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Introduction (0 + 1)-D Theory (3 + 1)-D Theory Conclusion

Why use Effective Equations?

Correlation functions are calculated with an absolutely
generalized initial state, as required for cosmology.

Can answer some questions even while avoiding several
technical difficulties like the exact structure of inner
products on the Hilbert space, or the non-unique nature of
self-adjoint extensions.

Systematic way to realize higher derivative corrections in
the equations of motion for a canonically quantized system.

New perspective on known features of QFT, like
renormalization, which may prove to be useful while
quantizing with a dynamical background.

Being canonical, applicable to certain models of LQG and
LQC.
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(0 + 1)-dimensional Field Theory -
Quantum Mechanics
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The New Variables

[M. Bojowald and A. Skirzewski, 2006]

Define expectation values, with respect to some state, as:

G̃ a,n := 〈(p̂ − 〈p̂〉)a(q̂ − 〈q̂〉)n−a〉Weyl (2.1)

Begin with a Hamiltonian operator: Ĥ = Ĥ(q̂, p̂)
Take its expectation value with respect to the same state to define an
‘effective’ Quantum Hamiltonian

HQ := 〈Ĥ〉 =

〈
Ĥ
(
〈q̂〉+ (q̂ − 〈q̂〉), 〈p̂〉+ (p̂ − 〈q̂〉)

)〉
=
∞∑
n=0

n∑
a=0

1

n!

(
n

a

)
∂nH(q, p)

∂pa∂qn−a
G̃ a,n (2.2)

A point in this infinite dimensional space is completely specified by(
〈q̂〉, 〈p̂〉, G̃ a,n

)
S.Brahma Effective Equations for QFT 5/33
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The Poisson Bracket

Define Possion Bracket as:{
〈F̂ 〉, 〈K̂〉

}
=

1

i~

〈
[F̂ , K̂ ]

〉
(2.3)

Using (2.3), we have: {
〈q̂〉, 〈p̂〉

}
= 1{

〈q̂〉, 〈q̂〉
}

= 0 =
{
〈p̂〉, 〈p̂〉

}{
〈p̂〉, G̃ a,n} = 0 =

{
〈q̂〉, G̃ a,n}

{
G̃ a,n, G̃ b,m

}
=

∞∑
r=0

[
(
~
2 )2rK [a, b,m, n, r ]G̃ a+b−2r−1,m+n−4r−2

]
−b(n − a)G̃ a,n−1G̃ b−1,m−1 + a(m − b)G̃ b,m−1G̃ a−1,n−1

where

K [a, b,m, n, r ] =
∑

0≤f≤2r+1

(−)r+f (f !(2r+1−f )!)−1 (af )
(n−a

2r+1−f

) (b
f

)(
m−b
2r+1−f

)
.

(2.4)

S.Brahma Effective Equations for QFT 6/33
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The Equations of Motion

Let q := 〈q̂〉 and p := 〈p̂〉.
The Hamilton’s equations of motion gives us

q̇ =
{
q,HQ

}
(2.5)

ṗ =
{
p,HQ

}
(2.6)

˙̃G a,n =
{
G̃ a,n,HQ

}
(2.7)

Instead of solving the Schrödinger’s partial differential equation,
we have to solve this infinite set of coupled ordinary differential
equations.

The validity of the solutions to these equations of motion
are subject to certain ‘Uncertainty Relations’, imposed on
the moments.

S.Brahma Effective Equations for QFT 7/33
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Example: A Quantum
Anharmonic Oscillator
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The Effective Quantum Hamiltonian

The Hamiltonian for an oscillator with a perturbation term is

Ĥ =
1

2m
p̂2 +

1

2
mω2q̂2 + Û(q̂)

The corresponding ‘effective’ Quantum Hamiltonian is

HQ =
1

2m
p2 +

1

2
mω2q2 + U(q) +

~ω
2
(G 0,2 + G 2,2)

+
∑
n

1

n!
(~/mω)n/2U(n)(q)G 0,n (2.8)

where G a,n = ~−n/2(mω)n/2−aG̃ a,n are now dimensionless
quantities.

