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Gell-Mann’s Totalitarian Principle: 
“Everything not forbidden is compulsory”
So why are expected UV  divergences not occurring on 
schedule in maximal supergravity? 
Are miracles happening?

(Quotation actually stolen from T.H. White, The Sword in the Stone)

“Miracles are not contrary to nature, but only 
contrary to what we know about nature”

Saint Augustine:



A very useful approach to the analysis of UV divergence 
problems in supersymmetric theories has been the combination 
of superspace techniques with the background field method for 
calculating Feynman diagrams.

When one has an “off-shell” formalism for some degree of 
extended supersymmetry, the Feynman rules can be 
organised in such a way that background fields on external 
lines appear only through certain “geometrical” entities, 
e.g. superspace vielbeins and gauge connections.
The introduction of prepotentials for the quantum fields 
which correspond to the internal lines of superspace 
Feynman diagrams allows all terms used in the calculation 
of 1PI diagrams at loop orders L>1 to be written as full-
superspace integrals.
Counterterms for L>1 must be writeable as full-superspace 
integrals of expressions involving the background fields.
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The degree of off-shell supersymmetry is the maximal  
supersymmetry for which the algebra can close without use of the 
equations of motion.

Knowing the extent of this off-shell supersymmetry is tricky, and 
may involve formulations (e.g. harmonic superspace) with infinite 
numbers of auxiliary fields.

For maximal N=4 Super Yang-Mills and maximal N=8 
supergravity, the fraction of off-shell realizable supersymmetry is 
known to be at least half the full supersymmetry of the theory, but 
the maximum realizable fraction in harmonic superspace is not 
currently known. Assuming that the maximal fraction is 1/2 led 
originally to the expectation that the first allowable counterterms 
would have “1/2 BPS” structure.
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The 3-loop R⁴ maximal supergravity candidate counterterm 
has a structure under linearized supersymmetry that is very 
similar to that of an F⁴ N=4 super Yang-Mills invariant. Both 
of these are 1/2 BPS invariants, involving integration over just 
half the corresponding full superspaces:

Versions of these supergravity and SYM counterterms indeed 
do occur at one loop in D=8. This implies that, at least in that 
spacetime dimension, the full nonlinear structure of such 
counterterms exists and is consistent with all symmetries.
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The calculational front has now made substantial progress since 
the late 1990s.

This has led to unanticipated and surprising cancellations at the 
3- and 4-loop orders, yielding new lowest possible orders for 
super Yang-Mills and supergravity divergence onsets.

                                                      plus 46 more topologies

Unitarity-based calculations

Max. SYM first divergences, 
current lowest possible orders 
(for integral spacetime 
dimensions).

Max. supergravity first 
divergences, current lowest 
possible orders (for integral 
spacetime dimensions).

Bern, Carrasco, Dixon, 
Johansson, Roiban et al. 
2007 ... 2011

6

Blue: known divergences

Dimension D 11 10 8 7 6 5 4
Loop order L 2 2 1 2 3 4 5
Gen. form �12R4 �10R4 R4 �4R4 �6R4 �6R4 �4R4

Dimension D 10 8 7 6 5 4
Loop order L 1 1 2 3 6? �
BPS degree 1

4
1
2

1
4

1
4

1
4

1
4

Gen. form �2F 4 F 4 �2F 4 �2F 4 �2F 4 finite

Dimension D 11 10 8 7 6 5 4
Loop order L 2 2 1 2 3 6? 5?

BPS degree 0 0 1
2

1
4

1
8 0 1

4

Gen. form �12R4 �10R4 R4 �4R4 �6R4 �12R4 �4R4

2

Dimension D 11 10 8 7 6 5 4

Loop order L 2 2 1 2 3 4 5

Gen. form @12R4 @10R4 R4 @4R4 @6R4 @6R4 @4R4

Dimension D 10 8 7 6 5 4

Loop order L 1 1 2 3 6 1
BPS degree

1
4

1
2

1
4

1
4

1
4

1
4

Gen. form @2F 4 F 4 @2F 4 @2F 4 @2F 4
finite

Dimension D 11 10 8 7 6 5 4

Loop order L 2 2 1 2 3 6? 5?

