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What are  spin foams?

•path integral defined via regularization = discretization
•not Wick rotated
•no (background) lattice constant
•based on loop quantum gravity structures: generalized lattice gauge theory
 
•reproduces Regge (discrete gravity) action for single large building blocks:
[Barrett and many others for different models]  
[Recently: issues pointed out by Hellmann, Kaminski ’12, Han ’13:  this limit not necessarily semiclassical ]

• single building blocks:  “sand grains of space time”  [as coined by S. Speziale]

               Main open question:  Refinement limit? 

                       Do we get a smooth beach?
                        

Spin foams: path integral approach to quantum gravity.

3



Can this work at all?
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Can this work at all?

•Not Wick rotated? 
  This will never give anything well defined!

•Counter example: Ponzano Regge model for 3D gravity

•need to take (discrete notion of) diffeomorphism symmetry 
    into account [Freidel, Louapre ’04] [BD et al ’08-’12]

•circumvents conformal factor problem

•cannot apply Monte Carlo methods
• use tensor network renormalization algorithms:

     nicely adapted to loop quantum gravity concepts 
    (projective measures)  [BD ‘12]

1/2 1 3/2 0

SU(2)k

j = 0, 1
2 , . . . , k

2

k = 4, j = 0, 1, 2

L2(G) = ⊕ρVρ ⊗ Vρ∗

⊕µρρ′ Vρ ⊗ Vρ′

ρe, ρ′e, µρ,ρ′
ρ1 ρ2 ρ3 ρ4 ρ′1 ρ′2 ρ′3 ρ′4

ρinter ρ′inter

ρ′inter = ρ∗inter

ρ′inter #= ρ∗inter

ρ #= ρ′

ρinter, ρ′inter

ρ, ρ′ independent

Z ∼ δ(curv) ∼
∑

j

exp(i jcurv) (0.165)
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Can this work at all?

•Should you not sum over all triangulations (discretizations)?

•Not if we take discrete notion of diffeomorphism symmetry 
    into account! [Bahr, BD, Steinhaus, ... 08-12]

•conjecture: diffeomorphism symmetry = triangulation invariance;
    
     Although diffeomorphism symmetry is broken in the discrete [Bahr, BD 09]

      we can hope to regain diffeomorphism symmetry by coarse graining: 
     perfect action or perfect discretizations defined by refinement limit.
        [Bahr, BD, Steinhaus, ... 08-12: confirmed in examples]

Refinement limit also addresses the issue of diffeomorphism symmetry and triangulation 
invarinace. Expected to give strong conditions, that might possibly give a unique theory.
  [BD ‘12]
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Can this work at all?

•Loop Quantum Gravity / Spin Foams can never work ...

Coarse graining will provide a (easy to fail) test for spin foams. 
If it does not work we will learn why.
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What have we achieved so far?
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•Spin foams are much to complicated theories for coarse graining ...

•strategy: two simplifications that nevertheless keep key dynamical mechanism

  1.dimension reduction: 4D to 2D (inspired by lattice gauge theory) 
                                 defines spin net models [BD, Eckert, Martin-Benito 11]

  2. simplification of algebraic data: replace SU(2)xSU(2) by some finite group 
     [Bahr, BD, Hellmann, Kaminski 12]

     Now: replaced by quantum group, which comes up also in the full models.
     [BD, Martin-Benito, Steinhaus to appear]

     For analytical work can also go back to SU(2)xSU(2).
     [BD, Kaminski to appear]

     
     So here we are (almost) back to full models. 
  

What has been achieved?
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What has been achieved?

•Spin foams are generalized lattice gauge theories: 
  expect two phases: 
  confined (giving degenerate geometries) and deconfined (topological BF theory) 

Most discussion so far involved just these two phases. 
Is there a phase where simplicity constraints are realized and which can be interpreted as 
4D geometry?

Numerical and analytical results in quantum group spin net models:

Found unexpected large number of fixed points in enlarged phase space.
[BD, Martin-Benito, Schnetter 13, BD, Kaminski to appear, BD, Martin-Benito, Steinhaus to appear]
  

Some of these can be interpreted to respect simplicity constraints.

In particular: factorizing Barrett Crane model inspired by [Reisenberger ’98]

Fixed points are related to anyon models, describing (scale free) dynamics of intertwiners. 
These support massless excitations.
Opens up new perspectives of what to expect in refinement limit!
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What has been achieved?