S.Brahma Effective Equations for QFT 9/33
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The equations of motion generated by the effective Quantum
Hamiltonian are:

q̇ = m−1p

ṗ = −mω2q − U ′(q)−
∑
n

1

n!
(m−1ω−1~)n/2U(n+1)(q)G 0,n

Ġ a,n = −aωG a−1,n + (n − a)ωG a+1,n − aU ′′

mω
G a−1,n (2.9)

+

√
~aU ′′′(q)
2(mω)

3
2

G a−1,n−1G 0,2 +
~aU ′′′′(q)
3!(mω)2

G a−1,n−1G 0,3

−a

2

(√
~U ′′′(q)
(mω)

3
2

G a−1,n+1 +
~U ′′′′(q)
3(mω)2

G a−1,n+2

)

+
a(a− 1)(a− 2)

3 · 23

(√
~U ′′′(q)
(mω)

3
2

G a−3,n−3 +
~U ′′′′(q)
(mω)2

G a−3,n−2

)
+ · · ·

S.Brahma Effective Equations for QFT 10/33
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We need to make two approximations:

Moments need to be solved perturbatively in
( ~
L

)1/2
. Here L is some

angular momentum scale provided by the perturbing potential.

Need to make an adiabatic approximation for the moments where we
assume they are slowly varying with time but the evolution of q and p
are free. Derivatives with respect to time in equations of motion are
rescaled as d

dt
→ λ d

dt
. In the end, we shall set λ = 1

Thus, we can expand the moments as

G a,n =
∑
e

∑
i

G a,n
e,i

(
~
L

)e/2

λi (2.10)

At a given order in
√

~
L
, denoted by the index e, the adiabatic

approximation gives
0 =

{
G a,n

e,0 ,HQ

}
(2.11)

to leading order, and
Ġ a,n

e,i =
{
G a,n

e,i+1,HQ

}
(2.12)

for higher orders.

S.Brahma Effective Equations for QFT 11/33
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Ġ a,n

e,i =
{
G a,n

e,i+1,HQ

}
(2.12)

for higher orders.

S.Brahma Effective Equations for QFT 11/33



Introduction (0 + 1)-D Theory (3 + 1)-D Theory Conclusion Procedure Anharmonic Oscillator CW Potential

We need to make two approximations:

Moments need to be solved perturbatively in
( ~
L

)1/2
. Here L is some

angular momentum scale provided by the perturbing potential.

Need to make an adiabatic approximation for the moments where we
assume they are slowly varying with time but the evolution of q and p
are free. Derivatives with respect to time in equations of motion are
rescaled as d

dt
→ λ d

dt
. In the end, we shall set λ = 1

Thus, we can expand the moments as

G a,n =
∑
e

∑
i

G a,n
e,i

(
~
L

)e/2

λi (2.10)

At a given order in
√

~
L
, denoted by the index e, the adiabatic

approximation gives
0 =

{
G a,n

e,0 ,HQ

}
(2.11)

to leading order, and
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O(~0, λ0)
The equation is:

0 = −aωG a−1,n
0,0 + (n − a)ωG a+1,n

0,0 − U ′′(q)a

mω
G a−1,n

0,0 (2.13)

subject to the constraint (coming from the first order equation) :

1

ω

∑
a∈even

(
n/2
a/2

)(
1 +

U ′′(q)

mω2

)(n−a)/2

Ġ a,n
0 = 0 (2.14)

which gives the solution

G a,n
0,0 =

(n − a)!a!

2n((n − a)/2)!(a/2)!

(
1 +

U ′′(q)

mω2

)(2a−n)/4

(2.15)

for even a and n, and G a,n
0,0 = 0 for odd a and/or n.

The numerical constant chosen here is such that our expectation
values are about the ground state of the harmonic oscillator.

