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Nonlinear Spectroscopy and 
Random Lasers 

Prof. Cid B. de Araújo, Recife, Brazil 

Lecture 1: Introduction to Nonlinear Spectroscopy  

Lecture 2: Basics of Random Lasers  
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Nonlinear technologies in fibre optics 

Lecture 1 – Introduction to nonlinear fibre optics 
Lecture 2 – Raman technologies in optical communications 
Lecture 3 – Nonlinear effects in optical communications 

Prof. Sergey Turitsyn, UK 



http://ifisc.uib-csic.es November 2013 

COMPLEX PHOTONICS 

Dynamics and applications  

           of delay-coupled semiconductor lasers  

  Dr. Miguel C. Soriano, Spain 
 
 
 
 

 
 
•  From basic properties to applications: 
• Introduction to semiconductor lasers with delayed optical feedback 
• Introduction to synchronization of networks of delay-coupled 

semiconductor lasers 
• Applications of chaotic semiconductor lasers  

M. C. Soriano, J. Garcia-Ojalvo, C. R. Mirasso, I. Fischer, “Complex photonics: Dynamics and 
applications of delay-coupled semiconductor lasers”. Reviews Modern Physics 85, 421-470 (2013). 



Spatiotemporal chaotic localized 
states in optics 

Prof. Marcel Clerc, Chile 
 

http://www.dfi.uchile.cl/marcel/ 

http://www.dfi.uchile.cl/marcel/


Guided Optics, Solitons, and 
Metamaterials  

Prof. Yuri Kivshar, Australia 

•Linear and nonlinear guided-wave optics 
•Introduction to solitons; optical solitons 
•Metamaterials: history and promises  



 Optical waveguides 

 Waveguide dispersion 

 Pulse propagation in waveguides 

 Optical nonlinearities 

 Self-phase modulation 

 Phase matching and harmonic generation 

 Plasmonics 

 Photonic crystals 
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Linear and Nonlinear  

Guided-Wave Photonics 



From electronics to photonics 

 Electronic components 
 Speed of processors is saturated due to  
 high heat dissipation 
frequency dependent attenuation,  
 crosstalk, impedance matching, etc. 

 Photonic integration 
Light carrier frequency is 100,000 times higher, therefore a 
potential for faster transfer of information 

 Photonic interconnects 
already demonstrate advantages of photonics for passive transfer 
of information 
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The photonic chip 

Processing of the information all-optically 

Need to scale down 
the dimensions 
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http://www.cudos.org.au/cudos/education/Animation.php 



Waveguides: photonic wires 

Waveguide guiding 

Modes of a waveguide 

The incident and reflected wave create a pattern that does not change with z – wg mode 
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Photonic elements 
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What happens to the light in a 
waveguide 

 Waveguide propagation losses 
 Light can be dissipated or scattered as it propagates 

 

 Dispersion 
Different colours travel with different speed in the waveguide 

 

 Nonlinearities at high powers 
At high power, the light can change the refractive index of the 
material that changes the propagation of light. 
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Waveguide loss: mechanisms 

 Intrinsic/material 
 

 Scattering due to 
inhomogeneities: 

 - Rayleigh scattering: aR~l-4; 

 - Side wall roughness 

Silica 

 Waveguide bending 

13 



Waveguide loss: description 

z y 

x 

P(z)=P0 exp(-a z) 
 

a [cm-1] – attenuation constant 
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Typical loss for waveguides 0.2 dB/cm 
       for fibres   0.2 dB/km 
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Dispersion - Mechanisms 

 Material 
(chromatic) 

 Waveguide 

 Polarisation 

 Modal 
15 



Material dispersion 

 Related to the characteristic resonance frequencies 
at which the medium absorbs the electromagnetic 
radiation through oscillations of bound electrons. 
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(far from resonances) 

where lj are the resonance wavelengths and Bj are the strength of jth resonance 

 For short pulses (finite bandwidth): different spectral 
components will travel with different speed c/n(l) giving 
rise to Group Velocity Dispersion (GVD). 
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Group velocity dispersion 

Accounted by the dispersion of the propagation constant: 

n 
neff= c/ 

vg is the group velocity, ng is the group index 

GVD is quantified by 
the dispersion parameter 2

2

1

l

l

l



d

nd

cd

d
D  measured in [ps/(km nm)]  

D>0 – anomalous dispersion; D<0 – normal dispersion 
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Waveguide dispersion 

n n n neff=/k0 

At different wavelengths the mode has a different shape.  
This geometrical consideration leads to shift in the dispersion curves.  
The effect is more pronounced in high index and narrow waveguides,  
     e.g. photonic nanowires. 
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Red Green Blue 

neff=/k0 neff=/k0 



Polarisation-mode dispersion 

z 
x 

y 

Usual waveguides are strongly birefringent, therefore the propagation constants 
for x and y polarisation will be different. 
 