•What are relevant parameters for spin foams? How should we choose truncation?

Based on numerical simulations (for spin nets) the following picture emerged:
[BD, Martin-Benito, Schnetter 13]

Fine tuning (of face weights) is necessary to escape the two dominating phases of lattice 
gauge theory.

This allows to flow into an enlarged phase space, describing dynamics of intertwiners.

Conjecture: 
A suitable truncation is provided by restricting to one degree of freedom per intertwiner 
channel.
Relevant parameters describe which intertwiner channels are allowed and which not.

                   
These conjectures can be tested systematically with the tensor network algorithm 
methods. 

We have an explicit (renormalization) flow equation based implementing a truncation that 
keeps the flow inside the given phase space.
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Summary

•We can actually do something!

•There is a rich fixed point structure: potential large scale limits of the theory.

•conjecture:  intertwiner degrees of freedom are the relevant degrees of freedom
 
•working on fixed lattice is sufficient:
 fixed points describe fully triangulation invariant models: confirms strategy to define                  
 models via coarse graining [ Bahr, BD ‘09, BD ’12 ]

•in the last years new developments in condensed matter/ quantum information
•density matrix renormalization  [White ’92,... ]

•matrix product states   [Cirac, Verstraete,... 04+ ]

•tensor network renormalization [ Levin, Nave ’06, Gu, Wen ’09 ]

•entanglement renormalization [Vidal 07+]

Fixed points are related to anyon models, describing (scale free) dynamics of intertwiners. 
These support massless excitations.
Opens up new perspectives of what to expect in refinement limit!

Main future task: lift the results to spin foams.
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A very few details.
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Spin foams and spin nets: generalized lattice 
theories
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3d and 4d first order actions

Plebanski action in 4d

(Lie algebra valued) d-2 form curvature of A

Lagrange
multiplier

simplicity
constraints

first order action in 3d

BF theory in any dim

Yang Mills in first order

Z � Tensor-Tr(TvTv�Tv�� . . .)

T

T � T �
approx

Pe

Z =
�

exp (iS [geom]) Dgeom (0.103)

geom � metric � (n-bein e, connectionA) (0.104)

S4d =
�

B ⇥ F + �B ⇥B , B � ⇥(e ⇥ e) (0.105)

S3d =
�

B ⇥ F , B � e (0.106)

F = 0 , DAB = 0 (0.107)

SBF =
�

B ⇥ F (0.108)

SY M =
�

B ⇥ F + g2B ⇥ ⇥B (0.109)
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topological field theory
UV/zero coupling fixed point of lattice gauge theory

uses background metric

ρ(gvg
−1
v′ )ab = ρe(gv)aece ρ

∗
e(gv′)bece (0.105)

ω̃aebe(ke)
ρe′′(gv)ae′′ ce′′

ρ∗e′(gv)be′ce′

ρ∗e′′′(gv)be′′′ ce′′′

(Pv)ae,ae′′ ,be′ ,be′′′ ,ce,ce′′ ,ce′ ,ce′′′
=

∑

g

ρe(g)aece ⊗ ρe′′(g)ae′′ ce′′
⊗ ρ∗e′(g)be′ ce′

⊗ ρ∗e′′′(g)be′′′ ce′′′

Pv : Vke ⊗ Vρe′′
⊗ V ∗

ρe′
⊗ V ∗

ρe′′′
→ Invv ⊂ Vke ⊗ Vρe′′

⊗ V ∗
ρe′

⊗ V ∗
ρe′′′

(0.106)

ω̃

Z ∼ Tensor-Tr(TvTv′Tv′′ . . .)

T

T ′ T ′
approx

Pe

Z =

∫
exp (iS [geom]) Dgeom (0.107)

geometry ∼ metric, extrinsic curvature ∼ (n-bein e, connection A) (0.108)

S4d =

∫
B ∧ F + φB ∧ B , B ∼ $(e ∧ e) (0.109)

S3d =

∫
B ∧ F , B ∼ e (0.110)

F = 0 , DAB = 0 (0.111)

SBF =

∫
B ∧ F (0.112)

SY M =

∫
B ∧ F + g2B ∧ $B (0.113)
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Lattice gauge theory

lattice gauge theory

 group 
variables
at edges

in dual variables
(strong coupling expansion)

dual
face weight

face 
holonomy

face weight
(class function)

representation
labels at faces

Haar projector 
(intertwiner) 

on invariant subspace in 
tensor product of 

representations meeting at 
the edge

K(x0, x1, T ) = ⇤(T ) exp
⇧
�1

�
�
�1(T )(x2

0 + x2
1) + �2(T )x0x1

⇥⌃
(0.66)

K(n+1)(x0, x2, 2T ) =
✏

dx1 K(n)(x0, x1, T ) K(n)(x1, x2, T ) (0.67)

K(0) =

⌥⇣
1

2⌅�T�1/2 + . . .