S.Brahma Effective Equations for QFT 12/33
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O(~0, λ1)

The solutions are:

G a,n
0,1 = 0 for odd n

G a,n
0,1 = 0 for even a and n (once again to match with the ground state)

G a,n
0,1 = Ca,n

U ′′′(q)q̇

mω3

(
1 +

U ′′(q)

mω2

) 2a−n−6
4

for odd a and even n

where Ca,n is a dimensionless prefactor given by:

Ca−1,n = −
(n − a)!(a − 1)!

2n+2( n−a
2

)!( a
2

)!
(2a − n)− 2−n−2

n−a−2
2∑

b=0

 b∏
c=0

n − (a + 2c)

a + 2c

 (n − a′)!(a′ − 1)!

( n−a′
2

)!( a′
2

)!
(2a′ − n)

for even a, where a′ = a+ 2(b + 1).

S.Brahma Effective Equations for QFT 13/33
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O(~1, λ0)

The solutions are:

G a,n
1,0 = 0 for odd a

G a,n
1,0 = 0 for even a and n (vacuum state considerations)

G a,n
1,0 =

√
LDa,n

U ′′′(q)

m3/2ω5/2

(
1 +

U ′′(q)

mω2

) 2a−n−5
4

for even a and odd n

where

Da,n =



(−1)bΓ
(
n
2

)
12π(1− n

2
)b

(
(n − 1)b!

√
π + (n − 8b − 1)Γ

(
b + 1

2

)
−
∑b−2

c=0 (−1)c (n − 8(b − c − 1)− 1)Γ
(
b − c − 1

2

)
(−b)c+1

)
if n ≥ 5, b ≥ 2

n−1
12π

Γ
(

n
2

)
Γ
(

1
2

)
if n ≥ 3, b = 0

3n−11
12π(n−2)

Γ
(

n
2

)
Γ
(

1
2

)
if n ≥ 3, b = 1

is a dimensionless prefactor that depends on a and n. In the above

expression, b = (n − a− 1)/2 and (x)n = x(x + 1)...(x + n − 1) is the

Pochhammer symbol.
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Equation of motion for q is thus:

q̈ = −ω2q − U ′(q)/m − ~
2m2ω

U ′′′(q)

[
4∑
λ=0

G 0,2
0,λ +

(
~
L

)1/2 4∑
λ=0

G 0,2
1,λ

]
where the relevant moments are

G
0,2
0,0 =

1

2

(
1 +

U′′(q)

mω2

)− 1
2

G
0,2
0,2 =

U′′′(q)q̈ + U′′′′(q)q̇2

16mω4

(
1 +

U′′(q)

mω2

)− 5
2
−

5(U′′′(q)q̇)2

64m2ω6

(
1 +

U′′(q)

mω2

)− 7
2

G
0,2
0,4 = −

U′′′(q)
....
q + 4U′′′′(q)

...
q q̇ + 3U′′′′(q)q̈2 + 6U′′′′′(q)q̇2 q̈ + U′′′′′′(q)q̇4

64mω6

(
1 +

U′′(q)

mω2

)− 7
2

+

[
21(U′′′′(q)q̇2 + U′′′(q)q̈)2

256m2ω8
+

7(U′′′(q)q̇)(U′′′(q)
...
q + 3U′′′′ q̈q̇ + U′′′′′(q)q̇3)

64m2ω8

](
1 +

U′′(q)

mω2

)− 9
2

−
231(U′′′(q)q̈ + U′′′′(q)q̇2)(U′′′ q̇)2

512m3ω10

(
1 +

U′′(q)

mω2

)− 11
2

+
1155(U′′′(q)q̇)4

4096m4ω12

(
1 +

U′′(q)

mω2

)− 13
2
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Equation of motion for q up to ~3/2 and fourth
adiabatic order

We may now rewrite the equation of motion as:

q̈ = −ω2q − U′(q)/m (2.16)

−
~

2m2ω
U′′′(q)

[
f (q, q̇) + f1(q, q̇)q̈ + f2(q)q̈2 + f3(q, q̇)