BPS degree 0 0

1
2

1
4

1
8 0

1
4

Gen. form @12R4 @10R4 R4 @4R4 @6R4 @12R4 @4R4

2



The construction of supersymmetric invariants is isomorphic to 
the construction of cohomologically nontrivial closed forms in 
superspace:                          is invariant (where     is a pull-back to 
a section of the projection map down to the purely bosonic “body” 
subspace M0) if       is a closed form in superspace, and it is 
nonvanishing only if       is nontrivial.
Using the BRST formalism, one can handle all gauge symmetries 
and space-time diffeomorphisms by the nilpotent BRST operator 
s. The invariance condition for        is                                  ,   
where      is the usual bosonic exterior derivative. Since              
and s anticommutes with     , one obtains from Poincaré’s 
lemma                                       , etc.                                 

Algebraic Renormalization and Ectoplasm
Dixon; Howe, Lindstrom & White; Piguet & Sorella; Hennaux; Stora;
Baulieu & Bossard; Voronov 1992; Gates, Grisaru, Knut-Whelau, & Siegel 1998
Berkovits and Howe 2008; Bossard, Howe & K.S.S. 0901.4661, 0908.3883, 1009.0743
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For example, the cocycle structure of the SYM Lagrangian turns 
out to match that of a full-superspace integral of a gauge-
invariant integrand, showing that the latter are fully acceptable 
as counterterms.

Examples of operators that are ruled out by the ectoplasm/
algebraic renormalization analysis include half-BPS 
counterterms such as the               or                    SYM 
counterterms. In  D dimensions, the generator component of 
such a 1/2 BPS cocycle is an (0, D) form of dimension 8-D/2. 
Since the structure of this cocycle is different (i.e. it is longer) 
from than that of the SYM Lagrangian, the corresponding 1/2 
BPS counterterm is illegal.

Similar considerations allow one to analyse the      counterterm 
in N=8 supergravity, although the density character of 
supergravity invariants complicates analysis of their non-leading 
structure.

(tr(F 2))2tr(F 4)
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Maximal supergravity has a series of duality symmetries 
which extend the automatic GL(11-D) symmetry obtained 
upon dimensional reduction down from D=11. The classic 
example is E7 in the N=8, D=4 theory, with the 70=133-63 
scalars taking their values in an E7/SU(8) coset target space.

The N=8, D=4 theory can be formulated in a manifestly  E7  

covariant (but non-manifestly Lorentz covariant) formalism. 
Anomalies for SU(8), and hence E7, cancel.

Combining the requirement of continuous duality invariance 
with the superspace cohomology requirements gives further 
powerful restrictions on counterterms.

Duality invariance constraints

Marcus 1985

Bossard, Hillman & Nicolai 2010
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Other approach to duality analysis from string amplitudes: 
Broedel & Dixon 2010
Elvang & Kiermeier 2010; 
Beisert, Elvang, Freedman, Kiermaier, Morales & Stieberger 2010



In a curved superspace, an invariant is constructed from the top 
(pure “body”) component in a coordinate basis:   

Referring this to a preferred “flat” basis and identifying        
components with vielbeins and gravitinos, one has, e.g. in D=4

Thus the “soul” components of the cocycle also contribute to 
the local supersymmetric covariantization.

Since the gravitinos do not transform under the D=4 E7 duality, 
the LABCD form components have to be separately duality 
invariant. 10

rigid E7(7), the measure will be E7(7) invariant whereas the integrand will necessarily transform
non-trivially with respect to E7(7). It would then follow that the ⌅6R4 invariant is not E7(7)

invariant, in agreement with the conclusion of the preceding section.

Note that this is not in contradiction with the existence of BPS duality invariants in higher
dimensions (such as R4 in D = 8, ⌅4R4 in D = 7 and ⌅6R4 in D = 6), since the BPS invariants
are not unique in dimensions D > 5.

The non-existence of harmonic measures for the 1/2 and the 1/4 BPS invariants is not in
contradiction with the existence of these non-linear invariants in the full non-linear theory.
Indeed as we will discuss in the next section, not all supersymmetry invariants can be written
as harmonic superspace integrals, and some are only described in terms of closed super-D-form.