�
exp
⇧
�1

�

⇤
1
2
T�1(q1 � q0)2 + ET 0 +

⌥2

4
T 1(q0 + q1)2 + . . .

⌅⌃

K(⌅) =
⇤⇣

⌥

2⌅� sinh(⌥T )

⌅
exp
⇧
�1

�

⇤
cosh(⌥T )(x2

0 + x2
1)� 2x0x1

2⌥�1 sinh(⌥T )
+ E

⌅⌃

ẋ4 ẋ2x2

S⇤ [�(X)] = extr
⇥, B⇥=�

S [⌃(x)] (0.68)

Z =
�

⇥

A[⌃] =
�

�

�

⇥, B⇥=�

A[⌃] =
�

�

A⇤[�] (0.69)

Z = Tr T̂N (0.70)

T̂ = Ngauge P̂ , P̂ · P̂ = P̂ ⌅ Z = NN
gauge Tr P̂ (0.71)

A = embedding factor⇥Anetwork(j, le) (0.72)

Z ⇤
�

ge

�

f

wf (hf ) (0.73)

Z ⇤
�

�f

 

↵
�

f

w̃f (⇧f )

⌦

�
�

e

Pe({⇧f}f⇥e) (0.74)

Z ⇤
�

kf

 

↵
�

f

w̃f (kf )

⌦

�
�

e

⇥(q)(
�

f⇥e

o(f, e) kf ) (0.75)

w(h) ⇤ ⇥G(h) w̃(⇧) ⇤ dim(⇧) (0.76)
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w(h) ⇥ 1 w̃(⇥) ⇥ ��,triv (0.77)

A ⇥ embedding factor�
⇥

F

w̃(⇥F )lattice area(F ) (0.78)

w̃f (⇥f ) =

�
1 or
0

(0.79)

(a) cut-o� models w̃(⇥) = 0 for some ⇥ ⇤ K

(b) more generally: make Pe smaller, i.e. replace by P C
e , projecting on some subspace C of

invariant component in tensor product of representation

⇥f � ⇥f �� ⇥f ���
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Abelian cuto� model with group Zq, sum over representation lables |k| < K < 1
2q

q p

Letting q � ⇥, (U(1) limit) keeping cuto� K finite, we expect that all configurations flow to
infinite temperature fixed point.

1
2�(w̃(k) = 0)
hf
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Z ∼
∑

gv

∏

e

exp(βgv(e)g
−1
v′(e)) , gv = ±1 (0.77)

Z ∼
∑

gv

∏

e

we(he) (0.78)

Z ∼
∑

gv

∑

ke

(
∏

e

w̃e(ke)

)(
∏

e

χke

(
gv(e)g

−1
v′(e)

))

(0.79)

Z ∼
∑

ke

(
∏

e

w̃e(ke)

)(
∏

v

δ(q)(
∑

e⊃v

o(v, e)ke)

)

(0.80)

Z ∼
∑

ke

(
∏

v

δ(q)(
∑

e⊃v

o(v, e)ke)

)

(0.81)

Z ∼
∑

ke=0,1,2,3

(
∏

v

δ(
∑

e⊃v

(±)ke)

)

(0.82)

Vke Vke′′
V ∗

ke′
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Lattice gauge theory Spin foams

•parameter space:  face weights  

•phases / fixed points:
• BF /weak coupling / deconfining                                  
• degenerate / strong coupling /confining 
• BF on normal subgroups

                  

 

•parameter space: replace Haar projector

              
     by projector on some smaller subspace
             

    
 

•phases / fixed points:
•same phases as for lattice gauge theory

      Are there additional phases in 
                      spin foams?
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(a) cut-off models w̃(ρ) = 0 for some ρ ∈ K
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labels/variablesweights

lattice gauge theory
in dual variables

vertex model
in dual variables

gauge symmetry global  symmetry

Simplification: dimensional reduction

Statistical properties of 4d gauge theories and associated 2d 
theories are similar.

