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What are spin foams!?

Spin foams: path integral approach to quantum gravity.

epath integral defined via regularization = discretization

*not Wick rotated

*no (background) lattice constant

*based on loop quantum gravity structures: generalized lattice gauge theory

ereproduces Regge (discrete gravity) action for single large building blocks:

[Barrett and many others for different models]
[Recently: issues pointed out by Hellmann, Kaminski ’12, Han ’|3: this limit not necessarily semiclassical ]

* single building blocks: “sand grains of space time” [as coined by S. Speziale]




Can this work at all?




Can this work at all?

*Not Wick rotated!?
This will never give anything well defined!

*Counter example: Ponzano Regge model for 3D gravity

~ §(curv) Z exp(ijcurv)

*need to take (discrete notion of) diffeomorphism symmetry
into account [Freidel, Louapre '04] [BD et al *08-’12]

ecircumvents conformal factor problem

ecannot apply Monte Carlo methods
* use tensor network renormalization algorithms:
nicely adapted to loop quantum gravity concepts
(projective measures) [BD ‘2]




Can this work at all?

*Should you not sum over all triangulations (discretizations)?

*Not if we take discrete notion of diffeomorphism symmetry
into account! [Bahr, BD, Steinhaus, ... 08-12]

econjecture: diffeomorphism symmetry = triangulation invariance;

Although diffeomorphism symmetry is broken in the discrete [Bahr, BD 09]

we can hope to regain diffeomorphism symmetry by coarse graining:

perfect action or perfect discretizations defined by refinement limit.
[Bahr, BD, Steinhaus, ... 08-12: confirmed in examples]

Refinement limit also addresses the issue of diffeomorphism symmetry and triangulation
invarinace. Expected to give strong conditions, that might possibly give a unique theory.
[BD ‘12]




Can this work at all?

*Loop Quantum Gravity / Spin Foams can never work ...

Coarse graining will provide a (easy to fail) test for spin foams.
If it does not work we will learn why.




What have we achieved so far?




What has been achieved?

*Spin foams are much to complicated theories for coarse graining ...

estrategy: two simplifications that nevertheless keep key dynamical mechanism

| .dimension reduction: 4D to 2D (inspired by lattice gauge theory)
defines spin net models [BD, Eckert, Martin-Benito |1]

2. simplification of algebraic data: replace SU(2)xSU(2) by some finite group

[Bahr, BD, Hellmann, Kaminski |2]
Now: replaced by quantum group, which comes up also in the full models.

[BD, Martin-Benito, Steinhaus to appear]
For analytical work can also go back to SU(2)xSU(2).

[BD, Kaminski to appear]

So here we are (almost) back to full models.




What has been achieved?

*Spin foams are generalized lattice gauge theories:
expect two phases:
confined (giving degenerate geometries) and deconfined (topological BF theory)

Most discussion so far involved just these two phases.
Is there a phase where simplicity constraints are realized and which can be interpreted as
4D geometry!

Numerical and analytical results in quantum group spin net models:

Found unexpected large number of fixed points in enlarged phase space.
[BD, Martin-Benito, Schnetter |3, BD, Kaminski to appear, BD, Martin-Benito, Steinhaus to appear]

Some of these can be interpreted to respect simplicity constraints.
In particular: factorizing Barrett Crane model inspired by [Reisenberger *98]
Fixed points are related to anyon models, describing (scale free) dynamics of intertwiners.

These support massless excitations.
Opens up new perspectives of what to expect in refinement limit!
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What has been achieved?

*What are relevant parameters for spin foams? How should we choose truncation!?

Based on numerical simulations (for spin nets) the following picture emerged:
[BD, Martin-Benito, Schnetter |3]

Fine tuning (of face weights) is necessary to escape the two dominating phases of lattice
gauge theory.

This allows to flow into an enlarged phase space, describing dynamics of intertwiners.

Conjecture:
A suitable truncation is provided by restricting to one degree of freedom per intertwiner

channel.
Relevant parameters describe which intertwiner channels are allowed and which not.

