National Chiao Tung University, Hsinchu, Taiwan) ³

Basic results vs. current

Far field

Near field

off-axis wavevectors

- initially ring
 with symmetry breaking
- then broadening
- finally shift
- polarization "in tendency" orthogonal to wavevector
 coupling of spatial and polarization degrees of freedom
 first observation: Cork group Hegarty et al., PRL 82, 1434 (1999)

Unpublished, see also Babushkin et al., PRL **100**, 213901 (2008); Schulz-Ruhtenberg et al. APB **81**, 945 (2005) 3

Temperature dependence: Structure

40°C, 10_mA	20°C, 12 m/	4 10°C, 1	3 mA 0°	°C, 13 mA	-20°C,16 r	πA	FF	NF
NF 40 um		Annual Statement	Million and American		Contraction of the second		on-axis	"spot"
							\checkmark	\checkmark
					Cartonicano		off-axis	"stripes"
	A. B				-			"waves"
							\downarrow	\downarrow
						10 M	off-axis	localized
decreasir	ig tem ≽ ve	ry high o	rder moo	les			on	waves
increasing	g detu ≽ clo	ose to Fo	urier mo	des, i.e.	nce		diagonal	
-A	clo	ose to the	eoretical	assumpt	ion			
NF	ALL					2	5	appears
15°C, 12 mA	10°C, 13 mA 5	°C, 13 mA	0°C, 13 mA	-5°C, 14 m	A -10°C, 14	1 mA	-15°C, 14 mA	in
	1 1	11 M		· ·		*		several
FF i		*****		×				devices

Selection of wavenumber

35

Gain maximum = preferred emission wavelength shorter than resonance

> Laser can reestablish resonance by tilting emission $2\pi m = k_{eff} 2L = k \cos \theta$ $= k2L - k2L \frac{1}{2} \theta^{2}$ $= k2L - k2L \frac{1}{2} \left(\frac{k_{\perp}}{k}\right)^{2}$ $= k2L - 2L \frac{k_{\perp}^{2}}{2k}$ > tilt angle increases with detuning

Wavenumber: Quantitatively

Pattern selection

The linear resonance argument explains the wavenumber but not the symmetry

ightarrow nonlinear pattern selection

- Excitation of
 additional wave
 vector due to
 - secondary bifurcation

University of

Strathclyde

- reflection at boundaries
- extreme position:K. F. Huang

Modelling

Assume stationary state, gain balances losses, operating at resonance

\rightarrow Schroedinger/Helmholtz equation

For $\Delta n \rightarrow \infty \rightarrow$ hard boundaries, **2D (transverse) wave (quantum) billiards**

Wave and quantum billiards

What happens after *quantization*?

 \rightarrow Quantum or wave billiards

Note: Quantum theory is linear and hence not chaotic \rightarrow what's fingerprint of chaos in quantum systems? \rightarrow quantum chaos ³⁹

Motivation: broad-area devices

decreasing temperature \rightarrow increasing transverse wavenumber

Increasing mode-order, decreasing transverse wavelength

- Quantum systems become classical in the limit of low wavelengths
- Wave functions seem to *localize* along classical trajectories
- You would not think that a laser wants to do this, because it does not fully use inversion then

Hegarty et al., PRL 82, 1434 (1999); Huang et al., PRL **89**, 224102 (2002); Chen et al. PRL **90**, 053904 (20**0**3)

University of

Strathclvde

Quantum/wave billiard (Taiwan data)

- Localization along closed classical ray
- Note: we are dealing with the transverse part of the wavevector
- > opposite to most billiard microcavity systems, you can actually observe the mode distribution

Huang et al. PRL 89, 224102 (2002); PRE 66, 046215 (2002); PRE 68, 026210 (2003)¹

Interpretation as coherent states

SU(2) representation of coherent states

Purely phenomenologically

Superposition of nearly degenerate Fourier modes

Huang et al. PRL 89, 224102 (2002); PRE 66, 046215 (2002); PRE 68, 026210 (2003)²

Reconstruction

 $K_0 = 80, M = 7, \phi = 0.63 \pi$ VCSEL 40-5 calculation b) a) **Determines** location at boundary > phenomenologically! > A laser does not like not to use the available inversion! Hence localization d) C) counterintuitive! \succ only argument:

quantum states at high order / low wavelength become more classical

Schulz-Ruhtenberg, PhD thesis (2008) following PRE 68, 026210 (2003)

Some fun stuff

triangle

Fig. 2. Intensity patterns of transerse near-field patterns at temperatures of (a) 295 (room temperature), (b) 275, (c) 195, (d) 175, (e) 155, and (f) 125 K.

Chen et al., Opt. Lett. 33, 509 (2008)

Huang et al. PRL 89, 224102 (2002)

University of Strathclyde

Science

Polarization: Principal observation

T=42 °C *T*=0 °C *T*= -36 °C Three regimes in *I*=12 mA *I*=16 mA *I*=22 mA temperature / wave number with distinct Near field > wave vector intensity S_0 configuration \leftrightarrow 207 ➢ polarization behaviour Far field-90° intensity S_0 207 $\leftrightarrow \rightarrow$ Far field-0° Polarisation angle φ 45 -90°

University of

Strathclyde

On-axis / small wave numbers

Far field

T=42 °C *I*=12 mA

- VCSEL quasi isotropic for on-axis radiation
- No difference between s- and pwaves
- Situation essentially like in smallarea lasers

Polarization determined by uncontrolled material anisotropies

Intermediate wave numbers

Far field *T*=0 °C *I*=16 mA

Anisotropic reflection: **s-wave favoured**

→ Higher Q Babushkin et al., J. Opt. B 3, S100, 2001

polarisation orthogonal to wave vector ("90°-rule")

But: reflection at oxide aperture couples polarization of beam in *linear order*;

Waveguide modes should have *homogenous polarization*

→ Polarisation in tendency parallel to boundary closest to 90°-rule

High wave numbers

 \rightarrow Complex polarisation distribution \rightarrow indication for degeneracy

Extra-cavity polarization

In transmission: p-waves favoured \rightarrow polarization rotates towards wave vecto extra-cavity polarisation inhomogeneous within one mode

Detailed comparison: Extra-cavity

University of Strathclyde

Science

Summary: Laser patterns

- VCSELs show at and not too far beyond threshold patterns consisting of just a few Fourier modes
- ➤ The theoreticians love that!
- ➤ (some) edge-emitters do that actually also
- Interaction with device boundaries plays a strong role though
- Possibility to investigate quantum billiards
- > Outlook:
 - Quantitative understanding of beyond threshold dynamics (daunting in semiconductor laser due to spread of time scales from 100 fs to ms)
 - Polarization
 - Quantum effects (correlations between beams etc.)
- Unfortunately, up to now no feedback into device design