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 What is wrong with Quantum Gravity? 

 Lifshitz’s idea 

 Horava-Lifshitz Gravity 
 Projectable 
 Non-projectable 
 Detailed balance condition 
 Healthy (or natural) extension 
 Problems 

 Spectral dimension 
 Random walk 
 Weyl’s theorem 

 Spectral geometry approach 
 Spectral Action 
 Geodesic motion? 

 Conclusions 
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    As the result, the effective dimensionless constant is 
given by  
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 (Super)string theory: contains a spin-2 massles mode 
=> has to describe gravity. GR is recovered in long-
wave regime. But, the predictive power is quite poor: 
the string theory landscape has 10500  vacua. 

 Loop quantum gravity: one can perform non-
perturbative quantization. Among problems, the 
difficulty of the recovery quasiclassical space. 

 Some other approaches treat gravity as an emergent 
phenomenon (e.g., entropic gravity). 



 Lifshitz model (Lifshitz 1941) 
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I.e. we have two fixed points: UV, which corresponds 
to z=2 and has significantly improved behavior and 
IR, in which by the time rescaling we can set c=1 and 
restore relativistic invariance, z=1 



 Let us consider the same type of the modification, but 
when the higher derivatives are added in the Lorentz 
invariant way.  
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   We take ADM slicing as fundamental, i.e. instead of 
considering just a manifold, we endow it with the 
foliation structure: 
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 Projectable FDiff gravity (Horava 2009) 

 

 

 

 

 

 

 Non-projectable FDiff gravity (Blas et al. 2010) 
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 Horava’s recipe to deal with the large number of terms: 
Detailed Balance condition: 
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 Even applied to the healthy extended model the 
detailed balance condition still requires serious fine 
tuning (Verniery&Sotiriou 2013) 



 Broken 4d diffeos => Lorentz violation 

 Extra scalar mode in addition to two graviton 
polarizations 

 In general the scalar mode does not decouple in IR, 
this can endanger the renormalizability 

 The model with the detailed balance condition does 
not pass the Solar system tests 

 The healthy extension (with ai) has A LOT of free 
parameters and some of them still require fine tuning 

 … 

 



 CDT lattice calculations indicate that d=2 in UV 
(Ambjorn et al. 2005) 

 Spectral dimension (Horava 2009) 
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 Spectral dimension in Horava case 
 
 
 
 
 
 
 
 
 

 In IR, the diffusion equation will be dominated by z=1, 
leading to ds=4 
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(Connes 1990 and up to now) 

T=(A,H,D) – spectral triple 

A Riemannian manifold, M, is completely 

Recovered from T. In this case 

 

i. A=C∞(M) 

ii. H=L2(M,S) 

iii. D=γμ(∂μ+ωμ) 
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(AP 2010) 

 The choice of the Dirac operator in the form D=γμ(∂μ+ωμ) 

is not natural anymore 

 The foliation structure dictates the following (schematic) 

form for D (for z=3) 

D= ∂t+σμ∂μΔ+M*Δ+M*
2σμ∂μ 

 This D should be used to obtain “physical” geometry 

instead of auxiliary 3+1 dimensional space. (AP 2010, 

Gregory & AP 2012) 



 M=S1×T3 ,  D2=∂t
2+Δ3+M*

2Δ2+M*
4 Δ 

 sp(D2)={n2+(n1
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 N|D|(λ)={# eigenvalues < λ} 

 when λ<<M*
6 the last term dominates: 
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when λ>>M*
6 the first term dominates:  



One can do better and go beyond the flat case. 

 Define a generalized ζ-function 

     ζΔ(s) := Tr(∆-s) 

 Now ∆ can be any generalized elliptic operator. 

 ζ-function can be extended to a meromorphic function 
on the whole complex plane with the only poles given by 
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 Dirac operator is very complicated: 

gravity? Lifshitz-Horava   
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 To calculate the trace of this operator one has to find 
the heat kernel   
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 Even the flat case is not trivial (Mamiya & AP 2013)  

 This allows to perform a completely analytical study of 
the spectral dimension flow: 

 Using the approach of Nesterov&Solodukhin 2010 we 
hope to show how to recover the HL action as the 
spectral action. 



 The spectral action approach has the second part 
(Chamsedinne&Connes 1996) 

Part II  Matter 

 DSmatter 

 The operator D is the same that was used for the 
gravity part! 

 The matter coupling to geometry is restricted only by 
FPDiff. 

 This permits inclusion of the higher spatial derivatives 
in Smatter .  

 There is no guiding principle on how to proceed except 
the control over the amount of Lorentz violation 
(Pospelov&Shang 2010, Kimpton&Padilla 2013) 

 



Dirac operator 

Geometry 

Space-
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Gauge 
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 What happens to the geodesic motion? 

motion geodesic    0  
T

(Dixon 1970, Hawking&Ellis 1973) 

 Now we DO NOT have 

 Instead we do have 
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 Alternative way to get geodesics: 

 Write a field theory 

 Find field equations 

 Restrict to the 1-particle sector 

 Do quasi-classical analysis 

 Hamilton-Jacobi => geodesic motion 



 Immediate result is that “geodesics” change 



 Horava-Lifshitz could provide a UV completion of GR 

 For this the original proposal should be modified 
(“healthy” extension?) 

 It would be good to have a more geometrical approach 
to construct the theory 

 What is the choice of the coupling to matter? 

 What is the correct physical motion of a test particle? 
Geodesics? 

 



 What is the underlying geometry? E.g. can one get the 
physical motion of point particle as geodesical motion 
in this geometry? 

 Gauge sector, matter content (it is more natural now to 
have fields in reps of SO(3)) 

 Methods of spectral geometry plus spectra action 
principle might prove useful. 



Science is the best way to 
satisfy you own curiosity at 
the government’s expense. 

L.A.Artsimovich 