These conjectures can be tested systematically with the tensor network algorithm
methods.

We have an explicit (renormalization) flow equation based implementing a truncation that
keeps the flow inside the given phase space.




Summary

*We can actually do something!

*There is a rich fixed point structure: potential large scale limits of the theory.
econjecture: intertwiner degrees of freedom are the relevant degrees of freedom
eworking on fixed lattice is sufficient:

fixed points describe fully triangulation invariant models: confirms strategy to define
models via coarse graining [ Bahr, BD ‘09,BD ’12 ]

Fixed points are related to anyon models, describing (scale free) dynamics of intertwiners.
These support massless excitations.
Opens up new perspectives of what to expect in refinement limit!

Main future task: lift the results to spin foams.
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A very few details.




Spin foams and spin nets: generalized lattice
theories

14



3d and 4d first order actions

geometry ~ metric, extrinsic curvature ~ (n-beine, connection A)

first order action in 3d S3y = /B A F : B ~ e
(Lie algebra valued) d-2 form curvature of A
BF theory in any dim Spr = /B AFE =0, DaB =0

topological field theory
UV/zero coupling fixed point of lattice gauge theory

Yang Mills in first order Sy = /B ANF + ng A *K
uses background metric

Plebanski actionin4d | Syy = /B NF  + o¢oBAB : B ~ x(e Ne)

Lagrange / \ Slmp| IC.It)'
multiplier constraints
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Lattice gauge theory

lattice gauge theory
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Lattice gauge theory

partition function: 4~ Z H@f
Pf f

eparameter space: face weights

w(py)

ephases / fixed points:
* BF /weak coupling / deconfining
* degenerate / strong coupling /confining
* BF on normal subgroups

Spin foams

(pf) H Ce({pf}fDe)

[Bahr, BD, Hellmann, Kaminski 2]
eparameter space: replace Haar projector

Ce({pr}1e)

by projector on some smaller subspace

ephases / fixed points:
esame phases as for lattice gauge theory
Are there additional phases in
spin foams?
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Simplification: dimensional reduction

weights labels/variables
Pf /A . 4 T Pe
Ce ............. q < Cv > Me, Ne
wrr Ly(G) =@,V,0 V)

lattice gauge theory ™~

in dual variables

vertex model
in dual variables

gauge symmetry

global symmetry

SPIN FOAM MODEL

SPIN NET MODEL

Statistical properties of 4d gauge theories and associated 2d

theories are similar.

Examples: Ising model, QCD, ...
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Spin net models: intertwiners

1t Pe
Me, Ne

under coarse graining:

effective edge

MM

=

MM pes 0L, 11
Me, Ne
Dy Vp @V,

Doubling of
representation labels:
Under coarse graining
we obtain an enlarged
space of models (more

couplings)

intertwiner
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Simplicity constraints and intertwiner dynamics

intertwiner

Conjectur/ Experience:

Excitations of intertwiner channels give the relevant information and determine the phase.

standard (lattice gauge) models

/ ok
P inter — P inter

only perturbations with equal rep
labels are relevant

simplicity constraints:
some rep labels are forbidden

/ S
P inter # P inter

factorizing models

/
Pinter s ,Oimger
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Fixed points

lattice gauge theory type BF and strong coupling/ degenerate geometry

A large number of fixed points has been found with
quantum group SU(2)_k for general k (numerically | p
and analytically). toa?,iBZ'éir’]
These generalize to SU(2).
Some can be interpreted to respect simplicity
constraints, e.g. Barrett-Crane factorizing model.

factorizing type

mixed type Such fixed points occur at least in S3 and SU(2) 4

Pinter All these fixed points define (2D) topological
/ .
P4 ]‘ field theories.

intertwiner
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Relation to anyon models

Factorizing models: can consider the "square root’

Pinter

3 :
P erelated to anyon (fusion tree) models:
P4 particles coupled to Chern Simons theory (no lattice scale!)

