Chern-Simons Gravity induces Conformal Gravity QGSC VI

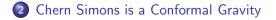
Danilo Diaz and me

September 12, 2013

Danilo Diaz and me Chern-Simons Gravity induces Conformal Gravity QGSC VI

Outline

- 3d Chern Simons Conformal gravity
- 3d Chern Simons AdS gravity



個 と く ヨ と く ヨ と

Chern Simons is a Conformal Gravity Comments and outlooks 3d Chern Simons Conformal gravity 3d Chern Simons AdS gravity

Conformal Gravity

Four dimensional Conformal Gravity

.)

$$\int \left(W^{\mu
ulphaeta}W_{\mu
ulphaeta}
ight)\sqrt{g}dx^{4}$$

<ロ> (四) (四) (三) (三)

3d Chern Simons Conformal gravity 3d Chern Simons AdS gravity

Conformal Gravity is interesting

It has been mentioned

• It was considered as a possible UV completion of gravity.

3d Chern Simons Conformal gravity 3d Chern Simons AdS gravity

Conformal Gravity is interesting

It has been mentioned

- It was considered as a possible UV completion of gravity.
- It was also useful for constructing supergravity theories.

3d Chern Simons Conformal gravity 3d Chern Simons AdS gravity

Conformal Gravity is interesting

It has been mentioned

- It was considered as a possible UV completion of gravity.
- It was also useful for constructing supergravity theories.
- It has recently emerged from the twistor string theory.

3d Chern Simons Conformal gravity 3d Chern Simons AdS gravity

Conformal Gravity is interesting

It has been mentioned

- It was considered as a possible UV completion of gravity.
- It was also useful for constructing supergravity theories.
- It has recently emerged from the twistor string theory.
- It can have a rôle in AdS/CFT

Chern Simons is a Conformal Gravity Comments and outlooks 3d Chern Simons Conformal gravity 3d Chern Simons AdS gravity

Chern Simons Gravity

2n + 1-dimensional transgression form

$$I_{2n+1} = (n+1) \int_{\mathcal{M}} \int_0^1 dt \left\langle (A_1 - A_0) \wedge \underbrace{F_t \wedge \ldots \wedge F_t}_n \right\rangle, \quad (1)$$

where A_1 and A_0 are two (1-form) connections in the same fiber. $F_t = dA_t + A_t \wedge A_t$ with $A_t = tA_1 + (1 - t)A_0$. $\langle \rangle$ stands for the trace in the group.

ヘロン 人間 とくほど くほとう

Chern Simons is a Conformal Gravity Comments and outlooks 3d Chern Simons Conformal gravity 3d Chern Simons AdS gravity

Chern Simons Gravity

The (Euler) Chern Simons density

Provided $A_0 = 0$ one gets Chern Simons action for A_1 , or viceversa, in d = 2n + 1.

< 日 > < 四 > < 回 > < 回 > < 回 > <

Chern Simons is a Conformal Gravity Comments and outlooks 3d Chern Simons Conformal gravity 3d Chern Simons AdS gravity

Chern Simons Gravity

The (Euler) Chern Simons density

Provided $A_0 = 0$ one gets Chern Simons action for A_1 , or viceversa, in d = 2n + 1.

The Chern Simons equation of motion

$$\langle F^n \delta A \rangle = 0$$

where $F = dA + A \wedge A$.

3d Chern Simons Conformal gravity 3d Chern Simons AdS gravity

Chern Simons gauge theories are interesting

They are gauge theories

• different from YM

イロン イヨン イヨン

3d Chern Simons Conformal gravity 3d Chern Simons AdS gravity

Chern Simons gauge theories are interesting

They are gauge theories

- different from YM
- in a sense purely topological

<ロ> (四) (四) (三) (三)

3d Chern Simons Conformal gravity 3d Chern Simons AdS gravity

Chern Simons gauge theories are interesting

They are gauge theories

- different from YM
- in a sense purely topological
- connected with gravitational theories in a non trivial or standard way

イロト イポト イヨト イヨト

3d Chern Simons Conformal gravity 3d Chern Simons AdS gravity

Chern Simons gauge theories are interesting

They are gauge theories

- different from YM
- in a sense purely topological
- connected with gravitational theories in a non trivial or standard way
- full of surprises.