Examples: Ising model, QCD, ...

SPIN NET MODELSPIN FOAM MODEL
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Doubling of 
representation labels:
Under coarse graining 
we obtain an enlarged 
space of models (more 

couplings)
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effective edge

Spin net models: intertwiners
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Conjectur/ Experience: 
Excitations of intertwiner channels give the relevant information and determine the phase. 

ρ′inter = ρ∗inter

ρ′inter != ρ∗inter

ρinter, ρ′inter

standard (lattice gauge) models

simplicity constraints: 
some rep labels are forbidden

factorizing models

only perturbations with equal rep 
labels are relevant

Simplicity constraints and intertwiner dynamics

20



Fixed points

lattice gauge theory type BF and strong coupling/ degenerate geometry

factorizing type

A large number of fixed points has been found with 
quantum group SU(2)_k for general k (numerically 

and analytically).
These generalize to SU(2).

Some can be interpreted to respect simplicity 
constraints, e.g. Barrett-Crane factorizing model.

mixed type Such fixed points occur at least in S3 and SU(2)_4
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All these fixed points define (2D) topological 
field theories.

[BD, 
Kaminski, 
to appear]
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Factorizing models: can consider the `square root’  
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Relation to anyon models

•related to anyon (fusion tree) models: 
  particles coupled to Chern Simons theory (no lattice scale!)

•describe merging of these particles: dynamics of intertwiners

•continuum limit (infinite many particles) defines 
  critical model (massless excitations) / conformal field theory
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Example: S3 phase diagram
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Figure 9: Phase diagram for non-standard edge models with � = 0. The lower blue area represents the
space of models that flow to the S3 ordered phase. The upper yellow area represents the space of models
that flow to the disordered phase.

although flowing to the low temperature fixed point is located near the phase transition line. This fixed
point also appeared for a wider range of ↵ values (↵ = 0.65�1.55), but either � or � had to be fine tuned
to the phase transition line.

The picture is qualitatively the same if we look at other slices of the 3D phase diagram for small �
and � values. Figure 10 shows the slice through the phase diagram with � = 0. The phase transition
when ↵ = 1 occurs for � ⇠ 0.10 (bond dimension � = 16).

In section 6 we will describe the actual fixed point tensor appearing at this additional fixed point
in more detail. The fine tuning, that is necessary to reach this fixed point (for lower bond dimension)
indicates that unstable directions exist around this fixed point. The fact that we do not flow to this fixed
point for higher bond dimension might then be due to these unstable directions which are taken into
account for higher bond dimension, but were neglected for the lower bond dimension. These unstable
directions lead to a flow either to the high temperature or low temperature phase.

Figure 11 shows the evolution of the singular values (for � = 16) near the phase transition along the
↵ = 1, � = 0 line. The colour coding shows from which block the singular values originate. The two
panels in figure 11 show an example flowing to the ordered phase (a) and disordered phase (b), which are
characterized by three singular values (from the blocks (1, 1), (2, 2), (3, 3)) and one singular value (from
(1, 1)) respectively. There are a number of additional singular values which are due to the CDL structure
described above.

The results are quite encouraging: the BC analogue model flows to the low temperature fixed point, is
however located near a phase transition line. This phase transition line might have even more structure,
as the appearance of the additional fixed point for low bond dimension, indicates.

The number of iterations necessary to reach a fixed point increases near a phase transition line. As we
will comment below this also leads to a certain range of iterations (i.e. scales) for which the embedding
maps do not change. This can be understood as the appearance of a model, which looks the same over
a range of scales. This behaviour is physically the most interesting, therefore it is encouraging that the
BC model is near this regime.