Non-linear consequences of linear invariants

A more general approach to the construction of superinvariants is a�orded by the ectoplasm
formalism [28, 29, 30]. In D-dimensional spacetime, consider a closed super-D-form, LD, in the
corresponding superspace. The integral of the purely bosonic part of this form over spacetime
is then guaranteed to be supersymmetric by virtue of the closure property. Moreover, if LD is
exact it will clearly give a total derivative so that we are really interested in the Dth superspace
cohomology group. As we have seen in the preceding section, one cannot define a harmonic
measure for every invariant, and in particular, not for the 1/2 and 1/4 BPS invariants in N = 8
supergravity. However, according to the algebraic Poincaré Lemma, any supersymmetry invari-
ant necessarily defines a closed super-D-form.

In order to analyse superspace cohomology, it is convenient to split forms into their even and odd
parts. Thus a (p, q)-form is a form with p even and q odd indices, totally antisymmetric on the
former and totally symmetric on the latter. The exterior derivative can likewise be decomposed
into parts with di�erent bi-degrees,

d = d0 + d1 + t0 + t1 , (13)

where the bi-degrees are (1, 0), (0, 1), (�1, 2) and (2,�1) respectively. So d0 and d1 are basically
even and odd derivatives, while t0 and t1 are algebraic. The former acts by contracting an even
index with the vector index on the dimension-zero torsion and then by symmetrising over all of
the odd indices. The equation d2 = 0 also splits into various parts of which the most relevant
components are

t20 = 0; d1t0 + t0d1 = 0; d21 + t0d0 + d0t0 = 0 . (14)

The first of these equations allows us to define t0-cohomology groups, Hp,q
t [31], and the other two

allow us to introduce the spinorial derivative ds which maps Hp,q
t to Hp,q+1

t by ds[⇥p,q] = [d1⇥p,q],
where the brackets denote Ht cohomology classes, and which also squares to zero [32, 33].
The point of this is that one can often generate closed super-D-forms from elements of these
cohomology groups.

In the context of curved superspace it is important to note that the invariant is constructed
from the top component in a coordinate basis,

I =
1

D!

�
dDx ⇤mD...m1 EmD

AD · · ·Em1
A1 LA1...AD(x, � = 0) . (15)
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One transforms to a preferred basis by means of the supervielbein EM
A. At ⇥ = 0 we can

identify Ea
m with the spacetime vielbein ema and Em
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By definition, each component Labcd, Labc�, Lab�⇥ , La�⇥ ⇤ , L�⇥ ⇤⌅ is supercovariant at ⇥ = 0.
This is a useful formula because one can directly read o� the invariant in components in this
basis.

In N = 8 supergravity, all the non-trivial t0-cohomology classes lie in Ht
0,4. Invariants are

therefore completely determined by their (0, 4) components L�⇥ ⇤⌅, and all non-trivial L0,4 sat-
isfying [d1L0,4] = 0 in t0-cohomology define non-trivial invariants. Ht

0,4 is the set of functions
of fields in the symmetric tensor product of four 2 � 8 ⇥ 2 � 8 of SL(2,C) � SU(8) without
SU(8) contractions (since such functions would then be t0-exact). Because of the reducibility of
the representation, it will be convenient to decompose L�⇥ ⇤⌅ into components of degree (0, p, q)
(p+ q = 4) with p 2� 8 and q 2� 8 symmetrised indices.

We will classify the elements of Ht
0,4 into three generations.2 The first generation corresponds

to elements that lie in the antisymmetric product of four 2 � 8 ⇥ 2 � 8 of SL(2,C) � SU(8),
and can therefore be directly related to the top component L4,0 through the action of the
superderivatives. We will write M0,p,q for the corresponding components of a given L0,4. They
lie in the following irreducible representations of SL(2,C)� SU(8):

M0,4,0 : [0, 0|0200000]
M0,3,1 : [1, 1|1100001]
M0,2,2 : [2, 0|2000010]

M̄0,0,4 : [0, 0|0000020]
M̄0,1,3 : [1, 1|1000011]
M̄0,2,2 : [0, 2|0100002] .

