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Agenda

� Aim: Overview on and understanding of the formation and selection of

spatial modes in nonlinear optical systems

• in particular broad-area lasers

• connections to nonlinear dynamics and complexity science

� Broad-area and high-power semiconductor lasers

• Modal behaviour, beam quality and instabilities

� Exercise: Modulational instabilities in lasers and beam propagation

� Pattern in VCSELs

• Pattern selection in lasers

• quantum billiards

� Cavity soliton laser (VCSEL with feedback or saturable absorption)

• optical control of self-localized microlasers

• significance of disorder and phase-locking

• high-order solitons and vortices

• connection to dissipative solitons
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Agenda II

� Other optical pattern forming systems

• Single-mirror setup

• Counterpropagating beams

� Spontaneous symmetry breaking and pattern selection

• Hexagons as the “second harmonic generation” of transverse nonlinear 

optics

� One new direction: Optomechanical patterns



� still characterized by stimulating and engaging 
research and knowledge exchange culture 

� 2012: UK University of the Year
� 2013: UK Entrepeneurial University of the Year

University of Strathclyde
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situated at the heart of Glasgow, a thriving cultural city 

on the west coast of Scotland and only a short 

distance from the Scottish Highlands

John Anderson, Prof. of Natural 

Philosophy at Glasgow University 

(Jolly Jack Phosphorus), left 

instructions in his will for 

“a place of useful learning”

→ Anderson’s institution 1796 → ... →

→ Royal Charter for University of Strathclyde 1964



Department of Physics

� In John Anderson building

� Research divisions: Nanoscience, Plasmas, Optics

• Computational Nonlinear and Quantum Optics Group

• Photonics Group

� Cold atoms and Bose-Einstein condensation

� Quantum information (single atom imaging in optical lattices)

� High precision (quantum) measurements

� Mid-infrared sensing with quantum cascade lasers

� Nonlinear photonics

� Part of the Scottish Universities Physics Alliance – SUPA

� Strathclyde leading centre for photonics innovation and 

photonics at the academic-industrial interface: Institute of Photonics, 

Centre for Biophotonics, Fraunhofer Institute for Applied Photonics
5



Student opportunities
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� > 350 undergraduate students

� > 110 postgraduate students

PhD, MRes and MSc

� Taught MSc degrees in

• Nanoscience

• Optical Technologies

• Photonics and Microfabrication

� SCOPE: OSA Student Chapter 

• Social and scientific networking

• Company visits

• Outreach work

• International student conferences

• OSA leadership conferences



- Established in 1916 -

World-wide OSA student chapters
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North America

100+

South America

25+

Europe

75+

Asia & Oceania

90+
Middle East/ 

Africa

15+

Preparing students to be future leaders 
in the field of optics and photonics



OSA student chapters
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� $ 250 start-up funding

� education and activity grants

� traveling lecturer program

� participation at IONs conference (International OSA Network for Students)

organized by students, for students

� Leadership conferences

� Information, networking, career service

� Myself member since 1992 (first international conference)

� Faculty adviser to SCOPE since 2009

� IONS conference in Glasgow 2009

� OSA fellow 2013

� current visit thanks to travel grant from OSA Fellow Lecturer Program

� contact me for any questions!
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Nonlinear Photonics at Strathclyde

� Understand

� Control

� Utilize

nonlinearities and complexity in nonlinear optics, 

especially semiconductor-based photonic devices

as vertical-cavity lasers (VCSEL)

� Polarization and spintronics in VCSELs

• ultrafast self-oscillations due to spin dynamics

• broad-area VCSELs, coupling of spatial and polarization

degrees of freedom: quantum chaos, optical spin-orbit coupling

• dynamics of telecommunication VCSELs

� Cavity soliton laser

� Self-organization and opto-mechanical coupling in cold atomic vapors

� Terahertz generation by difference frequency mixing (heat sinking)

� Quantum dot devices (nonlinear optics, lasers, THz K)

