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Relativistic higher curvature theories

No renormalization of the perturbative quantization of
general relativity.
Ü Look for alternatives.
Relativistic high-curvature models: adding terms

(Rαβµ
ν)n

improves divergences, but the theories generically have
ghosts.

[Stelle, 70’s]

The ghosts can be seen in the propagator Ü Additional
poles with wrong sign.

High order time-derivatives Ü Ghosts.
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Horava’s proposal

How can we add high-curvature terms without adding
poles?

Hořava’s proposal: suppose that we are not forced to
use space-time covariant terms.

Change the symmetry of general covariance by a smaller
group:

Foliation-preserving diffeomorphisms (FDiff)

There exists a preferred time direction, the space-time is
foliated in spatial submanifolds of constant time. The
symmetries are coordinate transformations that preserve this
foliation.
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Improved propagator

One may include spatial high-curvature terms (Rijk
l)z .

It is expected that the propagator is modified

1

ω2 − |~k |2 −G(|~k |2)z

At UV, the propagator is dominated by 1/G(|~k |2)z .
large enough z Ü renormalizable (or even finite!).

H Hořava’s prototipe for quantum gravity: z = 3.
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Features of Hořava theory

Very likeable assumptions:

Quantum gravity as a standard quantum field theory.
Gravitational field Ü space-time metric.
Four dimensions.

Very challenging assumption:

Abandon general covariance as a fundamental symmetry.
Instead, use as fundamental symmetry:

Foliation-preserving diffeomorphisms.
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Foliation-preserving diffeomorphisms

Start with a given time coordinate t .
Space-time is foliated by space-like hypersurfaces Σ of
constant t .
The gauge symmetry must preserve the foliation.

Foliation-preserving diffeomorphisms (FDiff)

t̃ = t̃(t) , x̃ i = x̃ i(t , x j)

Contrast with general space-time diffeomorphisms:

t̃ = t̃(t , x i) , x̃ i = x̃ i(t , x j)
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Gravitational field variables

Space-time metric in ADM variables

ds2 = (−N2 + NiN i) dt2 + 2Ni dt dx i + gij dx i dx j

FDiff preserve N = N(t) Ü Projectable version of the
theory.
We take N = N(t , x i) Ü Nonprojectable version.
We choose this version because of its connection with GR
(...as we are going to see...).
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Hořava action

General Relativity in ADM variables

S =

∫
dtd3x

√
gN(KijK ij − K 2 + R) ,

[Arnowitt, Deser and Misner, 1959-1962]

Kij =
1

2N
(ġij − 2∇(iNj)) Ü Extrinsic curvature of Σ.

R Ü Ricci scalar of the 3D metric gij .

K = g ijKij
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Hořava action

Original Hořava action

S =

∫
dtd3x

√
gN
(

KijK ij − λK 2 − GijklE ijEkl
)
,

E ij =
1

w2 C ij − µ

2

(
R ij − 1

2
Rg ij + ΛW g ij

)
= derivative of a 3d spatial functional

Ü Detailed balance principle

C ij : 3d Cotton tensor.

[Hořava, 2009]
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Hořava action

UV dominant term: (Cotton)2

Ü sixth-order in spatial derivatives (z = 3).
Why undetermined constant λ?
Ü Both KijK ij and K 2 are invariant under FDiff.
Symmetry of general space-time diffeomorphisms requires
λ = 1.
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Generalizations

Abandon the detailed balance principle: It is not a
symmetry principle
The potential may be any scalar under FDiff

Terms of Blas, Pujolás and Sibiryakov
The spatial vector ai = ∂i ln N is covariant under FDiff. It can
enter into the potential:

aiai , ∇iai , aiajRij . . .

[Blas, Pujolàs and Sibiryakov, 2009]

These terms are induced by quantum corrections
Ü complete actions should include them.
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Complete theory

Complete, nonprojectable Hořava theory

S =

∫
dtd3x

√
gN
(

KijK ij − λK 2 − V
)
,

V = V[gij ,ai ] Ü Most general z = 3 potential invariant
under FDiff.

