Resolutions of Singularities in F-Theory

Daniel Vieira Lopes CIFMC - Universidade de Brasília

Quantum Gravity In The Southern Cone 11/9/2013

Motivation

- String Theory: Candidate for Unification
- D-Branes (90's)
 - Phenomenologically attractive
 - Non-Perturbative
- F-Theory: Useful tool

Centro Internacional de Física da Matéria Condensada - UnB

Albrecht Klemm

Outline

- 1. Models with D-Branes
 - i. Review
 - ii. Strong Coupling of Type IIB
- 2. F-Theory
 - i. What is it? Why do we need it?
 - ii. General Construction
- 3. An SU(5) Model with an E8 Yukawa Point

Models with D-Branes

- Open strings can end in higher dim. objects: **D-Branes**
- Stack of D-Branes → strings in adjoint rep. (gauge fields)
- Intersecting D-Branes → bi-fundamental rep. (matter)
- Triple Intersection → Yukawa couplings

The Low Energy Limit

• The scale of the massive excitations is close to the Planck scale.

- Pheno: consider only massless modes

- 10D Superstring \rightarrow 10D Supergravity
- Type IIB Bosonic content (closed strings):
 NS-NS g_{μν}, φ, B₂ and R-R C_p, p even.

D-Branes

- Dp-Branes are sources for the Ramond-Ramond C_n fields:
 - Magnetic: C_{7-p}
 - Electric: C_{p+1}
- Gauss Law:

 $-\Delta \Phi_{\rm e} = \oint * dC_{p+1}$ or $\Delta \Phi_m = \oint dC_{7-p}$

Symmetry of the Type IIB action

• Low Energy Action of Type IIB:

$$\begin{split} S &= \int R * 1 - \frac{1}{(\operatorname{Im} \tau)^2} d\tau \wedge * d\bar{\tau} - \frac{1}{Im \tau} G_3 \wedge * \bar{G}_3 - \\ &- \frac{1}{4} \tilde{F}_5 \wedge * \tilde{F}_5 - \frac{1}{2} C_4 \wedge H_3 \wedge F_3 , \end{split}$$

$$\begin{split} & g_s \\ & \\ Where \ \tau &= C_0 + i e^{-\phi}, \ G_3 &= F_3 - \tau H_3, \ H_3 &= dB_2 \\ & \\ & \\ & \tilde{F}_5 &= F_5 - \frac{1}{2} C_2 \wedge H_3 + \frac{1}{2} B_2 \wedge F_3 \ , \ F_{p+1} &= dC_p \end{split}$$

• Invariant under the $SL(2, \mathbb{R})$ transformations:

$$\tau' = \frac{a\tau + b}{c\tau + d}, \quad \begin{pmatrix} H'_3 \\ F'_3 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} H_3 \\ F_3 \end{pmatrix}, \quad \tilde{F}_5 \text{ invariant.}$$

Strong-Weak Duality

- String (Fund.-String) is magnetically charged under B_2 ($H_3 = dB_2$)
- D1-Brane (D-String) electrically charged under $C_2 (F_3 = dC_2)$

•
$$\binom{H'_3}{F'_3} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \binom{H_3}{F_3}$$
 Mag-El. Duality (F \leftrightarrow D)

More concretely, starting with Fund.-string,

$$b = -c = 1, a = d = 0 \Rightarrow H_3 \rightarrow -F_3 \Rightarrow \tau = -\frac{1}{\tau}$$

Fund $\rightarrow D$ $g_s \rightarrow 1/g_s$ 10/25

D7-Brane backreaction

- D7-brane mag. charged under C_0
- Gauss law: $\oint dC_0 = 1 \Rightarrow \tau = \frac{1}{2\pi i} \ln z + \tau_0$

Transverse space directions (9-7)

- \Rightarrow Monodromy $\tau \rightarrow \tau + 1 \leftarrow (C_0 \rightarrow C_0 + 1)$
- In general, one can define a (p,q)-7-brane (with monodromy given by the SL(2, Z)) on which a (p,q) string attaches.
 - A particular combination of (p,q)-7-branes corresponds to an Orientifold plane.