One might be worried that such a fine tuning is necessary. Note however that for the full spin foam
models, certain weights are not fixed. In particular the so–called face weights influence greatly whether
divergencies appear [17] or not. Monte Carlo simulations, which have been performed with the BC model
[13], showed similarly that it is essential to fine-tune these weights in order not to flow immediately to a
geometrically degenerate phase (which corresponds here to the high temperature / disordered fixed point)
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Figure 10: Phase diagram for non-standard edge models with � = 0. The blue area in the lower part
represents the space of models that flow to the S3 ordered phase. Models in the green area in the upper
left corner flow to the Z2 ordered phase.The yellow area in the upper right part represents the space of
models that flow to the disordered phase.

or to the BF phase (here low temperature / ordered phase). Standard lattice gauge theories are just
formulated with face weights, hence the fine tuning can be understood as making sure that the model is
not dominated by the dynamics imposed from these face weights, which drives the system either to low
or high temperature. Surprisingly we found in our analogue model that there might be more structure
hidden exactly at the transition between these behaviours. However, as a note of caution, in our case
the models on the phase transition line cannot be understood as arising from the Barrett Crane analogue
model by just changing the (analogue) face weights. To reach the phase transition line we also need to
deform the simplicity constraints of the BC model, i.e. the E–function is changed in a way, that cannot
be absorbed by changing the (analogue) face weights only.

The question for the full models is, whether the phase transition still persists. The Monte Carlo
simulations [13] indicate that this is indeed the case at least for the Barrett Crane model.

5 A new fixed point

Here we will describe the additional fixed point tensor. Although we found this fixed point only for lower
bond dimension this does not mean that this tensor does not define an exact fixed point – it indeed does
define a 2D triangulation invariant vertex model, as we will see shortly.

There is only one singular value (or none) per block for the fixed point tensor, nevertheless the fixed
point is not part of the models described by the construction in section 2: reconstructing the tensor in
the representation basis, we obtain rather the general index structure (22),

T (4)
S3/Z2

= TS3/Z2
({⇢e, ⇢0e, ae, be,me}e=1,2, {⇢⇤e, (⇢0)⇤e, ae, be,me}e=3,4) (34)

but with all multiplicity indices just taking values one (or zero).
The allowed values for the pairs of representation labels associated to the edges are (1, 1), (1, 3), (3, 1)

and (3, 3). The appearance of the pairs (3, 1), (1, 3) shows that this tensor is not covered by our initial
models described by the E–function. Moreover one notices that the sign representation ⇢ = 2 does not
appear at all.

It will help to understand first the S3 ordered fixed point T (4)
S3

(in the representation basis). The

four–valent tensor T (4)
S3

can be understood to arise from the contraction of two three–valent tensors in
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S3/Z2 fixed point along 
phase transition line    

•fine tuning to phase transition line required to avoid fast convergence to BF or ‘degenerate 
geometry’ phase  

•along phase transition line encountered new fixed point (factorizing model) 
 (for lower accuracy of the coarse graining algorithm)

➡expect more structure along phase transition line

disordered

BF

BF(Z2)

disordered

BF

[BD, Martin-Benito, Schnetter  ’13]
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Conclusions

•introduced new class of (scale independent) models: analogue models to spin foams

•tensor network coarse graining can be successfully applied, gives lots of structural 
information compared to Monte Carlo simulations

•conjecture: 
 intertwiner degrees of freedom are the relevant degrees of freedom
  - holds also for spin  foam models

•based on this we developed approximation method that describes flow of models and 
tracks the intertwiner degrees of freedom 

 (approximate flow leaves space of models invariant)  [BD, Martin-Benito, Steinhaus to appear]
  

•fine tuning necessary to avoid fast convergence to frozen or disordered phase / escape 
phases of standard lattice gauge theory models  [also: Christensen, Khavkine: BC model]

•interesting phases / fixed points beyond standard lattice gauge theory: 
 mass less excitations (expected from background independence / scale freeness)

•although working on fixed lattice the fixed points describe fully triangulation invariant 
models: confirms strategy to define models via coarse graining [ Bahr, BD ‘09, BD ’12 ]

•in the last years new developments in condensed matter/ quantum information
•density matrix renormalization  [White ’92,... ]

•matrix product states   [Cirac, Verstraete,... 04+ ]

•tensor network renormalization [ Levin, Nave ’06, Gu, Wen ’09 ]

•entanglement renormalization [Vidal 07+]
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•based on tensor network method developed approximation method that describes flow 
of models and tracks the intertwiner degrees of freedoma 
•systematic study of quantum group models
•flow of simplicity constraints: relaxed or strengthened under coarse graining?
•apply to Barrett Crane and EPRL (analogue) models with q-group

      [Christensen, Khavkine, Fairbairn, Meusburger, Han]

•relevance for spin foams a
•same statistical properties for 4D lattice gauge / 2D edge models
•simplicial 4D models correspond to four-valent vertex models
•coarse graining in one direction corresponds to 2D coarse graining  

     (anisotropic algorithms coarse grain one direction at a time) 

Continuum limit and phase diagram for spin foams in reach!

