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1. Large N Gauge Theories and Quantum Gravity 

 
2. N = 4  SU(N) super Yang-Mills theory (SYM) at large N 
 

3. Mass deformed N = 4 SU(N) SYM at large N         - phase transitions at critical couplings ! 
 

4. Mass deformed N = 2 SCF SYM                               -  smooth weak-strong interpolation 
 

5.  N = 2 SQCD                                                              - phase transition at a critical quark mass! 
 
 

 
 
 
 
 
 



1. Quantum Gravity and large N Gauge Theories 

Is string theory a consistent Quantum Gravity theory? 
 
BEST HINT:           HOLOGRAPHY 
 
Conjectured equivalence with supersymmetric gauge theories. 
 
Most studied example:  

Closed strings on AdS5 x S5   =         N = 4 SU(N)  SYM 
 

        Gravity theory on anti de Sitter space =   superconformal gauge theory    

This is a quantum equivalence: the well-established  consistency of quantum gauge 
theory implies the consistence of the dual gravity (superstring) theory. 

The quantum theories in both sides of the duality are severely constrained by the high amount 
of symmetry. 
In particular, these theories have maximal supersymmetry and conformal invariance. 
 

It is important to establish if holography is an exact duality connecting gravity and 
gauge theories in less symmetric, non-conformal settings.  



N = 2 supersymmetric SU(N) gauge theories 
 
Some N = 2 theories exhibit physical features similar to QCD, like asymptotic freedom. 
 
But many features of the deep quantum regime of general N = 2 theories are still unknown. 
 

Representations of N = 2 supersymmetry 

“Vector multiplet”: 1 vector boson, 2 real scalars and two Weyl fermions 
 
“Hypermultiplet”:   4 real scalars and two Weyl fermions 

Simple N = 2 theory:  
unique mass deformation of N = 4 SYM that preserves N = 2 supersymmetry 
 
N = 4 theory contains 1 vector boson, 4 Weyl fermions and 6 real scalars in the adjoint rep. 
 
In terms of the N = 2 subalgebra: 1 vector multiplet and 1 hypermultiplet. 
 
Now add a mass term for the hypermultiplet.  
That is, the same mass term for 4 scalars and 2 fermions.  
 
The resulting theory is called N = 2* SYM theory. 



In which regime of gauge theory parameters we can compare with string theory ? 
 
 
The SU(N) gauge theory parameters:               N,  g, masses.  
 
In holography, quantum gravity corrections are controlled by the coupling 1/N 
In order to make contact with classical gravity, we need to study SU(N) gauge theories at large  N. 
 
 
 
Gauge theory perturbation theory: l << 1,  planar loop diagrams. 
 
However, we need exact results in the gauge theory that can be extrapolated to strong l >> 1 coupling. 
This is the regime where string theory calculations can be carried out in a controlled way. 
 
 
Fortunately, for N = 2 theories, exact results exist for certain supersymmetric observables.  These are 
obtained by  “localization”. 

fixedNgwithgN  20,



Localization 

Theories with a fermionic symmetry: the exact functional integral may localize in a subset of field 
configurations obeying classical field equations plus a one-loop contribution. 

 
Exact partition function for general N = 2 supersymmetric YM theory on S4,  
with arbitrary matter content !!                                                   [Pestun, 0712.2824] 
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known factors that depend on field content 
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VEV of scalar of vector multiplet 
 
Integral over Couloumb moduli. 



The one-loop factor 
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The different multiplets contribute as follows: 
 
 
Vector multiplet 
 
 
Adjoint hypermultiplet 
 
 
Fundamental hypermultiplet 
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Observables 

•Free energy        F  =  - ln Z  
n-derivatives of free energy gives correlators of integrated operators. 
  
For example: 
 
dnF/dln  gives correlators of the integrated action density. 
  
dnF/dMn gives correlators of integrated mass operator. 

 
•Supersymmetric Wilson loops 
 
Circular Wilson loop: 
 
 
 
It localizes to 
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We are interested in computing these observables in the large N limit. 



N = 4 Super Yang-Mills theory on S4 

•Instantons do not contribute. 
 

•1-loop corrections cancel 
 
Gaussian matrix model: 
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At large N the integral is dominated by a saddle-point. 

Minimize 
 
 
 
Introducing the eigenvalue density 
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The saddle-point equation becomes 
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Eigenvalues are distributed in a 
semicircle (Wigner’s law) 
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N = 4 SYM : Wilson loop 
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Minimal area in AdS5 String fluctuations 

Expanding at small l one gets a perturbative series 
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with infinite radius of convergence. 
 
But the ½ susy W is very special because of a huge cancellation of diagrams. 
 
In general, the planar expansion in N = 4 theory is expected to have a finite radius of convergence.  
Indeed, perturbation series for anomalous dimensions diverges at  

    |l| >  p2 

Can this radius of convergence be seen from the exact formulas computed by localization? 