The two polarisations will travel with different speed inside the waveguide 

y/k0 
x/k0 

Time delay between two pulses of orthogonal polarisation 
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Pulses: time and frequency 
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A pulse is a superposition (interference) of monochromatic waves: 
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Each of these components will propagate with slightly different speed, but 
also their phase will evolve differently and the pulse will be modified: 

velocity  ph. velocity and duration (profile) will change 
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 As a result of the dispersion, the pulse (the envelope) will 
propagate with a speed equal to the group velocity 

 

 

 

 One can define a group index as ng=c/vg 
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Pulse broadening 

 The finite bandwidth (l) of the source leads to 
a spread of the group velocities vg  
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 Then a short pulse will experience a broadening 
t after propagation L in the material: 
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Pulse chirp 
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normal dispersion 
positive 
chirp 

anomalous dispersion 
negative 
chirp 

front 

front 

trailing edge 

trailing edge 



Short pulse propagation in 
dispersive media 

The propagation of pulses is described by the 
propagation equation: 
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This is a partial differential equation, usually solved in the frequency domain. 
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Example: Gaussian pulse 
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How to compensate the 
spreading due to dispersion? 
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z=2LD 

The dispersion needs to be compensated or close wavepackets will start overlapping. 
 
This is usually done by dispersion compensator devices placed at some distances in 
the chip, or through proper dispersion management 

Material nonlinearity can balance the dispersion and pulses 
can propagate with minimum distortion. 



What is nonlinearity? 

+ = 2 
Linear: 

27 



Nonlinearity: interaction 

+ = ? 0,1,2 

28 



Mechanical systems 

Large amplitude 
oscillations of a 
pendulum 

The force is no more 
linear with the amplitude 



Extreme nonlinearities 



Optical nonlinearities 
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1. Electronic 
The light electric field distorts the clouds 
displacing the electrons. Due to 
anharmonic motion of bound electrons 
(Similar to the nonlin. pendulum). Fast 
response (10fs), high power kW - GW 

2. Molecular orientation 
due to anisotropic shape of the 
molecules they have different refractive 
index for different polarisation. The light 
field can reorient the molecules. 
Response 1ps – 10ms, 1kW – 1mW 

3. Thermal nonlinearities 
due to absorption the material can heat, 
expand, and change refractive index 
(thermo-optic effect) 1-100ms, 1mW 

Liquid  
crystals 

beam index change 



Optical nonlinearities 
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4. Photorefractive 
due to photo-excitation of charges, their separation in the material and 
electro-optic effect, 1-10s, <1W  

5. Atomic 
due to excitation of atomic transitions 

6. Semiconductor 
due to excitation of carriers in the conduction bands 

7. Metal 
due to deceleration of the free electrons next to the surface 

 Classification:  
Non-resonant and resonant nonlinearities 
depending on the proximity of resonances 



Nonlinear optics 

1958-60: Invention of the laser 
1964: Townes, Basov and Prokhorov shared the 

Nobel prize for their fundamental work 
leading to the construction of lasers 

1981: Bloembergen and Schawlow received 
the Nobel prize for their contribution to 
the development of laser spectroscopy. 
One typical application of this is 
nonlinear optics which means methods 
of influencing one light beam with 
another and permanently joining several 
laser beams 



Medium polarisation 

 Separation of charges gives rise to a dipole moment 
(model of bound electron clouds surrounding nucleus) 

 Dipole moment per unit volume is called Polarisation 
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+ - 
E 

This is similar to a mass on a spring 

F=-kx ~ 

When the driving force is to strong 
the oscillations become anharmonic  

potential 



Optical polarisation 

35 

 (j) (j=1,2,...) is jth order susceptibility; 

 (j) is a tensor of rank j+1; 

 for this series to converge (1)E >>(2)E2 >>(3)E3 

 

 (1) is the linear susceptibility (dominant contribution). 
Its effects are included through the refractive index 
(real part) and the absorption a (imaginary part). 