...
q + f4(q)

....
q
]

+O(~2)

where

f (q, q̇) =
1

2

(
1 +

U′′(q)

mω2

)−1/2

+
U′′′′(q)q̇2

16mω4

(
1 +

U′′(q)

mω2

)−5/2

−
5(U′′′(q))2 q̇2

64m2ω6

(
1 +

U′′(q)

mω2

)−7/2

−
U′′′′′′(q)q̇4

64mω6

(
1 +

U′′(q)

mω2

)−7/2

+
21(U′′′′(q))2 q̇4

256m2ω8

(
1 +

U′′(q)

mω2

)−9/2

+
7U′′′′′(q)U′′′(q)q̇4

64m2ω8

(
1 +

U′′(q)

mω2

)−9/2

−
231U′′′′(q)(U′′′(q))2 q̇4

512m3ω10

(
1 +

U′′(q)

mω2

)−11/2

+
1155(U′′′(q))4 q̇4

4096m4ω12

(
1 +

U′′(q)

mω2

)−13/2

(2.17)
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f1(q, q̇) =
U′′′(q)

16mω4

(
1 +

U′′(q)

mω2

)−5/2

−
3U′′′′′(q)q̇2

32mω6

(
1 +

U′′(q)

mω2

)−7/2

+
63U′′′′(q)U′′′(q)q̇2

128m2ω8

(
1 +

U′′(q)

mω2

)−9/2

−
231(U′′′(q))3 q̇2

512m3ω10

(
1 +

U′′(q)

mω2

)−11/2

(2.18)

f2(q) = −
3U′′′′(q)

64mω6

(
1 +

U′′(q)

mω2

)−7/2

+
21(U′′′(q))2

256m2ω8

(
1 +

U′′(q)

mω2

)−9/2

(2.19)

f3(q, q̇) = −
U′′′′(q)q̇

16mω6

(
1 +

U′′(q)

mω2

)−7/2

+
7(U′′′(q))2 q̇

64m2ω8

(
1 +

U′′(q)

mω2

)−9/2

(2.20)

f4(q) = −
U′′′(q)

64mω6

(
1 +

U′′(q)

mω2

)−7/2

(2.21)
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Coleman Weinberg Potential

S.Brahma Effective Equations for QFT 18/33



Introduction (0 + 1)-D Theory (3 + 1)-D Theory Conclusion Procedure Anharmonic Oscillator CW Potential

CW Potential for a (0 + 1)-dimensional system

[S. Coleman and E. Weinberg, 1973]

For a given Lagrangian L(q, q̇, t) = 1
2
mq̇2 − V (q), with a vev defined by

〈0| q |0〉 := q0, the Effective Coleman-Weinberg potential is given by

Veff(q) = V (q0) +
~

2
√
m

∫
dk

2π
log

(
k2 + V ′′(q0)

k2

)
+ O(~2) (2.22)

This integral is obviously convergent and it gives:

Veff(q) = V (q0) +
~

2
√
m

√
V ′′(q0) + O(~2) (2.23)
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CW Potential for an anharmonic oscillator

Recall

HQ =
1

2m
p2 +

1

2
mω2q2 + U(q) +

~ω
2

(G 0,2 + G 2,2)

+
∑
n

1

n!
(~/mω)n/2U(n)(q)G 0,n

Plugging in the value for the moments in HQ , the Coleman-Weinberg
effective potential up to two loop order turns out to be

Veff(q) =
1

2
mω2q2

0 + U(q0) +
~ω
2

(
1 +

U ′′(q0)

mω2

)1/2

+
~2

8m2ω2

(
1 +

U ′′(q0)

mω2

)−1

×[
U ′′′′(q0)

4
+

[U ′′′(q0)]2

9mω2

(
1 +

U ′′(q0)

mω2

)−1
]

+ O(~3) (2.24)
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CW Potential using moment expansion