3d Chern Simons Conformal gravity 3d Chern Simons AdS gravity

Rewritten as 1.5 formalism

In 3 dimensions conformal gravity

$$I_{CG} = \int_{M} w_i \wedge dw^i + \frac{2}{3} \varepsilon^{ijk} w_i \wedge w_j \wedge w_k$$
(2)

where $w_i = \varepsilon_{ijk} \omega^{kl}_{\ \mu} dx^{\mu}$ is the Levi Civita (spin) connection associated a given dreibein $e^i_{\ \mu} dx^{\mu}$.

イロン イヨン イヨン -

3d Chern Simons Conformal gravity 3d Chern Simons AdS gravity

The equations of motion

$$C_{\mu\nu\lambda} = \nabla_{\mu}\rho_{\nu\lambda} - \nabla_{\lambda}\rho_{\nu\mu} = 0, \qquad (3)$$

equivalent to the vanishing of the Cotton-York tensor. Here

$$\rho_{\mu\nu} = R_{\mu\nu} - \frac{1}{4} R g_{\mu\nu}, \qquad (4)$$

with $\rho_{\mu\nu}$ is sometimes called the Schouten tensor or plainly *rho*-tensor.

イロト イポト イヨト イヨト

3d Chern Simons Conformal gravity 3d Chern Simons AdS gravity

The equations of motion

$$C_{\mu\nu\lambda} = \nabla_{\mu}\rho_{\nu\lambda} - \nabla_{\lambda}\rho_{\nu\mu} = 0, \qquad (3)$$

equivalent to the vanishing of the Cotton-York tensor. Here

$$\rho_{\mu\nu} = R_{\mu\nu} - \frac{1}{4} R g_{\mu\nu}, \qquad (4)$$

with $\rho_{\mu\nu}$ is sometimes called the Schouten tensor or plainly *rho*-tensor.

This means

the solution must a conformally flat space.

イロト イポト イヨト イヨト

3d Chern Simons Conformal gravity 3d Chern Simons AdS gravity

Rewritten as a gauge theory

This action principle d = 3

The previous action can be written in terms of a connection for conformal group in 3 dimensions (CFT₃ \approx SO(3,2))

$$A_{\mu} = e^{i}_{\ \mu} P_{i} + w^{i}_{\ \mu} J_{i} + \lambda^{i}_{\ \mu} K_{i} + \phi_{\mu} D . \qquad (5)$$

3d Chern Simons Conformal gravity 3d Chern Simons AdS gravity

Written as a gauge theory

Provided

$$T^{i} = de^{i} + \omega^{i}{}_{j}e^{j} = 0$$

$$\lambda^{i}{}_{\mu}dx^{\mu} = -\frac{1}{2}R^{i}{}_{\mu}dx^{\mu} = \rho^{i}$$

$$D\rho^{i} = 0$$

$$\phi_{\mu} = 0$$

The previous equations of motion can be rewritten as $F = dA + A \wedge A = 0$.

<ロ> (四) (四) (三) (三)

3d Chern Simons Conformal gravity 3d Chern Simons AdS gravity

Written as a gauge theory

Provided

$$T^{i} = de^{i} + \omega^{i}{}_{j}e^{j} = 0$$

$$\lambda^{i}{}_{\mu}dx^{\mu} = -\frac{1}{2}R^{i}{}_{\mu}dx^{\mu} = \rho^{i}$$

$$D\rho^{i} = 0$$

$$\phi_{\mu} = 0$$

The previous equations of motion can be rewritten as $F = dA + A \land A = 0$. This is equivalent to require a conformally flat space.

<ロ> (四) (四) (三) (三)

Chern Simons is a Conformal Gravity Comments and outlooks 3d Chern Simons Conformal gravity 3d Chern Simons AdS gravity

Chern Simons on-shell

No surprise

The conformal gravity action can be written as 3d Chern Simons action

$$I_{CS} = \frac{k}{8\pi} \int_{M} \left\langle A \wedge dA + \frac{2}{3} A \wedge A \wedge A \right\rangle$$
(6)

for the conformal group.

イロト イポト イヨト イヨト

3d Chern Simons Conformal gravity 3d Chern Simons AdS gravity

The Tractor Connection arises

Conformal connection

In mathematical lore the connection for $SO(3,2) \approx CFT_3$

$$A = e^i P_i + w^i J_i + \rho^i K_i$$

is called the Tractor Connection.