[Blas, Pujolàs and Sibiryakov, 2009]

Some terms:
z = 1 Ü R, aiai (only these)
z = 2 Ü R2, aiajRij , (aiai)2, ∇iaiR . . .

z = 3 Ü C ijCij , (aijaij)3, (aiaj)2R, ai∇4ai . . .

Ü near 100 terms in total!!
J.B., A. Restuccia and A. Sotomayor Recovering General Relativity from Hořava Theory
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What does one expect at first sight?

The theory seems to improve renormalization at UV...but
general relativity has a solid phenomenology at large
distances...

Can general relativity be recovered at large distances?

An extra mode?
This theory uses the same field variables of GR, but the
gauge group is smaller...
Ü One would expect the presence of extra modes...but...

Perhaps the dynamics drops the extra modes out!!
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Hořava theory
The degrees of freedom at λ = 1/3

The α → 0 limit
The linearized theory
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What has been claimed about the Hořava theory?

As a standard lore many people believe that the limit λ→ 1
is necessary to recover general relativity.
Related issue Ü strong coupling problem of the extra
mode:

Strong coupling

If one assume that λ→ 1 at low energies, then the coupling
constants of the self-interactions of the extra mode diverge.

[Charmousis et al., 2009; Papazoglou and Sotiriou, 2010]

Also: claims about non closure of the algebra of
constraints, vanishing lapse function.

J.B., A. Restuccia and A. Sotomayor Recovering General Relativity from Hořava Theory
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Hořava theory
The degrees of freedom at λ = 1/3

The α → 0 limit
The linearized theory
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The complete, nonprojectable Hořava theory at λ = 1/3
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Hamiltonian analysis: primary constraints

Why is the λ = 1/3 value so special?

Canonical-conjugate pairs (gij , π
ij) , (N, φ)

In Hořava theory N cannot be regarded as a Lagrange multiplier.

Kinetic term is universal, so we always have

πij
√

g
= GijklKkl ,

Gijkl ≡ 1
2(g ikg jl + g ilg jk )− λg ijgkl .

is Gijkl invertible? Ü The answer splits out in two ways...
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Hamiltonian analysis: primary constraints

1 If λ 6= 1/3, matrix Gijkl can be inverted.

Ü We may solve ġij in terms of πij .

2 If λ = 1/3,
Gijklgkl = 0 ,

matrix Gijkl cannot be inverted.

Ü There arises the primary constraint

π ≡ gijπ
ij = 0 .

In both cases one may get the Hamiltonian.
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Hamiltonian

Hamiltonian

H =

∫
d3x

(
NH+ NiHi + σφ+ µπ

)
+ boundary t.

σ, µ Ü Lagrange multipliers.

H ≡ 1
√

g
πijπij +

√
gṼ

Modified potential:

Ṽ ≡ V +
1
N

∑
r=1

(−1)r∇i1···ir

(
N

∂V
∂(∇ir ···i2ai1)

)
.

Momentum constraint: Hi ≡ −2∇jπ
ij + φ∂ iN
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Preservation of constraints

At λ = 1/3 there arises the primary constraint π = 0.
Conversely,

π = 0 protects the value λ = 1/3

Ü Other value of λ would eliminate the constraint!!.
Preservation of π = 0 leads to another constraint, C = 0,

C ≡ 3N
2
√

g
πijπij − gij

δ

δgij

∫
d3y
√

gNṼ .

Constraints

First class Ü Hi = 0

Second class Ü H = 0 , φ = 0, π = 0, C = 0.
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Preservation of constraints

Preservation of 2nd-
class constraints

Ü conditions for the multipliers σ, µ.