For a general Hamiltonian of the form H(p, q, t) = p2

2m
+ V (q), using a

moment expansion we get the effective Coleman-Weinberg potential up to
two loop order is:

Veff(q) = V (q0) +
~
2

√
V ′′(q0)

m
+

~2

8mV ′′(q0)

[
V ′′′′(q0)

4
+

[V ′′′(q0)]2

9V ′′(q0)

]
+ O(~3)

We reproduce the one-loop order correction and also have the two-loop

order correction to the Coleman-Weinberg potential with a canonical

kinetic term.
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Effective Equations for
(3 + 1)-dimensional field theory
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The Setup

Use the ‘in-in’ formalism to get equal-time correlation functions

The ‘phi-fourth’ Hamiltonian

Ĥ =
∫

d3x

[
π̂2(x)

2
+ m2

2
φ̂2(x) + 1

2

(
∇φ̂(x)

)2

+ λφ̂4(x)

]
Define

G a,b(x1, . . . , xa; y1, . . . , yb, t) :=〈(
π̂(x1, t)− 〈π̂(x1, t)〉

)
. . .
(
π̂(xa, t)− 〈π̂(xa, t)〉

)
×

(
φ̂(y1, t)− 〈φ̂(y1, t)〉

)
. . .
(
φ̂(yb, t)− 〈φ̂(yb, t)〉

)〉
Weyl

(3.1)

∇xi∇yj

[
G a,b(x1, . . . , xa; y1, . . . , yb, t)

]
:=〈(

π̂(x1, t)− 〈π̂(x1, t)〉
)
. . .∇xi

(
π̂(xi , t)− 〈π̂(xi , t)〉

)
. . .

×
(
φ̂(y1, t)− 〈φ̂(y1, t)〉

)
. . .∇yj

(
φ̂(yj , t)− 〈φ̂(yj , t)〉

)
. . .

〉
Weyl

(3.2)
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With 〈π̂(x)〉 := π(x) and 〈φ̂(x)〉 := φ(x),

HQ =
1

2

∫
d3x

[
π2(x) + G 2,0(x , x) + m2

(
φ2(x) + G 0,2(x , x)

)
+∇2

x

(
G 0,2(x , x)

)
+
(
∇φ(x)

)2
+ 2λ

{
φ4(x)

+6φ2(x)G 0,2(x , x) + 4φ(x)G 0,3(x , x , x) + G 0,4(x , x , x , x)
}]

(3.3)

The (equal time) Poisson Algebra is defined as:

{
φ(x), π(y)

}
:=

1

i~

〈[
φ̂(x), π̂(x)

]〉
= δ3(x − y) (3.4)

The equations of motion are derived as:

d

dt
[O] := {HQ ,O} (3.5)
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EOM
(
〈φ̂(y)〉 and 〈π̂(y)〉

)

φ̇(y , t) = −π(y , t)

π̇(y , t) = (m2 −∇2
y )φ(y , t)

+ 4λφ3(y , t) + 12λφ(y , t)G 0,2(y , y , t)

+ 4λG 0,3(y , y , y , t) (3.6)
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EOM (Second Order Moments)

Ġ 0,2(y , z , t) = −[G 1,1(y , z , t) + G 1,1(z , y , t)]

Ġ 1,1(y , z , t) = −G 2,0(y , z , t) + [m2 −∇2
y ]G 0,2(y , z , t)+ 4λG 0,4(y , y , y , z , t)

Ġ 2,0(y , z , t) = [m2 −∇2
z ]G 1,1(y , z , t) + [m2 −∇2

y ]G 1,1(z , y , t)

+ 4λ[G 1,3(y , z , z , z , t) + G 1,3(z , y , y , y , t)] (3.7)
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EOM (Higher Order Moments)

The general scheme for equations of higher order moments

Ġ 0,n(y1, . . . , yn, t) ∼ G 1,n−1(y1, . . . , yn, t)

Ġ 1,n−1(y1, . . . , yn, t) ∼ G 2,n−2(y1, . . . , yn, t) + G 0,n(y1, . . . , yn, t)

+λG 0,n+2(y1, . . . , yn, t)

...

