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 What is wrong with Quantum Gravity? 

 Lifshitz’s idea 

 Horava-Lifshitz Gravity 
 Projectable 
 Non-projectable 
 Detailed balance condition 
 Healthy (or natural) extension 
 Problems 

 Spectral dimension 
 Random walk 
 Weyl’s theorem 

 Spectral geometry approach 
 Spectral Action 
 Geodesic motion? 

 Conclusions 
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    As the result, the effective dimensionless constant is 
given by  
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 (Super)string theory: contains a spin-2 massles mode 
=> has to describe gravity. GR is recovered in long-
wave regime. But, the predictive power is quite poor: 
the string theory landscape has 10500  vacua. 

 Loop quantum gravity: one can perform non-
perturbative quantization. Among problems, the 
difficulty of the recovery quasiclassical space. 

 Some other approaches treat gravity as an emergent 
phenomenon (e.g., entropic gravity). 



 Lifshitz model (Lifshitz 1941) 
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I.e. we have two fixed points: UV, which corresponds 
to z=2 and has significantly improved behavior and 
IR, in which by the time rescaling we can set c=1 and 
restore relativistic invariance, z=1 



 Let us consider the same type of the modification, but 
when the higher derivatives are added in the Lorentz 
invariant way.  
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ADM 



   We take ADM slicing as fundamental, i.e. instead of 
considering just a manifold, we endow it with the 
foliation structure: 

FDiffsor  diffeos preserving-foliation are These
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Also, we introduce anisotropic scaling between x 
and t: 
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 Projectable FDiff gravity (Horava 2009) 

 

 

 

 

 

 

 Non-projectable FDiff gravity (Blas et al. 2010) 
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 Horava’s recipe to deal with the large number of terms: 
Detailed Balance condition: 
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 Even applied to the healthy extended model the 
detailed balance condition still requires serious fine 
tuning (Verniery&Sotiriou 2013) 



 Broken 4d diffeos => Lorentz violation 

 Extra scalar mode in addition to two graviton 
polarizations 

 In general the scalar mode does not decouple in IR, 
this can endanger the renormalizability 

 The model with the detailed balance condition does 
not pass the Solar system tests 

 The healthy extension (with ai) has A LOT of free 
parameters and some of them still require fine tuning 

 … 

 



 CDT lattice calculations indicate that d=2 in UV 
(Ambjorn et al. 2005) 

 Spectral dimension (Horava 2009) 
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 Spectral dimension in Horava case 
 
 
 
 
 
 
 
 
 

 In IR, the diffusion equation will be dominated by z=1, 
leading to ds=4 
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(Connes 1990 and up to now) 

T=(A,H,D) – spectral triple 

A Riemannian manifold, M, is completely 

Recovered from T. In this case 

 

i. A=C∞(M) 

ii. H=L2(M,S) 

iii. D=γμ(∂μ+ωμ) 
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(AP 2010) 

 The choice of the Dirac operator in the form D=γμ(∂μ+ωμ) 

is not natural anymore 

 The foliation structure dictates the following (schematic) 

form for D (for z=3) 

D= ∂t+σμ∂μΔ+M*Δ+M*
2σμ∂μ 

 This D should be used to obtain “physical” geometry 

instead of auxiliary 3+1 dimensional space. (AP 2010, 

Gregory & AP 2012) 



 M=S1×T3 ,  D2=∂t
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 N|D|(λ)={# eigenvalues < λ} 

 when λ<<M*
6 the last term dominates: 
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when λ>>M*
6 the first term dominates:  



One can do better and go beyond the flat case. 

 Define a generalized ζ-function 

     ζΔ(s) := Tr(∆-s) 

 Now ∆ can be any generalized elliptic operator. 

 ζ-function can be extended to a meromorphic function 
on the whole complex plane with the only poles given by 
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 n=D+1, p=1 we have  
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 Dirac operator is very complicated: 

gravity? Lifshitz-Horava   
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 To calculate the trace of this operator one has to find 
the heat kernel   
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Part I 



 Even the flat case is not trivial (Mamiya & AP 2013)  

 This allows to perform a completely analytical study of 
the spectral dimension flow: 

 Using the approach of Nesterov&Solodukhin 2010 we 
hope to show how to recover the HL action as the 
spectral action. 



 The spectral action approach has the second part 
(Chamsedinne&Connes 1996) 

Part II  Matter 

 DSmatter 

 The operator D is the same that was used for the 
gravity part! 

 The matter coupling to geometry is restricted only by 
FPDiff. 

 This permits inclusion of the higher spatial derivatives 
in Smatter .  

 There is no guiding principle on how to proceed except 
the control over the amount of Lorentz violation 
(Pospelov&Shang 2010, Kimpton&Padilla 2013) 
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 What happens to the geodesic motion? 

motion geodesic    0  
T

(Dixon 1970, Hawking&Ellis 1973) 

 Now we DO NOT have 

 Instead we do have 
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 Alternative way to get geodesics: 

 Write a field theory 

 Find field equations 

 Restrict to the 1-particle sector 

 Do quasi-classical analysis 

 Hamilton-Jacobi => geodesic motion 



 Immediate result is that “geodesics” change 



 Horava-Lifshitz could provide a UV completion of GR 

 For this the original proposal should be modified 
(“healthy” extension?) 

 It would be good to have a more geometrical approach 
to construct the theory 

 What is the choice of the coupling to matter? 

 What is the correct physical motion of a test particle? 
Geodesics? 

 



 What is the underlying geometry? E.g. can one get the 
physical motion of point particle as geodesical motion 
in this geometry? 

 Gauge sector, matter content (it is more natural now to 
have fields in reps of SO(3)) 

 Methods of spectral geometry plus spectra action 
principle might prove useful. 



Science is the best way to 
satisfy you own curiosity at 
the government’s expense. 

L.A.Artsimovich 