Combine fundamental physics with applications and devices



Thanks

� Experiment: Y. Noblet*, J. Jimenez**, N. Radwell*, Y. Tanguy

� Devices: R. Jaeger (Ulm Photonics)

� Theory: C. McIntyre*, W. J. Firth, G.-L. Oppo (Strathclyde), P. V. Paulau (Minsk, 

Strathclyde, Palma, now University of Oldenburg), D. Gomila, P. Colet (IFISC, Palma 

de Mallorca), N. A. Loiko (Minsk),  N. N. Rosanov (St. Petersburg)

� Funding: *EPSRC DTA, ** Conayt, EU FP6 FunFACS, British Council, Royal 

Society, DAAD

VCSEL patterns:

� Experiment: M. Schulz-Ruhtenberg (Muenster)

� Devices: K. F. Huang (National Chiao Tung University, Hsinchu)

� Theory: I. V. Babushkin (Minsk, now WIAS, Berlin), N. A. Loiko (Minsk)

� Funding: Deutsche Forschungsgemeinschaft, DAAD

Cavity soliton laser:

Solitons and patterns in atomic vapors with feedback:

� Experiment, theory + devices: M. Schaepers, A. Aumann, W. Lange (Muenster)

� Funding: Deutsche Forschungsgemeinschaft, DAAD
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Eigen modes of resonators

Parameter:  gi = 1- L / Ri for mirrors i=1,2
Parabolic

Phase

profile

L

R1
R2

Gaussian

Amplitude profile

Typical laser resonators 

(solid-state, gas, 

semiconductor disk laser 

)

Refocusing by curved 

mirrors →

stable resonator

Eigen mode: „Gaussian beam“

Source: Siegman, Lasers (1986)
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Propagation and diffraction

Diffractive spreading Rayleigh Length

linear for large z

Diffraction angle:

Beam waist w0 Light in this cone is 

spatially coherent

Source: Siegman, Lasers (1986)
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Stability diagram

Solution only  for
0 < g1g2 <1

w0 →∞

w0 → 0

w0
2 = Lλ /2π

Important design tool

Source: Siegman, Lasers (1986)
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High order spatial modes

Hermite-

Gaussian

Moden

Hermite polynomial of order m,n

Field

Number of nodal lines

and phase jumps

= mode order

intensity

transverse size:

weff  ≈ √n  w0

Source: Siegman, Lasers (1986)

Modal size xm/w0

Mode order m



� For the quality of a laser beam not only initial size w0, but also the 

divergence Θ is important!

� Divergence  of high order modes  ~ √m Θ0

� Brightness B = power / (mode area × emission angle)

= P /(π w0
2 × π Θ2) [W cm-2 str-1]

� Relevance for applications

(micromachining, medical, nonlinear optics K)

Focused spot size ~ ΘΘΘΘ f; need low divergence to focus tightly

� Product w0 × Θ can’t decrease in passive homogeneous or lens-like 

optical systems

if you got it wrong at the start, you can’t improve brightness any more

→ get it right at the start (in the laser!)

15

Divergence and brightness
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M2-factor and divergence

Engineers/applied physicist use beam quality factor M2

beam size – divergence product normalized to the one of an ideal beam

Minimal size (radius, 1/e2)

Half 
divergence 
angle (1/e2)

� for fundamental, TEM00, mode

Θ0 = λ /(πw0)

→ M2 = 1

� for high-order, TEMm0, mode

apparent size  ~ √m w0

divergence      ~ √m Θ0

→ M2 ≈ m

highest mode order
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d 1 (<0) d 2 (>0)

Cavities for high power lasers

total cavity length L = d2 - d1

� Engineers and most other people do not like high order modes

� Design for fundamental mode operation by matching

mode area to active gain area

� Not easy, but possible by using the degrees of freedom of stability

diagram often possible (in reality in multi-mirror resonators)

� You can get solid-state (e.g. Nd:YAG) and semiconductor disk lasers

with > 10 W of single spatial mode power



0.3 – a few mm
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Schematics of a semiconductor laser

Inversion possible, if 
external voltage > band edge

Vertical waveguide
< 0.5 µm core

Active layers
quantum wells
~ 10 nm

Easy to drive: some V !

source: Yariv, 
Quantum Electronics.