 
 
       
1  
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Nonlinear refraction 
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 The refractive index is modified by the 
presence of optical field: 

 

 

 
 This intensity dependence of the refractive index leads to a 

large number of nonlinear effects with the most widey used: 

 ● Self-phase modulation 
 ● Cross phase modulation 

InnIn 20 )(),(  ll where n0(l) is the linear refractive index, 
 I=(nc0/2)|E|2 is the optical intensity, 
 n2 =122(3)/n0c 3(3) /40n0

2c 

     is the nonlinear index coefficient 



Self phase modulation 
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 SPM – self-induced phased shift experienced 

by the optical pulse with propagation 

LkInnLnk 0200 )(  where k0=2/l vacuum wavenumber, 
 L is the propagation length 

t 

time 
however I=I(t) hence  =(t)   What does this mean? 

dt

d
t


  00)( Generation of new frequencies 

Spectral broadening 

Measured spectral broadening of pulses depending on max 



Optical solitons 
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 What happens to intense pulses in dispersive media? 

dt

d
t


  0)(

dtd

Normal 
Dispersion 

dtd

Anomalous 
Dispersion 

Nonlinearity increases the dispersion Nonlinearity counteract the dispersion 

 Nonlinearity can fully balance the dispersion: 

Optical Soliton 



wg 

Non-resonant (3) nonlinearities  
in optical waveguides 
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w – beam waist 
b – confocal parameter 

focusing in bulk material 

propagation length is only limited 
by the absorption 

A figure of merit for the efficiency 
of a nonlinear process: I Leff 

a

l
2

0
)(

)(

wIL

IL
F

bulkeff

wgeff


for  l=1.55m, w0=2m,  
a=0.046cm-1 (0.2dB/cm)  F~2 X 104 



(2) nonlinearity in 
noncentrosymmetric media 

P(2)= (2) E E 



Nonlinear frequency conversion 
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Can use (2) or (3) 
nonlinear  processes. 
Those arising from (2) 
are however can be 
achieved at lower 
powers. 



Frequency mixing 
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2 1 
1 

1 2 
2 

Three wave mixing 

1 
1  

1 

1 
2 3 

4 

Four wave mixing 

THG 

FWM 

Sum frequency 
generation 

Difference freq. 
generation 



(2) parametric processes 
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 Anisotropic materials: crystals (..................) 
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SFG 

DFG 

 Due to symmetry and when (2) dispersion can be neglected, 
it is better to use the tensor 

 

 In lossless medium, the order of multiplication of the fields is 
not significant, therefore dijk=dikj. (only 18 independent parameters) 



Second harmonic generation 

Input light beam 
output light beams 

Nonlinear  

crystal 

k1 k1 

k2 

k1 + k1 = k2 

1 + 1 = 2  1 

2 

Energy conservation 

Momentum 
conservation 

Phase matching 
44 

n1=n2 



Phase matching: SHG 
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destructive 
interference 

fundamental 

second harmonic 
generated in-phase 
to fundamental 

z 

At all z positions, energy is transferred 
into the SH wave. For a maximum 
efficiency, we require that all the newly 
generated components  interfere 
constructively at the exit face. 
(the SH has a well defined phase 
relationship with respect to fundamental) 
The efficiency of SHG is given by: 

k= k2 - 2k1 
k1 k1 

k2 

k 

2

2
2

)2/(

)2/(sin

kL

kL
LSH






Lc=/k 

Coherence length:  
SH is out-of-phase 



Methods for phase matching 

 In most crystals, due to dispersion of phase velocity, 
the phase matching can not be fulfilled.  
Therefore, efficient SHG can not be realised with long crystals.  

 

 

 

 

 Methods for achieving phase matching: 

 dielectric waveguide phase-matching (difficult) 

 non-colinear phase-matching 

 birefringent phase-matching 

 quasi phase-matching 46 
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Phase matching 

1. Waveguide phase matching: nSH
eff=nFF

eff ;  neff /k0 

usually nSH
eff>nFF

eff  due to waveguide dispersion (see slide 16/1) 
 
 
 
 

 
Need to take care of the overlap of the modes of the FF and SH. 
 

2. Non-collinear phase matching: (not suitable in waveguide geometry) 
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k1 k1 

k2 k 

Bulk 
crystal 

k2 

Crystalline 
waveguide 

k1 k1 

k1 k1 

k2 k collinear 

k1 k1 

k2 non-collinear 



4. Quasi-phase matching 

k1 

k2 

k1 + k1 = k2+K 
K 
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L 
Ferroelectric domains 

K=2/L 
k1 

The ferroelectric domains are inverted at each Lc. Thus the phase relation 
between the pump and the second harmonic can be maintained. 