(17)

In order to understand the constraints that these functions must satisfy in order for L0,4 to
satisfy the descent equation

[d1L0,4] = 0 , (18)

it is useful to look at the possible representations of d1L0,4 which define Ht
0,5 cohomology classes

in general, without assuming any à priori constraint. We will split d1 = d1,0 + d0,1 according to
the irreducible representations of SL(2,C)� SU(8). One computes that

[d1,0M0,4,0] : [1, 0|1200000]
[d0,1M0,4,0] : [0, 1|0200001]
[d1,0M0,3,1] : [0, 1|0200001]⇥ [2, 0|2100001]
[d0,1M0,3,1] : [1, 0|1100010]⇥ [1, 2|1100002]
[d1,0M0,2,2] : [1, 0|1100010]⇥ [3, 0|3000010]
[d0,1M0,2,2] : [2, 1|2000011]

[d0,1M̄0,0,4] : [0, 1|0000021]
[d1,0M̄0,0,4] : [1, 0|1000020]
[d0,1M̄0,1,3] : [1, 0|1000020]⇥ [0, 2|1000012]
[d1,0M̄0,3,1] : [0, 1|0100011]⇥ [2, 1|2000011]
[d0,1M̄0,2,2] : [0, 1|0100011]⇥ [0, 3|0100003]
[d1,0M̄0,2,2] : [1, 2|1100002] .

(19)

2We will avoid discussing the elements of Ht
0,4 of degree (0, 2, 2) in the [0, 0|0200020] representation, which do

not play any role.
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Supergravity Densities



At leading order, the E7/SU(8) coset generators of E7 simply 
produce constant shifts in the 70 scalar fields. This leads to a much 
easier check of invariance than analyzing the full superspace 
cohomology problem.

Although the pure-body (4,0) component            of the R⁴       
counterterm has long been known to be shift-invariant at lowest 
order (since all 70 scalar fields are covered by derivatives), it is 
harder for the fermionic “soul” components to be so, since they are 
of lower dimension.

Thus, one finds that the maxi-soul (0,4)           component is not 
invariant under constant shifts of the 70 scalars. Hence the D=4, 
N=8, 3-loop R⁴ 1/2 BPS counterterm is not E7 duality invariant, so 
it is ruled out as an allowed counterterm.
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The above type of analysis knocks out all the candidates in D=4, 
N=8 supergravity through L=6 loops. This leaves 7 loops 
(Δ=16) as the first order where a fully acceptable candidate 
might occur, with the volume of superspace as a prime 
candidate:                        .

Explicitly integrating out the volume into component fields 
using the superspace constraints implying the classical field 
equations would be an ugly task.

However, using an on-shell implementation of harmonic 
superspace together with a superspace implementation of the 
normal-coordinate expansion, one can in fact evaluate it, but 
one then finds that the volume vanishes:
                                           on-shell

L=7 and Vanishing Volume

Z
d4xd32�E(x, �)

G. Bossard, P.S. Howe, K.S.S. & P. Vanhove 
1105.6087
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One can define normal coordinates

associated to an involutive set of vector fields       which 
allow for an on-shell harmonic superspace formalism based 
on the flag manifold                                                .   
Expanding the superspace Berezinian determinant in these, 
one finds the flow equation

Integrating this, one finds the expansion of the superspace 
determinant in the four fermionic coordinates                      :

However, since this has only      terms, integration over 
the four      vanishes, so                              .

Normal coordinates for a 28+4 split
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i u

i
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8
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1/8 BPS E7 invariant candidate notwithstanding
Despite the vanishing of the full N=8 superspace volume, one 
can nonetheless use an on-shell harmonic superspace 
formalism to construct a different manifestly E7 -invariant but 
1/8 BPS candidate:

At the leading 4-point level, this invariant, of generic ∂⁸R⁴           
structure, can be written as a full superspace integral with 
respect to the linearized N=8 supersymmetry. It cannot, 
however, be rewritten as a non-BPS full-superspace integral 
with a duality-invariant integrand at the nonlinear level.
Non-BPS full-superspace and manifestly E7-invariant 
candidates do exist in any case from 8 loops onwards.