(1989)

Transverse size 2-5 µm

for single mode
Max. Power ≈≈≈≈ 1 W

Mirrors defined by cleaving

� monolithic, robust

� inexpensive to value for money

� energy efficient (up to 68% wall plug efficiency)

But no way to engineer modal size independently from active size! 
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Broad-area edge-emitting lasers (BAL)

M2≈30-40

Best lasers
980 nm

11 W out of 
90 µm stripes

M2≈20



20

Broad-area edge-emitting lasers (BAL)

M2≈30-40

Best lasers
980 nm

11 W out of 
90 µm stripes

M2≈20
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Two types of semiconductor lasers

direction of emission orthogonal

to epitaxial growth
direction of emission parallel to epitaxial growth

• elliptical beam
• macroscopic cavity length
• large gain

edge – emitting
(conventional)

surface – emitting
VCSEL = vertical-cavity surface emitting laser

direction
of   growth

• circular beam

� superior fiber coupling

• short, small

� single longitudinal mode
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Vertical-cavity surface-emitting lasers

Courtesy of 

Amann group

Walter-

Schottky

Institute

Packaged
Honeywell VCSEL
© Honeywell

http://people.ee.duke.edu/

Final

Ulm Photonics

• short-haul data-communication

(LAN, Ethernet etc.)

• optical mice

• single-mode long-wavelength

VCSELs in development 

for telecommunications

• sensing and spectroscopy O2, Rb, 

Cs, molecules (~ 1.5 µm)

But: very short → low gain
single-mode power limited to 0.5 -2 mW

→ Make devices wider than 2-3 µm!
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Very large area devices (“commercial”)

Miller et al., IEEE Sel. Top. QE 7, 210 (2001)

320 µm

cw

M2 ≈ 50

Moench et al., CLEO Europe CB.P.19 (2011)

EEE Ulm and Ulm 
Photonics
Miller et al., IEEE Sel. 
Top. QE 7, 210 (2001)



Origin of instabilities

� In a monolithic cavity, we can’t design mode volume and gain 

volume independently 

→ high-order modes will overlap with gain distribution

� Aggravated by spatial hole burning: 

even assuming that fundamental mode is lasing at threshold, 

carriers will clamp where fundamental mode is strong but not in 

regions close to device boundary 

→ more gain for high order modes

� nonlinear refractive index → filamentation (next slides)

� in real devices augmented by a lot of other effects, 

in particular thermal lensing

24



Dominant nonlinearity with inversion
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Hader et al., IEEE Sel. Top. QE 9, 688 (2003)

10 nm 
InGaAs/AlGaAs QW

� Gain spectrum of a semiconductor is

asymmetric!

→ refractive index contribution at gain

maximum (Kramers-Kronig)

� refractive index n depends on carrier

density N → often used: Henry’s α-factor

n ~ χ ∼ (i + α) N     with α = 1.5 -7 

� n decreases with increasing N

� N decreases with increasing intensity

� n increases with increasing intensity

n = nb + n2 I with n2 > 0

� light is attracted to high n

self-focusing nonlinearity
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Self - focusing

intensity dependent
refractive index

in an inhomogeous beam, e.g. a Gaussian
→ transversally inhomogenous refractive index 

n2 > 0

n

transverse space  x

Kerr medium

line of 
equal 
phase

transverse space  x
lo

n
g

it
u

d
in

a
l

c
o

o
rd

in
a

te
  
z

optically thicker

in centre

self-focusing

� an optically induced lens

� n2 > 0 → self-focusing

� n2 < 0 → self-defocusing
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Modulational instability