Ġ n−1,1(y1, . . . , yn, t) ∼ G n−2,2(y1, . . . , yn, t) + G n,0(y1, . . . , yn, t)

+λG n−2,4(y1, . . . , yn, t)

Ġ n,0(y1, . . . , yn, t) ∼ G n−1,1(y1, . . . , yn, t) +λG n−1,3(y1, . . . , yn, t) (3.8)
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Solving these equations

Expand the moments in powers of the coupling constant,
G a,b =

∑
e λ̄G

a,b
e

Solve for the moments in lower orders in λ̄, starting with the free field
solutions.

Plug the (solved) lower order λ̄ moments, in the equations containing
higher order in λ̄.

In this way, perturbatively solve for the moments, which shall give us
the required correlation functions.
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Renormalizability

When is such a moment expansion valid?

The moments are expanded in the dimensionless perturbation
parameter λ̄ = λ/L, where L is some parameter.

For φ4 theory, L = 1 and for φ3 theory, L ∝ m/~.

For any other φn theory, with n > 4, then L ∝ ~(n−4), thus rendering
the moment expansion ill-defined.
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Cancellation of the tadpole term

For φ4 theory,

φ̈(y , t) = −(m2 −∇2
y )φ(y , t)

+ 4λφ3(y , t) + 12λφ(y , t)G 0,2(y , y , t)

+ 4λG 0,3(y , y , y , t) (3.9)

In this case, φ(y , t) = 0 is easily a solution up to any order since all odd
moments (including G 0,3(y1, y2, y3, t)) are zero up to any order.
For φ3 theory,

φ̈(y , t) = −(m2 −∇2
y )φ(y , t)

+ 3λφ2(y , t) + 3λG 0,2(y , y , t) (3.10)

In order for φ(y , t) = 0 to be a solution of this equation, we require an

additional term (proportional to φ) in the Hamiltonian (or equivalently,

Lagrangian) which will cancel off the G 0,2(y , y , t) up to whichever order we

want.
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The Propagator

The free propagator is calculated from the set of equations:

Ġ 0,2(y , z , t) = −[G 1,1(y , z , t) + G 1,1(z , y , t)]

Ġ 1,1(y , z , t) = −G 2,0(y , z , t) + [m2 −∇2
y ]G 0,2(y , z , t)

Ġ 2,0(y , z , t) = [m2 −∇2
z ]G 1,1(y , z , t) + [m2 −∇2

y ]G 1,1(z , y , t) (3.11)

With the condition φ(y , t) = 0, the propagator is G 0,2(y , z , t). The most
general solution turns out to be:

G 0,2(y , z , t) =

∫
d3ky
(2π)3

∫
d3kz
(2π)3

[
f (ky , kz)e i(

~ky .~y+~kz .~z−ωt) + f ∗(ky , kz)e−i(~ky .~y+~kz .~z−ωt)
]

(3.12)

where ω = ωy − ωz , with ωi =
√

m2 + k2
i .

The two arbitrary functions f (ky , kz) & f ∗(ky , kz) are fixed by the initial

value of the (second-order) moments, thus capturing the arbitrariness of the

initial state.
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The Propagator
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Ġ 1,1(y , z , t) = −G 2,0(y , z , t) + [m2 −∇2
y ]G 0,2(y , z , t)

Ġ 2,0(y , z , t) = [m2 −∇2
z ]G 1,1(y , z , t) + [m2 −∇2

y ]G 1,1(z , y , t) (3.11)
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For a particular initial value of the moments, given by

G 0,2(y , z , 0) =
1

2π3

∫
d3k

2
√
k2 +m2

e i
~k.(~y−~z) and

Ġ 0,2(y , z , 0) = 0 (3.13)

we reproduce the usual result from QFT, that is,

G 0,2(y , z , t) =

∫
d3k

2(2π3)
√
k2 +m2

e i
~k.(~y−~z) (3.14)

The unique factorization of ω = ωy − ωz is why the two results
(rightly) match up.