I8 :=

Z
dµ(8,1,1) B↵�̇ B

↵�̇
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So far, things seem under control for maximal supergravity from a 
purely field-theoretic analysis: what is prohibited does not occur, 
and what is not prohibited has occurred, as far as one can see. 

As far as one knows, the first acceptable D=4 counterterm for 
maximal supergravity occurs at L=7 loops (Δ = 16); if not that, 
then they clearly exist at L=8 loops (Δ = 18) and beyond.

The current divergence expectations for maximal supergravity are 
consequently:

Current outlook for maximal supergravity

Blue: known divergences Green: anticipated divergences 15

Dimension D 11 10 8 7 6 5 4
Loop order L 2 2 1 2 3 6 7

BPS degree 0 0 1
2

1
4

1
8 0 1

8

Gen. form �12R4 �10R4 R4 �4R4 �6R4 �12R4 �8R4

D E11�D(11�D)(R) KD E11�D(11�D)(Z)
10A R+ 1 1
10B Sl(2,R) SO(2) Sl(2,Z)
9 Sl(2,R)⇥ R+ SO(2) Sl(2,Z)
8 Sl(3,R)⇥ Sl(2,R) SO(3)⇥ SO(2) Sl(3,Z)⇥ Sl(2,Z)
7 Sl(5,R) SO(5) Sl(5,Z)
6 SO(5, 5,R) SO(5)⇥ SO(5) SO(5, 5,Z)
5 E6(6)(R) USp(8) E6(6)(Z)
4 E7(7)(R) SU(8)/Z2 E7(7)(Z)
3 E8(8)(R) SO(16) E8(8)(Z)

�
� +

D � 4

D � 2
n(32�D � n)

⇥
fn(�) = 0 (1)

3

Howe & Lindstrom 1981 
Kallosh 1981



Not everything is perfect in the understanding of 
supergravity divergences, however. A surprize has occurred 
in an unexpected sector: D=4, N=4 supergravity at L=3. 
The expected 3-loop R⁴ divergence (Δ=8) does not occur 
in that theory.

Yet, the L=7 candidate counterterm of N=8 supergravity 
has a natural analogue here as a 1/4 BPS (4,1,1) G-
analytic invariant:

Expanding the content of this N=4 invariant at 
linearized level, one finds a leading R⁴ structure 
undressed by the                        complex scalar field: it 
is perfectly duality invariant, just like the 1/8 BPS 
candidate 7-loop N=8 counterterm.

The N=4 Supergravity L=3 surprise

Bern, Davies, Dennen & Huang 2012

I4 =

Z
dµ(4,1,1) B↵�̇ B

↵�̇

SL(2,R)/U(1)

22

B↵�̇ = �1
↵�̄�̇4

Bossard, Howe, K.S.S. & Vanhove 
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Some aspects of this N=4 case:

There are anomalies at one loop in the U(1) R-symmetry. 
These eventually destroy the SL(2, ℝ) duality symmetry. 
Happily, these anomalies do not yet affect the structure of 
the 3-loop divergences, for which the requirement of 
duality invariance still holds.

Genus-1 and genus-2 asymmetric-orbifold string 
calculations likewise show that R⁴ divergences do not 
appear in N=4 supergravity models coupled to 4≤nᵥ≤22 
vector multiplets. Note that such matter-coupled models are 
already divergent at L=1, so there are subdivergence 
subtractions to worry about, but the absence of R⁴ 
divergences at D=4, L=3 is nonetheless confirmed.

17

Marcus 1985

Tourkine & Vanhove 2012

Fischler 1979

Bossard, Howe & K.S.S.1304.7753



Another aspect of this story needs to be clarified. The 
vanishing of a superspace volume can open the door to 
another representation of candidate counterterms.
Consider the cases where superspace volumes vanish on-
shell:

The full superspace volumes of all D=4 pure 
supergravities vanish, for any extension N of 
supersymmetry.
In D=5, the volume of maximal (32 supercharge) 
supergravity does not vanish, but the volume of half-
maximal (16 supercharge, i.e. N=2, D=5) supergravity 
does.

18

Vanishing volumes and their consequences



Unitarity-based calculations in D=5 half-maximal supergravity 
show cancellation of R⁴ divergences at the 2-loop level similar 
to those found in half-maximal D=4, L=3.