Abbi + Mahr 1971

nitrobenzene

Mamev et al. 1996

photorefractive 
crystal

if your input beam is very broad, ideally a plane wave:

modulational instability, filamention, sometimes also 
“small-scale self-focusing” (compared to “whole-beam self-focusing”)

χ(3)

n2 > 0

every beam has some ripples “noise”: 
modulations, ripples

local increase 
of intensity

self-focusing

positive feedback
→ break-up of beam

� besides mode volume another driver for low beam quality in semiconductors
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VECSEL: Marry advantages of

traditional (solid-state) lasers semiconductor lasers

� broad wavelength

coverage by

bandgap engineering

� wafer scale processing

� lower noise

� record: 24 W with 

M2 =  1.5 out of

0.55 mm pump spot,

Wang, IEEE PTL 22, 661 (2010)

� Brightness converter

M2 < 1.1

� space to put additional

optical elements

• etalon, birefringent filter

→ single-frequency

tunability

• nonlinear crystals

→ wavelength conversion

� power scalable

(thin disk concept, A. Giesen, 1992)   

� VECSEL = vertical-external-cavity surface-emitting laser

� OPSDL   = optically pumped semiconductor disk laser

“half” 

VCSEL

Drawbacks:
1. Less efficient
2. Not monolithic



� broad-area, high power semiconductor lasers are great devices

but suffer from poor beam quality

• Large aperture, high Fresnel number → high order modes

• nonlinear refractive index (amplitude-phase-coupling) → filamentation

� significant progress made by excellent engineering, but incremental

(issues intrinsic to simple, monolithic design)

� but is there another, different approach to tame broad-area devices?

• funnel instabilities in a self-localized robust entity? A soliton?

� Use as test bed for fundamentals of self-organization and pattern

formation 29
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Self-organization and pattern formation

pattern formation is ubiqitious

convection

chemistry

Umbanhowar 

et. al., 1996

Koschmieder 1974

Pomacanthus 

zonipectus

Kondo + Asai 1995

biology

CO2 laser

Dangoisse 
et al. 1992

want to avoid it?

self-assembly

Langmuir
-Blodgett 

film

want to apply it! Gleiche et al. 2000

Many aspects 
are universal

i.e. 
independent of 

specific 
nonlinearities 
and spatial 
coupling

Common 
feature: 

emergence of 
structures if 
system is 

driven far from 
equilibrium
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Laser patterns and VCSEL: A closer look

Oxide aperture (Al2O3):

� current confinement

� optical confinement

∆ n ≈ 3.6 -1.6 = 2

(but only over 30 nm)

� here: square shape

30×30 and 40×40 µm

top emitters

48 layers

48 layers

Al0.11Ga0.89As/ Al0.36Ga0.64As
quantum wells ≈780 nm

Example: not our structure
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Schematic setup

• Laser put into air-tight box to avoid 
condensation water

• Temperature range at heat sink 
approx. 245-300K

• Spatially and wave number resolved 
Stokes parameters

Near field / far field

Spectra

Output power

HWP + LP →→→→ Stokes parameter

Experiment: M. Schulz-
Ruhtenberg (Muenster), TA
Devices: K. F. Huang (National 
Chiao Tung University, 
Hsinchu, Taiwan)
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Basic results vs. current

� off-axis wavevectors

• initially ring

with symmetry breaking

• then broadening

• finally shift

� polarization „in tendency“

orthogonal to wavevector

� coupling of spatial and 

polarization degrees of freedom

� first observation: Cork group

Hegarty et al., 

PRL 82, 1434 (1999)

Far field Near field

Unpublished, see also
Babushkin et al., PRL 100, 213901 (2008);
Schulz-Ruhtenberg et al. APB 81,
945 (2005)
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Temperature dependence: Structures

40°C, 10 mA 20°C, 12 mA 10°C, 13 mA 0°C, 13 mA -20°C,16 mA

NF

FF

decreasing temperature, 

increasing detuning gain maximum – cavity resonance

NF

FF

15°C, 12 mA 10°C, 13 mA 5°C, 13 mA 0°C, 13 mA -5°C, 14 mA -10°C, 14 mA -15°C, 14 mA