N  =  2*  SU(N) Super Yang-Mills theory 

Deform the N = 4 theory by a mass term preserving ½ of supersymmetries. 
 
The theory has a vector multiplet and a massive hypermultiplet. 
The partition function computed by localization is therefore given by 
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The instanton factor is more complicated, but we do not need it as in the large N limit turns out 
to be exponentially suppressed. (We proved it for the one-instanton contribution). 



In the above formulas we have set R = 1, as all quantities depend on 
the combination MR. 
 
The large N theory depends on two parameters (l, MR) 

MR 

l 

MR >> 1 

MR << 1 

l >>1 l<<1 

Pure YM 



Saddle-point equation for N   =  2* 
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 m: width of eigenvalue distribution,  - m < x < m  
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The planar limit can be exactly calculated by solving an integral equation 



Strong coupling limit of N   =  2* 
and AdS/CFT 

l >>1: 

 
Gravity dual: Pilch-Warner solution, obtained as a deformation of AdS5 x S5. 
 
 
As l is increased, the attactive linear force become weaker and the eigenvalue distribution expands. 
Since m >> M, we can approximate 
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Having  r(x), we can compute the Wilson loop: 
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These results exactly match the supergravity  
prediction  using Pilch-Warner solution 
[Buchel, J.R. and Zarembo, 2013] 



Conformal perturbation theory in N  = 2* 
 
Consider  M << 1, l arbitrary. 
The saddle-point integral equation can be solved in perturbation theory in M2 

 

For the free energy we find  
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We have the exact l dependence. 
 
• Expanding at weak coupling one finds a perturbation series that diverges at l > p2  

Remarkably, this is the same radius of convergence found from computation of anomalous 
dimensions!! 
 
Near l = - p2         the  free energy has a logarithmic branch cut singularity 
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N = 2* in the decompactification limit at arbitrary l 

N = 4 SYM: there is a smooth dependence with l all the way from 0 to infinity. 

No phase transition between the perturbative l << 1 regime and the strong coupling l >> 1 regime 
(described by AdS/CFT duality). 
 
Now deform the theory by adding a mass term. 
Is the interpolation between weak and strong coupling still smooth? 
Could there be a phase transition in between? 
 

In the limit MR >>1 at fixed l, one can replace K(x) by 2x ln|x|.  

As a result, the saddle-point equation simplifies: 
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Differentiating once, we obtain 

This matrix model can be solved by following a method developed by [Kazakov, Kostov and Nekrasov, 9810035] 
 

Note that the second and third terms do not have poles if  M > |x-y|. This requires  m < M/2  
What is the physical origin of this bound?         

 

m   increases with increasing l 

Can m get to M/2 at finite coupling l ? What happens above this coupling? 



LIGHT STATES AT CRITICAL COUPLINGS 

The mass spectrum in the scalar VEV background is given by 

Maamaam jiijjiij  hv ,

When m > M/2, a new phenomenon takes place: there can be exceptionally light 
hypermultiplets for states with 

Maa ji 

These resonance phenomena will produce with dramatic effects that we will observe shortly. 

Extra light states whenever m  = n M/2,  n=2,3,4,… 
 
At which coupling these resonances occur?  
For n >> 1 we can use the strong coupling expression for  m: 
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It can be shown that m is real provided: 

4.35,  cc 

 
The analytic solution terminates at lc . It cannot be extended for l > lc    
 
Near lc 
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At lc  , m = M/2 
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lc 

m   can  be  expressed in terms of elliptic functions. 



Calculation of free energy 
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We find 
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This non-perturbative expansion represents the different terms in the OPE expansion 
 (they are not instantons!) 
 
 
Remarkably, there is not any perturbative contribution.  
The OPE coefficients are rational numbers, the s-1 (k) divisor function. 
  
 
 
Wilson loop: 
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Strong-coupling phase 

In the supercritical phase the eigenvalue density can be found by numeric methods.  

Different phases emerge as l is gradually increased.  

They can be understood in terms of thresholds occurring at  m = nM/2, with n = 1,2,3,…  
 

•For l  <  lc, the eigenvalue density has a shape similar to 1/Sqrt[m2-x2] 

 
 
 

•When l  >  lc,  then m overcomes the first threshold,  M/2. The density develops two cusps at −M + m and M − 
m, which travel towards x = 0 as  is increased.  
 

l = 30 l = 60 



•The next phase transition happens when  m = M, at l ≈ 83.  
At this point, the first two cusps collide at x = 0 and two new cusps at x = −m + 2M and x = m − 2M 
are formed near the boundary 

l = 130 l = 180 

•As l is further increased, the theory goes through new phases where more cusps are 
formed pairwise, whenever  m  crosses nM/2, n = 1,2,3,…  
 



This looks different from what we hoped to find strong coupling: 
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Getting the Wigner’s semicircle distribution is necessary to match the 
AdS/CFT prediction.  