イロト イポト イヨト イヨト

æ

3d Chern Simons Conformal gravity 3d Chern Simons AdS gravity

The Tractor Connection arises

Conformal connection

In mathematical lore the connection for $SO(3,2) \approx CFT_3$

$$A = e^i P_i + w^i J_i + \rho^i K_i$$

is called the Tractor Connection.Recall this is partially on-shell.

<ロ> (日) (日) (日) (日) (日)

Chern Simons is a Conformal Gravity Comments and outlooks 3d Chern Simons Conformal gravity 3d Chern Simons AdS gravity

Weyl Transformations

Weyl as Conformal

A Weyl transformation, $g_{ij}
ightarrow e^{2\xi}g_{ij}$, of A is

$$A
ightarrow e^{\xi(x)D}Ae^{-\xi(x)D} + e^{\xi(x)D}d(e^{-\xi(x)D})$$

where $\xi(x)$ is an arbitrary function of the coordinates of the base space $\{x^{\mu}\}$.

イロト イポト イヨト イヨト

Chern Simons is a Conformal Gravity Comments and outlooks 3d Chern Simons Conformal gravity 3d Chern Simons AdS gravity

Weyl Transformations

Weyl in components

The component of A transforms as

$$egin{array}{rcl} e^i & o & e^{\xi}e^i \ \omega^{ij} & o & \omega^{ij} + \Upsilon^i e^j - \Upsilon^j e^i \
ho^i & o & e^{-\xi}(
ho^i + D\Upsilon^i + \Upsilon^i \Upsilon_\mu dx^\mu + e^i \Upsilon_\mu \Upsilon^\mu) \end{array}$$

with $\Upsilon_{\mu} = \partial_{\mu}\xi(x)$ and $\Upsilon^{i} = E^{i\mu}\Upsilon_{\mu} = E^{i\mu}\partial_{\mu}\xi(x)$

3d Chern Simons Conformal gravity 3d Chern Simons AdS gravity

An AdS Gravity as Chern Simons

A theory of AdS gravity in d = 3

A Chern Simons theory for $AdS_3 \approx SO(2,2)$ written in terms of $A = \frac{1}{2}\omega^{AB}J_{AB}$ where J_{AB} (A,B=1...4) are the generator by

ヘロン 人間 とくほど くほとう

3d Chern Simons Conformal gravity 3d Chern Simons AdS gravity

An AdS Gravity as Chern Simons

A theory of AdS gravity in d = 3

A Chern Simons theory for $AdS_3 \approx SO(2,2)$ written in terms of $A = \frac{1}{2}\omega^{AB}J_{AB}$ where J_{AB} (A,B=1...4) are the generator by splitting $A = \frac{1}{2}\hat{\omega}^{AB}J_{AB} = \frac{1}{2}\hat{\omega}^{ij}J_{ij} + \hat{q}^{i}J_{i4},$ (7) where i, j = 1, 2, 3.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

3d Chern Simons Conformal gravity 3d Chern Simons AdS gravity

An AdS Gravity as Chern Simons

A theory of AdS gravity in d = 3

A Chern Simons theory for $AdS_3 \approx SO(2,2)$ written in terms of $A = \frac{1}{2}\omega^{AB}J_{AB}$ where J_{AB} (A,B=1...4) are the generator by

splitting

$$A = \frac{1}{2}\hat{\omega}^{AB}J_{AB} = \frac{1}{2}\hat{\omega}^{ij}J_{ij} + \hat{q}^{i}J_{i4}, \qquad (7)$$

where i, j = 1, 2, 3.

Next, identifying *q̂ⁱ* and *ω̂^{ij}* with *q̂ⁱ* = *l*⁻¹*eⁱ*, where *eⁱ* is a dreibein and *ω̂^{ij}* = *ω^{ij}* a Lorentz (spin) connection on the manifold to be considered.

<ロ> (四) (四) (三) (三) (三)

3d Chern Simons Conformal gravity 3d Chern Simons AdS gravity

How to take the trace

This is not a minor issue and most relevant results can be extract from the analysis of the different traces.