FF

on-axis

↓

off-axis

↓

off-axis

on 

diagonal

NF

„spot“

↓

„stripes“

„waves“

↓

localized

waves

appears 

in 

several 

devices

� very high order modes

� close to Fourier modes, i.e.

close to theoretical assumption 

40 µµµµm

52°
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Selection of wavenumber

λ

gain

λ

gain

0,28 nm/K

0,07 nm/K

losses

q

l/2

l/2

L=l /2effk
keff

k

q

Reduce

temperature

� Gain maximum = preferred emission wavelength shorter than resonance

Longitudinal resonance of cavity

� Laser can reestablish resonance by tilting emission

� tilt angle increases with detuning
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Wavenumber: Quantitatively

� good agreement

� these are 

essentially Fourier 

modes

� nothing mysterious:

resonances of a 

plano-planar Fabry 

Perot in divergent light
Different colours = different devices
Dashed line n0=3.37, ng=4.2

Schulz-Ruhtenberg et al. APB 81,
945 (2005)
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Pattern selection

Coordinate space (near-field)

Fourier space (far-field)

Transverse wavevectors

The linear resonance argument explains the wavenumber but not the symmetry

→ nonlinear pattern selection

Nonlinear 
theory for 

infinite two-
level laser 

(Jakobsen et al. 
PRA 49, 4189, 

1992)

→ One

wavevector, 
traveling

wave 

� extreme position:
K. F. Huang
Y. F. Chen
(Hsinchu)

→ only boundaries

billiard problem

Possible in
Staliunas et al., PRL 79, 2658 
(1997)
Domains of traveling waves

Never (?) 
seen in 

experiment

Far fieldnear field

� Excitation of 
additional wave 
vector due to

• secondary
bifurcation

• reflection at

boundaries
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Modelling

� Smear the 30 nm oxide out over cavity 
length

� Transverse waveguide
� Effective index method
� ∆ n ≈ 2 → ∆ n ≈ 0.01-0.03

Roessler et al., PRA 58, 3279 (1998) (Tuscon); 
similar I. Babushkin, N. Loiko (Minsk), S. Balle (Palma)

Assume stationary state, gain balances losses, operating at resonance

→→→→ Schroedinger/Helmholtz equation

For ∆ n → ∞ → hard boundaries, 2D (transverse) wave (quantum) billiard
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Wave and quantum billiards

Integrable billiards:

Closed periodic orbits
Chaotic billiards:

Bunimovich billiard Sinai billiard

Periodic orbits 
unstable, ergodocity

What happens after quantization?

→ Quantum or wave billiards

http://en.wikipedia.org/wiki/Dynamical_billiards

Note: Quantum theory is linear and hence not chaotic →
what’s fingerprint of chaos in quantum systems? → quantum chaos
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Motivation: broad-area devices

Near
field

Far
field

20 °C, 14 mA 0 °C, 16 mA -10 °C, 18 mA -35.6 °C, 22 mA42 °C, 12 mA

decreasing temperature � increasing transverse wavenumber

Hegarty et al., PRL 82, 1434 (1999); Huang et al. , PRL 
89, 224102 (2002); Chen et al. PRL 90, 053904 (2003)

40 µµµµm

52°

� Increasing mode-order, decreasing transverse wavelength

� Quantum systems become classical in the limit of low wavelengths

� Wave functions seem to localize along classical trajectories

� You would not think that a laser wants to do this, because it does not 

fully use inversion then
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Quantum/wave billiard (Taiwan data)

� Localization along closed classical ray

� Note: we are dealing with the transverse part of the wavevector

� opposite to most billiard microcavity systems, you can actually 

observe the mode distribution

Huang et al. PRL 89, 224102 (2002); PRE 66, 046215 (2002); PRE 68, 026210 (2003)
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Interpretation as coherent states

SU(2) representation of coherent states Superposition of nearly 
degenerate Fourier modes 

Purely phenomenologically

Huang et al. PRL 89, 224102 (2002); PRE 66, 046215 (2002); PRE 68, 026210 (2003)

M=2J+1
number of 
modes
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Reconstruction

K0 = 80, M = 7, φ= 0.63 π

Determines 
location at 
boundary

� phenomenologically!