- F-Theory is a geometrical way of encoding this intrinsically non-perturbative aspect of IIB hep-th/9602022
- Explore $SL(2,\mathbb{Z})$ and turn τ into the complex structure of an auxiliary torus (elliptic fibration)
- $\mathcal{N} = 1 \text{ SUSY in 4D} \Rightarrow \text{Calabi-Yau 4-fold}$
- Singularity of torus \Rightarrow Location of the 7-brane
- (Can be constructed from M-Theory on an elliptically fibered Calabi-Yau 4-fold)

- Elliptic curve embedded in \mathbb{P}^2 $y^2 = x^3 + fxz^4 + gz^6$
- Fiber it over base $\rightarrow f$, g vary on the base

• Elliptic curve embedded in \mathbb{P}^2

$$y^2 = x^3 + f(u_i)xz^4 + g(u_i)z^6$$

- Fiber it over base $\rightarrow f(u_i), g(u_i)$
- Singular when the discriminant $\Delta = 27g^2 + 4f^3 = 0$
- Stack of branes → Stronger singularities
- Kodaira Classification

Туре	$\operatorname{ord}(f)$	$\operatorname{ord}(g)$	$\operatorname{ord}(\Delta)$	j(au)	Group	Monodromy
I_0	≥ 0	≥ 0	0	$\mathbb R$		$1_{2 imes 2}$
I_1	0	0	1	∞	U(1)	$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$
I_n	0	0	n > 1	∞	A_{n-1}	$\begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$
II	≥ 1	1	2	0		$\begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}$
III	1	≥ 2	3	1	A_1	$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$
IV	≥ 2	2	4	0	A_2	$\begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$
I_n^*	$\frac{2}{\geq 2}$	≥ 3	n+6	∞	D_{n+4}	$\begin{pmatrix} -1 & -b \\ 0 & -1 \end{pmatrix}$
IV^*	≥ 3	4	8	0	E_6	$\begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}$
III^*	3	≥ 5	9	1	E_7	$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$
II^*	≥ 4	5	10	0	E_8	$\begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$

- No fundamental description
- Bring in M-Theory compactified to 3D

F-Theory Models

- The Kodaira classification holds only for codimension 1
- Some early works studied collisions in codimension 2
- Esole-Yau: explicit resolution up to codimension 3

Marsano, Schafer-Nameki 1108.1794 [hep-th]

Marsano, Schafer-Nameki 1108.1794 [hep-th]

Top Yukawa coupling

An *E*₈ Yukawa point?

Why? Proposed to explain flavor hierarchy Heckman, Tavanfar, Vafa 0906.0581 [hep-th]

The resolution could be (and is) more complicated and bring more insights into the phenomenological and mathematical aspects of F-Theory

Our Approach

- We construct by hand (specifying particular relations of the elliptic fibration) such that we get the desired singularity
- We resolve it
 - (there are many ways to do it, but there are common features in all of them)

Some Results

• Matter curves of higher degree singularities lead to combined representations:

Some More Results

• The resolution often requires the introduction of higher dimensional spaces on the fiber

- This higher dim. object was antecipated in some previous works by other authors Candelas 0009228 [hep-th]
- M5-Branes → Tensionless strings?

Conclusions

- D-Branes provide a nice framework to construct phenomenology;
- However, not completely satisfying;
- Strong coupled regime;
 - Apart from the problem of knowing just small part of moduli space;
- F-Theory: interesting framework to construct GUTs
- Explicit resolution of higher codim not trivial: higher dimensional fiber

"Decoupling" from Gravity

• The "Standard Model" will live in subsets of the compactified space, of volume much smaller than the full Calabi-Yau

An *E*₈ Yukawa point?

Why? Proposed to explain flavor hierarchy Heckman, Tavanfar, Vafa 0906.0581 [hep-th]

"Tate Model" for SU(5) $\begin{array}{l} -y^2 + x^3 + \beta_0 w^5 + \beta_2 x w^3 + \beta_3 y w^2 + \beta_4 x^2 w + \beta_5 x y = 0 \\ (y^2 = x^3 + f x z^4 + g z^6) \end{array}$ $w \to 0 \text{ corresponds to the SU(5) brane.}$ For example, "E₆" obtained from $w \to 0$, $\beta_5 \to 0$, $\beta_4 \to 0$. The resolution of

$$-y^2 + x^3 + \beta_0 w^5 = 0$$

leads to affine E_8 . Naively we expect $\{w, \beta_2, \beta_3, \beta_4, \beta_5\} \rightarrow 0$. But should be codimension 3.

An *E*₈ Yukawa point?

- Impose relations among the β_i s, so $\{w, \beta_2, \beta_3, \beta_4, \beta_5\} \rightarrow 0$ with just three restrictions, $\{w, p, q\} \rightarrow 0$.
- Import results from spectral cover construction of Heterotic String, via the Heterotic / F-Theory duality.
- The β_i s are related to higgsings of the original heterotic E_8 that is deformed to the SU(5).

$$\begin{split} \beta_2 &= \beta_0 (3p^2 + pq + 3q^2), \\ \beta_3 &= \beta_0 (p+q)(2p^2 + 3pq + 2q^2), \\ \beta_4 &= 2\beta_0 pq(p^2 + 4pq + q^2), \\ \beta_5 &= 4\beta_0 p^2 q^2 (p+q) \end{split}$$

30

Resolution of the E_8 model

- In codim >1 small resolutions are not enough
- Blow-up divisors on top of the curves!
- Higher dimensional fiber!