3d Chern Simons Conformal gravity 3d Chern Simons AdS gravity

Trace

How to take the trace

This is not a minor issue and most relevant results can be extract from the analysis of the different traces. Nonetheless the trace can be defined as

$$\langle J_{A_1A_2}J_{A_3A_4}\rangle = \varepsilon_{A_1\dots A_4},$$

which splits, throughout A = (i, 4) with i = 1...3, as

$$\varepsilon_{A_1\dots A_4} = \varepsilon_{i_1i_2i_34} = \varepsilon_{i_1i_2i_3}.$$

3d Chern Simons Conformal gravity 3d Chern Simons AdS gravity

Rewritten action

Chern Simons action can be written as

$$I_{CS}^{3} = I^{-1} \int \left(R^{ij} e^{k} + \frac{1}{3I^{2}} e^{i} e^{j} e^{k} \right) \varepsilon_{ijk} + BT$$

where $R^{ij} = d\omega^{ij} + \omega^i_{\ k}\omega^{kl}$ is called the curvature two form.

This is rather standard

This action is actually Einstein (Cartan) gravity in three dimensions.

ヘロン 人間 とくほど くほとう

3d Chern Simons Conformal gravity 3d Chern Simons AdS gravity

Equation of Motion are

F = 0 means

$$F^{ij} = R^{ij} + I^{-2}e^{i} \wedge e^{j} = 0$$

$$F^{i4} = T^{i} = de^{i} + \omega^{i}{}_{k}e^{k} = 0$$

<ロ> (四) (四) (日) (日) (日)

3d Chern Simons Conformal gravity 3d Chern Simons AdS gravity

Equation of Motion are

F = 0 means

$$F^{ij} = R^{ij} + I^{-2}e^i \wedge e^j = 0$$

$$F^{i4} = T^i = de^i + \omega^i{}_k e^k = 0$$

Solution

This allows only torsion free constant curvature manifolds

イロト イポト イヨト イヨト

3d Chern Simons Conformal gravity 3d Chern Simons AdS gravity

Equation of Motion are

F = 0 means

$$F^{ij} = R^{ij} + I^{-2}e^i \wedge e^j = 0$$

$$F^{i4} = T^i = de^i + \omega^i{}_k e^k = 0$$

Solution

This allows only torsion free constant curvature manifolds, i.e., AdS_3/Γ with $\Gamma \in AdS_3$.

イロト イポト イヨト イヨト

We had one theory for two groups

Conformal

Provided $\mathcal{G} = CFT_3 = SO(3, 2)$ F = 0 implies conformal gravity and spaces conformally flat.

イロン イヨン イヨン -

We had one theory for two groups

Conformal

Provided $\mathcal{G} = CFT_3 = SO(3,2)$ F = 0 implies conformal gravity and spaces conformally flat.

AdS

Provided $\mathcal{G} = AdS_3 = SO(2,2)$ F = 0 implies standard gravity and spaces locally AdS.

イロン イ部 とくほど くほとう ほ

We had one theory for two groups

Conformal

Provided $\mathcal{G} = CFT_3 = SO(3,2)$ F = 0 implies conformal gravity and spaces conformally flat.

AdS

Provided $\mathcal{G} = AdS_3 = SO(2,2)$ F = 0 implies standard gravity and spaces locally AdS.

Conformal is AdS somehow

It is quite appealing to try to connect both.

<ロ> (四) (四) (三) (三) (三)

The previous can be generalized

A SO(2n,2) connection

Given $A = \frac{1}{2}\omega^{AB}J_{AB}$, where J_{AB} are the generator of SO(2n, 2)

$$A = \frac{1}{2}\hat{\omega}^{AB}J_{AB} = \frac{1}{2}\hat{\omega}^{ab}J_{ab} + \hat{q}^{a}J_{a\,2n+2},\tag{8}$$

where a, b = 1 ... 2n + 1.

(ロ) (同) (E) (E) (E)

The previous can be generalized

A SO(2n,2) connection

Given $A = \frac{1}{2}\omega^{AB}J_{AB}$, where J_{AB} are the generator of SO(2*n*, 2)

$$A = \frac{1}{2}\hat{\omega}^{AB}J_{AB} = \frac{1}{2}\hat{\omega}^{ab}J_{ab} + \hat{q}^{a}J_{a\,2n+2},\tag{8}$$

where a, b = 1 ... 2n + 1.

Traces

$$\langle J_{\mathcal{A}_1\mathcal{A}_2}\ldots J_{\mathcal{A}_{2n+1}\mathcal{A}_{2n+2}}\rangle = \varepsilon_{\mathcal{A}_1\ldots\mathcal{A}_{2n+2}} = \varepsilon_{\mathfrak{a}_1\ldots\mathfrak{a}_{2n+1}2n+2},$$

This is the trace considered for the rest of this work.