This cancellation is equally surprising as in the N=4, D=4 case, 
because there is an available 1/4 BPS D=5 (4,1) G-analytic             
Sp(2)/(U(1)×Sp(1)) counterterm:

where       is the D=5 Lorentz Sp(1,1) symplectic matrix.

Moreover, in D=5 there are no complications from anomalies to 
the “duality” shift symmetry for the single scalar φ of half-
maximal D=5 supergravity, unlike in the D=4, N=4 case.

Bern, Davies, Dennen & Huang 2012

Half-maximal D=5, L=2

19
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The vanishing volume of half-maximal D=5 supergravity 
invites another way to write a candidate Δ=8 counterterm 
in D=5. One can write simply

where Φ is the D=5 field-strength superfield containing the 
scalar φ as its lowest component field.

Also, this candidate is clearly invariant under the rather 
minimalistic D=5 duality symmetry Φ → Φ + constant, 
since                   .

Moreover, this candidate turns out to be just a rewriting of 
the above (4,1) G-analytic manifestly duality invariant 1/4 
BPS candidate counterterm.

In this sense, the D=5 Δ=8 (4,1) R⁴ counterterm is of 
marginal F/D type.

20
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Z
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d16✓E = 0
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The D=4 (4,1,1) G-analytic counterterm has the same 
marginal F/D character.

The D=4, N=4 theory has as its lowest-dimension physical 
component a complex scalar field τ taking its values in the 
Kähler space SL(2,ℝ)/U(1). In terms of τ, the Kähler 
potential is 
and the N=4, Δ=8 (4,1,1) counterterm can equally well be 
written

As in the D=5 case, although this full-superspace integral is 
duality invariant, its integrand is not duality invariant. The 
integrand varies as follows:

21
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The marginal F/D structure of the Δ=8 counterm candidates in 
half-maximal D=4 and D=5 supergravities requires a more 
careful treatment of the Ward identies for duality.
If one makes the assumption that there exist off-shell full 16-
supercharge superfield formulations for the half-maximal 
theories, then one can derive a stronger invariance requirement: 
not only must the integrated counterterm be duality invariant, but 
also the counter-Lagrangian superfield integrand must itself be 
duality invariant.

22

Superspace nonrenormalization theorems:
refinement of the duality-invariance requirement

G. Bossard, P.S. Howe & K.S.S., 1212.0841, 1304.7753



Off-shell half-maximal supergravity
From the point of view of field-theoretic nonrenormalization 
theorems, a key question is whether there exists an off-shell 
linearly realised formulation of half-maximal supergravity. If so, 
then the nonrenormalization theorem would require a full-
superspace ∫ d16θ integral with a duality-invariant integrand, thus 
ruling out the F/D marginal D=4 and D=5 R⁴ counterterms.
Unfortunately, the answer to this question is not currently known. 
But there is a closely related off-shell formulation for linearized 
D=10, N=1 supergravity, with a finite number of component 
fields:

Upon dimensional reduction to D=4, the N=1, D=10 theory yields 
D=4, N=4 supergravity plus 6 N=4 super-Maxwell multiplets. So 
one has something close to the required formalism, at least in the 
linearised theory. 23
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The most recent developments
The divergences in half-maximal supergravity in D=4 and D=5 
have now been calculated up through 3 loops including also nᵥ 
“matter” vector multiplets. D=4 result: a mixture of 1/ε and 1/ε² 
divergences. Some of these will be consequences of known 
divergences from matter inclusion at L=1, so the implications of 
this result are still under debate. More clear is the D=5 situation: 
in addition to the cancellations for nᵥ = 0 (pure half-maximal 
supergravity), there is just one other case with 2-loop 
cancellations: nᵥ = 5, giving precisely the dimensionally reduced 
content of off-shell D=10, N=1 supergravity.
Out just today: pure half-maximal supergravity at L=4 loops has 
divergences ~ ∂² R⁴. In D=4, there is a clearly expected duality 
invariant full superspace counterterm                        . End of the 
miracles story? Maybe not: the one-loop U(1) anomaly can now 
be causing 4-loop divergences. So is this result purely caused by 
the anomaly? 
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