Momentum 
conservation 



Quasi-phase matching: advantages 

•  Use any material 
 smallest size L=4m 
 
•  Multiple order phase-matching 
 
 
 
 

•  Noncritical phase-matching 
 propagation along the crystalline axes 
 
•  Complex geometries 
 chirped or quasi-periodic poling for 
 multi-wavelength or broadband  
 conversion 

k1 k1 

k2 

K 
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Four wave mixing (FWM) 
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1 
1  

1 

1 
2 3 

4 

THG 

FWM 

 In isotropic materials, 
the lowers nonlinear 
term is the cubic (3) 

 It also exist in crystalline 
materials. 

 NL Polarization: 



FWM: Description 

 Four waves 1, 2, 3, 4, linearly polarised along x 
 

         where kj=njj/c is the wavevector 
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SPM CPM 

FWM-SFG FWM-DFG 



FWM- Phase matching 

 Linear PM: 

 However, due to the influence of SPM and CPM, 
Net phase mismatched: 

 

 

 Phase matching depends on power. 

 For the degenerate FWM: 

 Coherence length: 
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FWM applications 

 Supercontinuum generation: Due to the 

combined processes of cascaded FWM, SRS, 
soliton formation, SPM, CPM, and dispersion 
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Plasmonics 



Introduction to plasmonics 

E 
z 

x 

Dielectric  2 

Metal  1 

Boundary conditions TM (p) wave  
Hy1=Hy2 

1Ez1=2Ez2 

lSP 

y 

Dispersion relation for TM waves 

TM equation 
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sp

Dispersion relation of SPP 

21 







p

sp Surface plasmon frequency 

2. The maximum propagation and 
maximum confinement lie on 
opposite ends of Dispersion Curve 

Re() 

1. Large wavevector, short l: Optical frequencies, 
X-ray wavelengths. Sub-wavelength resolution! 

large =2/l 

nm4500 l L ≈ 16 μm and z ≈ 180 nm. 

ml 5.10  L ≈ 1080 μm and z ≈ 2.6 μm. 
Example: 
air-silver interface 

z ≈ 20 nm 
metal 
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SPP waveguides 

 – SPPs at either surface 
couple giving symmetric and 
anti-symmetric modes 

 – Symmetric mode pushes 
light out of metal: lower loss 

 – Anti-symmetric mode puts 
light in and close to metal,  
higher loss 

 Metal strips: Attenuation falls 
super-fast with t, so does 
confinement 
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Plasmonic waveguides 

 To counteract the losses while keeping strong 
confinement (100nm), new designs are explored: 

V-grooves 

Slot-waveguides 
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Periodic photonic structures  

and photonic crystals 



 W.H. Bragg          W.L. Bragg 

                                         born in 1890 in Adelaide 

(Nobel Prize in Physics 1915) 

Braggs vs. Resonant Reflection 



Photonic Crystals 

PRL 58 (1987): 
Sajeev John;  
Eli Yablonovitch 

Braggs: 1915  
Nobel prise - 
X-ray diffraction  

Manipulation of light in direction of periodicity: dispersion, diffraction, emission 61 
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Bragg grating in photonics 

 

k 

Bragg condition: lB=2n L/m,  
 where n=(n1+n2)/2 

L~l/2 

K 

k k 
m=1 

The reflections from the 
periodic layers results in 

a formation of a 
photonic bandgap 
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Bragg grating 

Bragg grating in a 
waveguide written in glass 

by direct laser writing  
MQ University (2008) 
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Waveguide arrays 

 Period~5m 

 n~0.5 

Bragg condition 
lB = L sinam /m 

kx 

 

am 

L 

In PCFs the Bragg reflections are realised for 
small angles and light propagates along z axis 
freely. The reflection is negligible. 

A defect, where waves with certain propagation constant can propagate, but they are  
reflected by the surrounded by two Bragg reflectors. 

 
Bragg reflection gap, 
where waves are 
reflected. 



Linear waveguide arrays 

0)( 11   nn
n EEc

dz

dE
i

)cos(2 Dkck xz 

D: distance between waveguides  

Dispersion relation 

-2c 

kxD 

kz 

 - 0 

2c 

anomalous diffraction 

normal diffraction 

First Brillouin zone 



Waveguide Array Diffraction 

kxD =  
anomalous diffraction 

kxD = /2 
zero diffraction 

kxD = 0 

normal diffraction 

 Dkck xz cos

 Relative phase difference between adjacent 

waveguides determines discrete diffraction 

 Dispersion relation is periodic 

Assuming a discrete Floquet-Bloch function) :  

 

  Dnkzkia xzn  exp
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Fibres and crystals  
 Larger contrast is achieved in photonic crystal 

fibres (PCF) or photonic crystals (PC). 
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Phrame-by-Phrame Photonics 