•in the last years new developments in condensed matter/ quantum information
•density matrix renormalization  [White ’92,... ]

•matrix product states   [Cirac, Verstraete,... 04+ ]

•tensor network renormalization [ Levin, Nave ’06, Gu, Wen ’09 ]

•entanglement renormalization [Vidal 07+]

Outlook
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Additional material
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Coarse graining with tensor network methods

 [Levin & Nave, Gu & Wen, Vidal ...’00’s+]

[BD, Eckert, Martin-Benito,  New. J. Phys. ’11]

[BD, Martin-Benito, Schnetter  ’13]
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Continuum limit via coarse graining

•gives effective dynamics at different scales / refinement steps

•infinite refinement (fixed point) gives continuum limit
  
•problem: real space renormalization methods have been very restricted [Migdal-Kadanoff 70’s]

•proliferation of non-local couplings
•truncations not under control

•in the last years new developments in condensed matter/ quantum information
•density matrix renormalization  [White ’92,... ]

•matrix product states   [Cirac, Verstraete,... 04+ ]

•tensor network renormalization [ Levin, Nave ’06, Gu, Wen ’09 ]

•entanglement renormalization [Vidal 07+]

•nice correspondence with loop quantum gravity techniques:
dynamical notion of cylindrical consistency defines continuum limit and the structure of   
physical vacuum [BD ’12]
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Motivation: transfer operator technique
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Transition amplitude between
two states 〈ψ1|A|ψ2〉

insert id =
∑

ONB |ψ〉〈ψ|

A = TN

Truncate by restricting
∑

ONB
to the eigenvectors of T with the
χ largest (in mod) eigenvalues.

Expect good approximation if ψ1,ψ2

are in span of these eigenvectors.

But: explicit diagonalization of T difficult.

Determined by (generalized)
EV-decomposition.

blocking

embedding

group elements ±1
at vertices,

edge weights ω

Fourier trafo

rep labels k = 0, 1 at edges
edge weights ω̃(k)

Gauss constraints at vertices

A(k1, . . . , k4) =
√
ω̃1 · · ·

√
ω̃4

δ(k1 + k2 − k3 − k4) (0.153)
∑

Embedding maps parametrized by:

1/
√

2 cos(α) sin(α)

high temperature: cosα = 1, α = 0
(symmetric phase)
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amplitude function

effective amplitude

Localize truncations,
diagonalize only subparts
of transfer operator

iteration procedure

27

largest 
eigenvalue

localize 
diagonalization 

step

transfer 
matrix

isometric 
embedding maps

(cylindrical 
consistency)
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The procedure for 2D state sum
amplitude function

effective amplitude

Localize truncations,
diagonalize only subparts
of transfer operator

iteration procedure

determine embedding maps

embedding map after 3 iterations
Plateau (scale free dynamics) of almost constant embedding maps around phase transition

iteration step

approximation

embedding maps

27

embedding 
maps:

essential for 
truncation

embedding maps:connect 
different refinement steps

Fixed point defines 
continuum limit.

Embedding maps at fixed point : 
encode scale invariance.

(Define triangulation invariant model.)
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The actual algorithm25
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Figure 10. The square lattice with even (blue circles) and odd (green squares)
vertices.

In this case one needs, however, to find some suitable approximation scheme to prevent an
exponentially growing index range of the effective tensors.

5.1. Gauß constraint-preserving TNR method

In this section, we will shortly describe the TNR method following [61, 62] applied to 2D
Abelian spin net models. We will, however, introduce a technique to keep the Gauß constraints
explicitly valid throughout the renormalization process; see also [74, 75]. The reason for doing
this is that the Gauß constraints have an immediate geometrical information: in a given spin
net (with oriented edges) consider any region such that its boundary cuts only through edges.
Then only those configurations will contribute to the partition sum for which the sum of all
ingoing indices is equal (modulo q) to the sum of all outgoing indices. This means that the
Gauß constraints should also hold at the effective vertices, which arise from blocking all the
vertices in certain regions. We will first review the method for a general 2D tensor network
model based on a square lattice and afterwards specify to the case of spin net models and deal
with the Gauß constraints.