� A laser does not like not to

use the available inversion!

� Hence localization

counterintuitive!

� only argument:

quantum states at high order 

/ low wavelength become 

more classical

Schulz-Ruhtenberg, PhD thesis (2008)  following PRE 68, 026210 (2003)
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Some fun stuff

stadion

Huang et al. PRL 89, 224102 (2002)

triangle

Chen et al., Opt. Lett. 33, 509 (2008)
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Polarization: Principal observation

T=42 °C

I=12 mA

T=0 °C

I=16 mA

T= -36 °C

I=22 mA

Near field

intensity S0

Far field-

intensity S0
90°

-90°

0°Far field-

Polarisation 

angle φ

Three regimes in

temperature / wave 

number with distinct

� wave vector

configuration

� polarization

behaviour
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On-axis / small wave numbers

T=42 °C

I=12 mA

90°-90° 0°

Far field

• VCSEL quasi isotropic for on-axis 

radiation

• No difference between s- and p-

waves

• Situation essentially like in small-

area lasers

Polarization determined by uncontrolled material anisotropies
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Intermediate wave numbers

T=0 °C

I=16 mA

90°-90° 0°

But: reflection at oxide aperture 

couples polarization of beam in 

linear order;

Waveguide modes should have 

homogenous polarization

�polarisation orthogonal to wave 
vector  (“90°-rule”)

�Polarisation in tendency parallel to boundary closest to 90°-rule

Far field Anisotropic reflection: 
s-wave favoured

→ Higher Q
Babushkin et al.,
J. Opt. B 3, S100,
2001 
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High wave numbers

T=-36 °C

I=22 mA

90°-90° 0°

Far field

� Complex polarisation distribution → indication for degeneracy

0 1 2 3 4
0

1

2

3

4

 

 

k y
 (1

/µ
m

)

k
x
 (1/µm)



� polarization at k⊥≈ 0 from material anisotropy

� polarization at intermediate wave numbers

determined by waveguide

� selects the one better fitted to 90°-rule

� non-matching components scattered to other

wave numbers → justification for multiple k⊥

and coherent states !?

� degeneracy at diagonal 49

Theoretical interpretation

0 1 2 3 4
0

1

2

3

4

 

 

k y
 (1

/µ
m

)

k
x
 (1/µm) 90°

-90°

0°

� VCSEL at threshold (linearized eq.)

• considers anisotropy of DBR

• polarization of waveguide modes

• material anisotropies put in by hand

Results for intra-cavity polarization:

Babushkin et al., PRL 100, 213901(2008)
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Extra-cavity polarization

0 1 2 3 4
0

1

2

3

4
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)
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0 1 2 3 4
0

1

2

3

4

 

 

k y
 (1

/µ
m

)

k
x
 (1/µm)

90°

-90

0°

In transmission: p-waves favoured → polarization rotates towards wave vector

extra-cavity polarisation inhomogeneous within one mode
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Detailed comparison: Extra-cavity

Lines:

Prediction

Points:

experiment



Summary: Laser patterns

� VCSELs show at and not too far beyond threshold patterns 

consisting of just a few Fourier modes

� The theoreticians love that!

� (some) edge-emitters do that actually also

� Interaction with device boundaries plays a strong role though

� Possibility to investigate quantum billiards

� Outlook: 

• Quantitative understanding of beyond threshold dynamics

(daunting in semiconductor laser due to spread of time scales 

from 100 fs to ms)

• Polarization

• Quantum effects (correlations between beams etc.)

� Unfortunately, up to now no feedback into device design 52