The propagator has been calculated to agree up to one loop
order with QFT.
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Important lessons and looking ahead

So, why Effective Equations?

Using these canonical techniques for effective action, we recover the
usual QFT results and also extend them, for instance, by including
more general states.

There is well defined systematic way to derive the higher derivative
corrections while avoiding some technical difficulties.

Where are these useful?

Currently being applied to certain models of isotropic, homogeneous
cosmology and also to a de Sitter background.

Current work is underway to include (perturbative) quantum
corrections in the Scalar and Diffeomorphism constraints of spherical
LQG, and see what effects they have on the hyperspace deformation
algebra. In the high curvature regime, these might be of the same
order as that of other non-perturbative corrections (like holonomy
corrections), and hence they should be included for a full analysis.
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If I have time... Analysis

Hypersurface Deformation Algebra

Generically,

{D[N i ],D[MJ ]} = D[LM jN
i ] (5.1)

{H[N],D[N i ]} = −H[LN iN] (5.2)

{H[N],H[M]} = D[g ij(N∂jM −M∂jN)] (5.3)

For spherically symmetric LQG, the specific form of the constraints (after
solving for the Gauss constant) is given by

H[N] =
1

2G

∫
dx N|E x |−1/2

[
K 2
φE

φ + 2KφKxE
x + (1− Γ2

φ)Eφ + 2Γ′φE
x
]

D[Nx ] =
1

2G

∫
dx Nx

[
2EφK ′φ − KxE

′x
]

where Γφ = −E ′x/(2Eφ).
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If I have time... Analysis

[M. Bojowald and J. Reyes, 2009; M. Bojowald and G. Pailey, 2012] Work has been
done to see what kind of correction functions are required to include
Holonomy-corrections and Inverse-Triad corrections in these
constraints and how does that affect the Hypersurface Deformation
Algebra.

[M. Bojowald and S.B., forthcoming] Recent results show we do not need to
modify the Hypersurface Deformation Algebra if we include only the
higher derivative terms, given by these moment expansions (as is
expected from previous results on higher curvature gravity).

Aim is to unify non-perturbative corrections from LQG with these
perturbative corrections and look at resulting effects on the
Hypersurface Deformation Algebra, at least in the effective framework.
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If I have time... Analysis

Isotropic and Homogeneous Cosmology

Starting with the Einstein-Hilbert action (with the FLRW metric),
including a cosmological constant and matter, we can write the Friedmann
Equation as (setting 8πG

3
= 1):

1

4

p2
a

a4
+

k

a2
− Λ

3
= ρ (5.4)

where a is the scale factor, Λ is the cosmological constant, ρ is the energy
density, pa = − 2aȧ

N
is the momentum canonically conjugate to a and N is

the usual lapse function.
For a closed universe (k = 1) and the radiation-dominated era ρ = pt

a4 , we
have a Hamiltonian which generates evolution with respect to some time
co-ordinate t, related to the proper time τ as t =

∫ τ
0
a(τ
′
)−1dτ

′
, given by:

H = pt =
1

4
p2
a + a2 − Λ

3
a4 (5.5)

So we have an Anharmonic Oscillator Hamiltonian with m = 2, ω = 1 and
U(a) = − Λ

3
a4.
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If I have time... Analysis

Results

The quantum corrections to the scale factor prevents it from
going back to zero where the classical solution did!!! Although
the quantum corrections are small usually, they play a significant
role when the classical solution goes to zero. This result
indicates that the scale factor may be saved (or, at least,
delayed) from going back to the singular point in the presence of
quantum corrections.

The acceleration from the classical solution is negative for the
first half cycle (as expected during the radiation-dominated era).
However the acceleration for the overall scale factor (including
quantum corrections) turns positive at some points in this
period. This also indicates that this positive acceleration, coming
from the quantum corrections, may drive the scale factor away
from zero!!
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