Equations for the Lagrange multipliers

E (6)
1 (σ, µ) = 0 , E (6)

2 (σ, µ) = 0

Ü For z = 3 these are 6th-order elliptic diff. eqs. for σ, µ.
(very involved expressions)

H Dirac’s algorithm closes consistently.
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Hořava theory
The degrees of freedom at λ = 1/3

The α → 0 limit
The linearized theory

Generalities
The theory with λ = 1/3

Physical degrees of freedom

Physical degrees of freedom

{Canonical variables} − {constraints + gauge symmetries}
| |

2 phys. degs. of freedom.

H There is not any extra mode in this theory!!!

Remark: the λ = 1/3 theory has two more constraints,
π = 0, C = 0. They eliminate the extra mode of Hořava
theory.
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Hořava theory
The degrees of freedom at λ = 1/3

The α → 0 limit
The linearized theory

Emerging of general relativity
Spherically symmetric solutions

Emerging of general relativity: the α→ 0 limit

At large distances neglect the high-order terms, keep the
effective action.
In the lowest-order potential

V = −R − α aiai

Drop the a2 term out by sending α→ 0.

Extra constraints

π = 0 , C = (∇2 − R)N = 0

Ü Both equations can be seen on the side of general
relativity as a gauge fixing procedure!! (maximal slicing
gauge).

J.B., A. Restuccia and A. Sotomayor Recovering General Relativity from Hořava Theory
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Hořava theory
The degrees of freedom at λ = 1/3

The α → 0 limit
The linearized theory

Emerging of general relativity
Spherically symmetric solutions

Emerging of general relativity: the α→ 0 limit

The Hamiltonian becomes (the α→ 0 limit implies µ = 0)

H =

∫
d3x(NH+ NiHi + σφ) + EADM

H = 1√
gπ

ijπij −
√

gR .

Ü This Hamiltonian is exactly the one of general relativity
in the maximal slicing gauge.

The α→ 0 limit leads exactly to the dynamics of general
relativity.
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Hořava theory
The degrees of freedom at λ = 1/3

The α → 0 limit
The linearized theory

Emerging of general relativity
Spherically symmetric solutions

Static spherically symmetric solutions

Perturbative solutions
Approximate solutions that are trustable when α is small.

Static, spherically symmetric ansatz

ds2
(4) = −N(r)2dt2 +

dr2

f (r)
+ r2dΩ2

(2) .

Exact field equations

rf ′ + f − 1− α

2
r2f
(

N ′

N

)2

= 0 ,

f ′

rf
+

N ′′

N
+

f ′N ′

2fN
− α

(
N ′

N

)2

= 0 ,

1
2

rf ′ + f − 1 +
rfN ′

N
= 0 .
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Hořava theory
The degrees of freedom at λ = 1/3

The α → 0 limit
The linearized theory

Emerging of general relativity
Spherically symmetric solutions

Static spherically symmetric solutions

From the first and last equations

8(1−h)(rh)′+α
[(

(rh)′ − h
)2

+ 4(rh)′
]

= 0 , h ≡ 1− f .

Perturbations: assume that the perturbative solution have
the linear-order form

h = h(0) + αh(1)

We may solve the equation iteratively in orders of alpha,
starting from the zero order:

(1− h(0))(rh(0))′ = 0 ⇒ f (0) = 1− A
r

Put f (0) back into the equation, expand up to linear order
and obtain f (1).
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Hořava theory
The degrees of freedom at λ = 1/3

The α → 0 limit
The linearized theory

Emerging of general relativity
Spherically symmetric solutions

Static spherically symmetric solutions

N is obtained from f using the α-independent field equation

1
2

rf ′ + f − 1 +
rfN ′

N
= 0 .