(ロ) (同) (E) (E) (E)

Love-Chern-Simons

A more useful Chern Simons action

AdS-Chern-Simons gravity, module a boundary term, can be rewritten in the form of a Lovelock gravity as

$$\int \sum_{p=0}^{n} \frac{1}{2n-2p} \binom{n}{p} \varepsilon_{a_1 \dots a_{2n+1}} R^{a_1 a_2} \dots R^{a_{2p-1} a_{2p}} q^{a_{2p+1}} \dots q^{a_{2n+1}}$$
(9)
where $q^a = \omega^{a_{2n+1}}$ and $R^{ab} = d\omega^{ab} + \omega^a{}_c \omega^{cb}$ with
 $b, b, c = 1, \dots, 2n+1.$

More complex equations of motion

The new concept

En 2+1 dimensions F = 0 is a simple equation of motion, in higher odd dimensions this complicates. For instance in 5 the equation of motion is

$$F \wedge F = 0$$

or for SO(4,2)

個 と く ヨ と く ヨ と

More complex equations of motion

The new concept

En 2+1 dimensions F = 0 is a simple equation of motion, in higher odd dimensions this complicates. For instance in 5 the equation of motion is

$$F \wedge F = 0$$

or for SO(4,2)

$$\begin{aligned} \mathcal{E}_f &= \varepsilon_{abcdf}(R^{ab} + q^a \wedge q^b) \wedge (R^{cd} + q^c \wedge q^d) = 0 \\ \mathcal{E}_{df} &= \varepsilon_{abcdf}(R^{ab} + q^a \wedge q^b) \wedge (dq^c + \omega^c{}_e \wedge q^e) = 0 \end{aligned}$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

A tractor like connection

AdS group in *d* dimensions

$$[J_{AB}, J_{CD}] = -\delta^{EF}_{AB}\delta^{GH}_{CD}\eta_{EG}J_{FH},$$

with A, B = 0 ... d + 1.

< 日 > < 四 > < 回 > < 回 > < 回 > <

(10)

A tractor like connection

AdS group in *d* dimensions

$$[J_{AB}, J_{CD}] = -\delta^{EF}_{AB}\delta^{GH}_{CD}\eta_{EG}J_{FH},$$

with $A, B = 0 \dots d + 1$.

Conformal Group in d-1 dimensions

$$\begin{split} & [M_{ij}, M_{kl}] = -\delta_{ij}^{mn} \delta_{kl}^{op} \eta_{mo} M_{np} \\ & [M_{ij}, P_k] = -(\eta_{ik} P_j - \eta_{jk} P_i) \quad [D, P_i] = P_i \\ & [M_{ij}, K_k] = -(\eta_{ik} K_j - \eta_{jk} K_i) \quad [D, K_i] = -K_i \\ & [P_i, K_j] = 2M_{ij} - 2\eta_{ij} D \quad [D, M_{ij}] = 0 \end{split}$$
(11)

with i, j = 0 ... d - 1.

< 日 > < 四 > < 回 > < 回 > < 回 > <

(10)

The most provocative relation ever

AdS is Conformal provided

$$J_{ij} = M_{ij} \qquad J_{id-1} = \frac{1}{2}(P_i + K_i) J_{d-1d} = D \qquad J_{id} = \frac{1}{2}(P_i - K_i).$$
(12)

AdS tractor connection

Generalization

The *d*-dimensional tractor connection is

$$A = \frac{1}{2}\omega^{ij}J_{ij} + e^{i}P_{i} + \rho^{i}K_{i}$$
(13)

where ω^{ij} and e^i are a spin connection and a vielbein on the manifold considered.

・ロン ・回と ・ヨン

AdS tractor connection

Generalization

The *d*-dimensional tractor connection is

$$A = \frac{1}{2}\omega^{ij}J_{ij} + e^iP_i + \rho^iK_i$$
(13)

where ω^{ij} and e^i are a spin connection and a vielbein on the manifold considered. On the other hand,

$$\rho^i = e^i{}_\nu \rho^\nu{}_\mu dx^\mu$$

with $\rho^{\mu}{}_{\nu}$ is given by

$$\rho^{\nu}{}_{\mu} = \frac{1}{d-3} \left(R^{\nu}{}_{\mu} - \frac{1}{2(d-2)} \delta^{\nu}_{\mu} R \right)$$
(14)

イロト イポト イヨト イヨト

AdS tractor connection

Some algebra

$$A = \frac{1}{2}\omega^{ij}J_{ij} + \rho^{i}(J_{id-1} + J_{id}) + e^{i}(J_{id} - J_{id-1})$$

= $\frac{1}{2}\omega^{ij}J_{ij} + (e^{i} - \rho^{i})J_{id} + (e^{i} + \rho^{i})J_{id-1}$ (15)

Danilo Diaz and me Chern-Simons Gravity induces Conformal Gravity QGSC VI

・ロン ・回 と ・ ヨン ・ ヨン

Conformal Gravity from Chern Simons

Add a dimension and wrap it

The idea is to show that a conformal theory of gravity can be written as a Chern Simons gauge theory with the help of an extension of tractor connection mentioned above.