1,1  MR



l = 1500 l = 5000 

 
 
The Wigner distribution at strong coupling is the result of a coarse grain averaging over an 
infinite number of infinitely weak cusps. 
 
It is not clear which implications this fractal structure has for holography.  



Properties of the phase transition 
 

1. Structure of  the “cusps” 
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2. Order of  phase transition 
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Therefore F’’’’ experiences a jump: the transition is fourth order. 
 
Is there anything special happening to the subcritical free energy at the critical point? 

Defining b = 1/l , at the critical point:                       F’’’(b) = 0 
 



 
 
 

3. Order parameter.  

An order parameter that measures the scale of the mass gap of the light hypermultiplet 
excitations of masses|x - y  +- M| is 1/L, with 
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Instantons 

Instanton contributions are usually believed to be negligible at large N, since 
 
 
 
Proving this actually requires explicitly computing the volume of the instanton moduli space. 
The one instanton contribution can be written as 
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There are two competing saddle-points at z = 0 and z = infinity. 
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Instantons are suppressed provided Sinst > 0 in all the parameter space (l, MR).   
 
This is not a priori obvious, given that there is the negative term that might in principle be > 8p2/l.  
 
Example: M>>1. Using the saddle-point equation, we can put Sinst in the form 
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decompactification limit 

N = 4 SYM 

l >>1 l<<1 

Pure YM 

Phase transition points 

Pilch-Warner 

Holographic 
regime 

AdS5 x S5 

PHASE DIAGRAM FOR N = 2* THEORY ON S4 



N  =  2 SCFT* 

A familiar superconformal theory is N  =  2  SU(N) SYM with 2N fundamental hypermultiplets. 

What happens if we break superconformal invariance by introducing mass terms for the hypermultiplets? 

 

Does the theory have a phase transition when the eigenvalues exceed the mass M? 

 

The partition function computed by localization is given by 
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At large N, the integral is dominated by a saddle-point at the solution of the integral equation 
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 N  =  2 SCFT*:    Large MR at fixed coupling l  

In the decompactification limit the model becomes exactly solvable 
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Thus m < M for all l.   
 

 
 There is no phase transition in this case: the massive theory exhibits a  smooth interpolation 
between weak and strong coupling regime. 
 
Having the eigenvalue density, we can easily compute the free energy. It is given by 
 

 
 
 
 
which again has the interpretation of OPE expansion in terms of the dynamically generated scale. 
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N  =  2 SQCD with 2Nf massive hypermultiplets 

We assume Nf  <  N, in which case the theory is asymptotically free.  

 

The partition function computed by localization is given by 
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At large N, the integral is dominated by a saddle-point at the solution of the integral equation 
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In the decompactification limit, the integral equation (differentiated twice) simplifies to   
 

Dynamically generated scale 
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This is like the saddle-point equation for a one-matrix model with a logarithmic potential. It is a solvable model. 
It exhibits the same phenomenon as we encountered in N = 2*: poles at x = ±M which may or may not lie within 
the eigenvalue distribution.  
The model thus has two phases: 
1. The weak-coupling phase with m < M, in which all hypermultiplets are heavy.  
2. The strong-coupling phase at  m > M, where light hypermultiplets appear in the spectrum. 



1. Strong coupling phase m > M. 
 

The poles sit within the eigenvalue distribution. The normalized eigenvalue density is then given by 
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The phase transition thus occurs at Mc = 2 L 

2. Weak coupling phase m < M. 
 

The poles sit within the eigenvalue distribution. The normalized eigenvalue density is then given by 
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For concreteness, set, Nf  =  N/2, i.e. x=1/2, which is half the  
way between pure SYM (Nf  = 0) and the SCFT* at Nf = N. 

)(2  M

The Wilson loop W= exp(2 p m) is thus 
discontinuous 



Free energy 
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Thus the transition is third order. 



Conclusions 

We have solved for the large-N master  field of  N = 2∗ SYM, N = 2  SCF* and N = 2 SQCD  using 

supersymmetric localization. The underlying physics of  N = 2 gauge theories turns out to be very rich.  

 

 

The main results are: 

 

 

1. N = 2∗ SYM and N = 2 SQCD have quantum phase transitions at finite couplings. 

 

2. N = 2∗ theory exhibits an infinite number of  phase transitions occurring as l is increased and 

accumulating towards l = infinity.  

 

3. The strong coupling results agree with AdS/CFT. They are obtained by a coarse-grain average over 

a rather irregular fractal structure. 

 

4. In the decompactification limit MR=infinity, the free energy and the expectation values of  large 

Wilson loops have only non-perturbative terms in their weak-coupling expansion.  These non-

perturbative terms can be understood as an OPE expansion. 

 

5. At small MR, N = 2∗ theory has a perturbative series which diverges at l = - p2 

 