We arrive at the perturbative solutions

N(r) =

(
1− A

r

)1/2

+
α

8

(
1− A

r

)−1/2 [A− 4B
r

+

(
1− A

2r

)
ln
(

1− A
r

)]
,

f (r) = 1− A + αB
r

+
αA
8r

ln
(

1− A
r

)
.
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Hořava theory
The degrees of freedom at λ = 1/3

The α → 0 limit
The linearized theory

Emerging of general relativity
Spherically symmetric solutions

Static spherically symmetric solutions

We have obtained explicitly the smooth deformation of the
Schwarzschild solution.
This perturbative solution coincides with the expansion in α
of the exact solution up to linear order [JB, Restuccia and
Sotomayor, in preparation]

[Exact solutions were previously studied by Kiritsis, 2009].
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Hořava theory
The degrees of freedom at λ = 1/3

The α → 0 limit
The linearized theory

Emerging of general relativity
Spherically symmetric solutions

Asymptotia

The expansion for large r is

N2 = 1− 2GM
r
− α(GM)3

6r3 +O
(

1
r4

)
,

f = 1− 2GM
r
− α(GM)2

2r2 − α(GM)3

2r3 +O
(

1
r4

)
.

Identification of integration constants:

A + αB = 2GM

The asymptotic expansion up to 1/r3 order is identical to
the expansion of the exact solution.
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Hořava theory
The degrees of freedom at λ = 1/3

The α → 0 limit
The linearized theory

The linearized theory with λ = 1/3

IR effective action

S =

∫
dtd3x

√
gN
(

KijK ij − 1
3K 2 + R + αaiai

)
,

Perturbations of Minkowski

gij = δij + hij , πij = pij , N = 1 + n .

Consequences of constraints/symmetries:

(3D Diff) + (Hi = 0) Ü hij and pij are transverse,

π = H = C = 0 Ü pT = hT = n = 0 .
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Hořava theory
The degrees of freedom at λ = 1/3

The α → 0 limit
The linearized theory

Quadratic Hamiltonian

We are left only with the conjugate pair hTT
ij , pTT

ij .

Quadratic physical Hamiltonian

H = 1
2

∫
d3x

(
pTT

ij pTT
ij + ∂ihTT

jk ∂ihTT
jk

)
,

Ü Equal to the quadratic Hamiltonian of GR.

Notice that there are not α terms in the quadratic
Hamiltonian (constraints imply n = 0)

J.B., A. Restuccia and A. Sotomayor Recovering General Relativity from Hořava Theory



Hořava theory
The degrees of freedom at λ = 1/3

The α → 0 limit
The linearized theory

Conclusions and remarks

Consistency in general

Complete, nonprojectable Hořava theory enjoys a
consistent Hamiltonian formulation with λ = 1/3.
The value λ = 1/3 is protected by the π = C = 0
constraints.
The theory has good properties of positiveness of the
energy [JB, Restuccia and Sotomayor, 2013]

The degrees of freedom

At λ = 1/3 there are not extra modes.
The π = C = 0 constraints eliminate the extra mode that
arises for other values of λ.
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The degrees of freedom at λ = 1/3

The α → 0 limit
The linearized theory

Conclusions and remarks

Connection with general relativity

General relativity can be recovered smoothly in the α→ 0
limit.
Since both theories share the same degrees of freedom,
there are not discontinuities.
There is not strong coupling problem associated to any
extra mode.
We give further support by looking at the static spherically
symmetric solution near the α→ 0 limit, obtaining explicitly
the smooth deformation of the Schwarzschild solution.
This coincides with expanding the exact solution in α.
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The α → 0 limit
The linearized theory

Conclusions and remarks

The linearized theory

λ = 1/3 yields general relativity at linearized level.
The theory propagates gravitational waves as in general
relativity.

Theory with λ 6= 1/3

For λ 6= 1/3 the theory ha an extra mode.
However, the limit α→ 0 yields again GR.
The problem of strong coupling should be re-analyzed
carefully, since it is associated to the limit λ→ 1
In this case, one must analyze possible discontinuities
when decoupling the extra mode.
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