・聞き ・ ほき・ ・ ほう

Conformal Gravity from Chern Simons

Add a dimension and wrap it

The idea is to show that a conformal theory of gravity can be written as a Chern Simons gauge theory with the help of an extension of tractor connection mentioned above.

This is not direct

A tractor connection for SO(d - 1, 2) exist on a d - 1 dimensions manifold while a SO(d - 1, 2)-CS density exist in d = 2n + 1dimensions.

ヘロン 人間 とくほど くほとう

AdS tractor connection

Solution proposed

Dimensional reduction of a 2n+1-CS density on $\mathcal{M}' = \mathcal{M} \times S^1$ to produce an effective 2*n*-dimensional theory.

AdS tractor connection

The generalization

On space $\mathcal{M}' = \mathcal{M} \times S^1$

$$A_{2n+1} = rac{1}{2} \omega^{ij}(x^{\mu}) J_{ij} + e^{i}(x^{\mu}) P_{i} +
ho^{i}(x^{\mu}) K_{i} + \Phi(x^{\mu}) d\varphi D_{i}$$

where i, j = 1, 2, ..., 2n and a system of coordinates $X^M = (x^{\mu}, \varphi)$ has been considered on \mathcal{M}' with φ parametrizing S^1 .

イロン イ部 とくほど くほとう ほ

AdS tractor connection

This is sound

The presence of $\Phi d\varphi$ along *D* does not changes the law of transformation under Weyl transformations. Furthermore $\Phi d\varphi$ transforms as

$$\Phi d\varphi \rightarrow \Phi d\varphi - d\xi.$$

This transformation has no effect on the CS action due to $d\xi$ has only projection on \mathcal{M} .

(本間) (本語) (本語)

AdS tractor connection

This is sound

The presence of $\Phi d\varphi$ along *D* does not changes the law of transformation under Weyl transformations. Furthermore $\Phi d\varphi$ transforms as

$$\Phi d\varphi \rightarrow \Phi d\varphi - d\xi.$$

This transformation has no effect on the CS action due to $d\xi$ has only projection on \mathcal{M} . This defines that Φ is actually a scalar field under Weyl transformations.

||◆同 || ◆ 三 → || ● →

3d AdS 2d Conformal

A simple example is 3d to 2d

This leads to the identification

$$\begin{array}{rcl} \hat{\omega}^{ij} &=& \omega^{ij} \\ \hat{\omega}^{i3} &=& \rho^i + e^i, \\ \hat{\omega}^{34} &=& \Phi(x)d\varphi = q^3, \\ \hat{\omega}^{i4} &=& e^i - \rho^i = q^i, \end{array}$$

This yields to the splitting of the three dimensional R^{ab} as

$$\hat{R}^{ij} = R^{ij} - (\rho^{i} + e^{i})(\rho^{j} + e^{j}) \text{ and }$$

$$\hat{R}^{i3} = D(\rho^{i} - e^{i}),$$
(16)

3d AdS 2d Conformal

A simple example en 3d to 2d

Finally the CS action given by

$$I_{3} = \int_{\mathcal{M}'} \varepsilon_{abc} \left(\hat{R}^{ab} q^{c} + \frac{1}{3} q^{a} q^{b} q^{c} \right).$$
 (17)

æ

3d AdS 2d Conformal

A simple example en 3d to 2d

Finally the CS action given by

$$I_{3} = \int_{\mathcal{M}'} \varepsilon_{abc} \left(\hat{R}^{ab} q^{c} + \frac{1}{3} q^{a} q^{b} q^{c} \right).$$
 (17)

becomes, upon integration along S^1 ,

$$I_3 = 2 \int_{\mathcal{M}} \Phi R \sqrt{g} d^2 x.$$

・ロン ・回と ・ヨン ・ヨン

AdS tractor connection

Propeties $\rho_{\nu\beta}$

For d>3 tensor $ho_{
ueta}$ satisfies the relation

$$R_{\mu\nu\alpha\beta} = W_{\mu\nu\alpha\beta} + g_{\mu\alpha}\rho_{\nu\beta} - g_{\nu\alpha}\rho_{\mu\beta} - g_{\mu\alpha}\rho_{\nu\alpha} + g_{\nu\beta}\rho_{\mu\alpha}, \quad (18)$$

where $W_{\mu\nu\alpha\beta}$ is the Weyl tensor.