Consider a 2D tensor network based on a square lattice, so that the tensors T abcd are of
rank four; see figure 10(a). An obvious way to proceed would be to contract always four tensors
along a square and to define in this way a new effective tensor which would now carry four
double indices.

However, to find a suitable approximation, i.e. a method to keep the index range constant,
one proceeds differently. The first step is to decompose the tensors T into a product of two other
tensors S. This is performed in two different ways according to the partition of vertices into odd
and even ones. A vertex is even, respectively odd, if the sum of its lattice coordinates is even,
respectively odd.

For even vertices we decompose (see figure 10(b))

T abcd =
X

i

Sab,i
1 Scd,i

2 . (5.2)
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(a) contraction (b) coarse grained lattice

Figure 11. (a) Contraction of the four S tensors to the new T 0 tensor. (b) The
coarse grained lattice.

Such a decomposition is always possible using a singular value decomposition (SVD) for the
d2 ⇥ d2 matrix Mab,cd

1 = T abcd . Here d gives the range of the indices a, b, . . .. This gives

Mab,cd
1 =

q2�1X
i=0

U ab,i
1 �i(V †

1 )i,cd (5.3)

with positive singular values �i and unitary matrices U and V . We can then define Sab,i
1 =p

�iU
ab,i
1 and Scd,i

2 =
p

�i(V †
1 )i,cd .

Similarly, for the odd vertices, we decompose (see figure 10(b))

T abcd =
X

i

Scb,i
3 Sad,i

4 , (5.4)

where now one uses an SVD for the matrix Mcb,ad
2 = T abcd .

In a second step, we contract four of the tensors S along the indices of type a, b, . . . , to
obtain the new tensor T 0i jkl , now with indices i, j, . . . (see figure 11(a)), and arranged along a
square lattice rotated by 45

�
(see figure 11(b))

T 0i jkl =
X

a,b,c,d

Sab,i
2 Sac, j

4 Sdc,k
1 Sdb,l

3 . (5.5)

If we keep the range of i as in equation (5.3) the index range of the tensors T would grow
exponentially with the number of iterations. This is where the key approximation step comes
in, namely to consider only the Dc largest singular values in the decomposition (5.3). This
approximation is justified as the partition function is a trace over the tensors, thus involving the
sum over the singular values. The validity of the approximation can be checked by comparing
the values of the neglected singular values against the largest singular values in the SVD [61].
One can choose a rescaling after each iteration step such that this largest singular value is equal
to one. Implementing the cutoff Dc in the number of singular values in the decomposition (5.3),
we will obtain a flow in the space of tensors of rank four with a constant index range given
by Dc.

The SVD does not only serve as an approximation method but also leads to a field
redefinition. Here the field variables are given by the indices over which the tensors
are contracted. In the SVD these tensors are linearly transformed, which also induces a
transformation on the fields. The transformations aim at an efficient representation of the

New Journal of Physics 14 (2012) 035008 (http://www.njp.org/)

[Levin, Nave ’07 , Gu, Wen ’09]

symmetry preserving version:
[BD, Martin-Benito Schnetter 13]
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Flow equation

1020

30 40

1
10

220

3
30

4 40
T

T 0

T 0c

12

3 4

Ta

b

c

d d

b

a
S1(d, c;m3)

S4(c, b;m2)

S2(b, a;m1)

S3(a, d;m4)

⇥
⇥
⇥

⇥

=
X

a,b,c,d

T

a

12 b

c

3 4d
T

c a

=

⇠
� ⇢T ⇢c ⇢a

⇢b ⇢1 ⇢2

 

⇠
� ⇢T ⇢3 ⇢4

⇢d ⇢a ⇢c

 

Hilbert space on each edge:   He = �⇢e,⇢e0�e(⇢e, ⇢e0)(V⇢e ⌦ V(⇢0
e)

⇤)

(Ĉ1
v )

eff
⇢T ,⇢T 0 (⇢1, ⇢

0
1,m1, · · · , ⇢⇤4, ⇢0⇤4 ,m4)

1, · · · ,�1(⇢1, ⇢
0
1)

under coarse graining we obtain an enlarged space of  models  

Flow equation
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