edescribe merging of these particles: dynamics of intertwiners

econtinuum limit (infinite many particles) defines
critical model (massless excitations) / conformal field theory
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Example: S3 Phase dia‘gra’m [BD, Martin-Benito, Schnetter ’13]
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analogue
Barrett Crane model

0.2 -

fine tuning to phase transition line required to avoid fast convergence to BF or ‘degenerate
geometry’ phase

*along phase transition line encountered new fixed point (factorizing model)
(for lower accuracy of the coarse graining algorithm)

=»ecxpect more structure along phase transition line
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Conclusions

*introduced new class of (scale independent) models: analogue models to spin foams

etensor network coarse graining can be successfully applied, gives lots of structural
information compared to Monte Carlo simulations

econjecture:
intertwiner degrees of freedom are the relevant degrees of freedom
- holds also for spin foam models

ebased on this we developed approximation method that describes flow of models and
tracks the intertwiner degrees of freedom
(approximate flow leaves space of models invariant) [BD, Martin-Benito, Steinhaus to appear]

fine tuning necessary to avoid fast convergence to frozen or disordered phase / escape
phases of standard lattice gauge theory models [also: Christensen, Khavkine: BC model]

*interesting phases / fixed points beyond standard lattice gauge theory:
mass less excitations (expected from background independence / scale freeness)

e*although working on fixed lattice the fixed points describe fully triangulation invariant
models: confirms strategy to define models via coarse graining [ Bahr, BD ‘09,BD ’12 ]
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Outlook

*based on tensor network method developed approximation method that describes flow
of models and tracks the intertwiner degrees of freedom=

esystematic study of quantum group models

*flow of simplicity constraints: relaxed or strengthened under coarse graining?

*apply to Barrett Crane and EPRL (analogue) models with g-group

[Christensen, Khavkine, Fairbairn, Meusburger, Han]

*relevance for spin foams =
esame statistical properties for 4D lattice gauge / 2D edge models
esimplicial 4D models correspond to four-valent vertex models
ecoarse graining in one direction corresponds to 2D coarse graining
(anisotropic algorithms coarse grain one direction at a time)

Continuum limit and phase diagram for spin foams in reach!
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Additional material
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Coarse graining with tensor network methods

[Levin & Nave, Gu & Wen,Vidal ...’OO’s+]

[BD, Eckert, Martin-Benito, New. . Phys.’| I]

[BD, Martin-Benito, Schnetter ’13]
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Continuum limit via coarse graining

egives effective dynamics at different scales / refinement steps
einfinite refinement (fixed point) gives continuum limit

eproblem: real space renormalization methods have been very restricted [Migdal-Kadanoff 70’s]
eproliferation of non-local couplings
etruncations not under control

*in the last years new developments in condensed matter/ quantum information
edensity matrix renormalization [White92,...]
*matrix pI’OdUCt states [Cirac,Verstraete,... 04+ ]
etensor network renormalization [ Levin, Nave '06, Gu,Wen '09 ]
eentanglement renormalization [Vidal 07+]

*nice correspondence with loop quantum gravity techniques:
dynamical notion of cylindrical consistency defines continuum limit and the structure of
physical vacuum [BD ’12]
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Motivation: transfer operator technique

diagonalization-

step
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The procedure for 2D state sum

L

L

ju}
L

ju}
L

Mg L
Mg L

embedding

maps:
essential for
truncation

iteration step

embedding maps:connect
different refinement steps

1 — -

A A
A A
|_|_l

Fixed point defines
continuum limit.
Embedding maps at fixed point :
encode scale invariance.

(Define triangulation invariant model.)
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[Levin, Nave *07 , Gu,Wen "09]

The aCtua’I algo rlth m symmetry preserving version:

[BD, Martin-Benito Schnetter |3]
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(a) square lattice (b) splitting of vertices

(a) contraction (b) coarse grained lattice
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Flow equation

Pec
P1

P3
Pa

Pa
P2

P4
Pc
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