AdS tractor connection

Propeties $\rho_{\nu\beta}$

For d>3 tensor $ho_{
ueta}$ satisfies the relation

$$R_{\mu\nu\alpha\beta} = W_{\mu\nu\alpha\beta} + g_{\mu\alpha}\rho_{\nu\beta} - g_{\nu\alpha}\rho_{\mu\beta} - g_{\mu\alpha}\rho_{\nu\alpha} + g_{\nu\beta}\rho_{\mu\alpha}, \quad (18)$$

where $W_{\mu\nu\alpha\beta}$ is the Weyl tensor.

This can be rewritten equivalently in differential forms formalism as

$$R^{ij} = \frac{1}{2} W^{ij}_{\ kl} e^k e^l - 2(e^i \rho^j - e^j \rho^i).$$
(19)

・ロト ・回ト ・ヨト ・ヨト

2n+1 AdS 2n Conformal

Generically

With the identification

$$\hat{\omega}^{ij} = \omega^{ij}$$

$$\hat{\omega}^{i\,2n+1} = e^{i} + \rho^{i}$$

$$\hat{\omega}^{2n+1\,2n+2} = \Phi(x)d\varphi = q^{2n+1}$$

$$\hat{\omega}^{i\,2n+2} = e^{i} - \rho^{i} = q^{i},$$
(20)

with i = 1, ..., 2n.

< ロ > < 回 > < 回 > < 回 > < 回 > <

2n+1 AdS 2n Conformal

Chern Simons

The CS action becomes

$$I_{CS}^{2n+1} = \int \varepsilon_{i_1...i_{2n}} \left((R^{i_1i_2} + 4\rho^{i_1}e^{i_2}) \dots (R^{i_{2n-1}i_{2n}} + 4\rho^{i_{2n-1}}e^{i_{2n}}) \right) \Phi d\varphi$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

2n+1 AdS 2n Conformal

In terms of Weyl

The previous CS action, upon integration along S^1 , becomes

$$I_{CS} = \int \Phi \delta_{i_1 \dots i_{2n}}^{j_1 \dots j_{2n}} \left(W_{j_1 j_2}^{i_1 i_2} \dots W_{j_{2n-1} j_{2n}}^{i_{2n-1} i_{2n}} \right) |e| d^{2n} x.$$
(21)

イロト イポト イヨト イヨト

2n+1 AdS 2n Conformal

To be noticed

- This is simpler than it seems as $W^{ij}_{ik} = 0$.
- This is very similar to the Euler density but where Riemann tensor has been replaced by Weyl tensor.

・ロト ・回ト ・ヨト ・ヨト

5 AdS and 4 Conformal

The usual conformal with a twist

$$I_{CS}^{4} = \int \Phi\left(W^{\mu
ulphaeta}W_{\mu
ulphaeta}
ight)\sqrt{g}d^{4}x$$

which is a generalization of the usual Weyl Gravity mentioned at the beginning.

Comments and Outlooks

Conclusion

Chern Simons theories can describe a simple generalization of Weyl Gravities.

Outlooks

Comments

Danilo Diaz and me Chern-Simons Gravity induces Conformal Gravity QGSC VI

▲□▶ ▲圖▶ ▲理▶ ▲理▶ -

æ

Outlooks

Comments

• The Weyl gravities obtained for d > 4 have non arbitrary coefficient. This is due to hidden AdS symmetries.

Outlooks

Comments

- The Weyl gravities obtained for *d* > 4 have non arbitrary coefficient. This is due to hidden AdS symmetries.
- These are mere the zero modes of the compactification. A lot to do.

Outlooks

Comments

- The Weyl gravities obtained for *d* > 4 have non arbitrary coefficient. This is due to hidden AdS symmetries.
- These are mere the zero modes of the compactification. A lot to do.
- A higher spin version of this is calling on.