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Motivation
In a heavy ion collision at RHIC and LHC

~400 nucleons go in ~10^4 hadrons come out
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Collisions are generically non-central



 After a short period of time the system is in thermal equilibrium

⇠ 200� 400MeV

 It is a strongly coupled system ( ideal fluid + small        )! ⌘/s

Some observables are sensitive to the presence of the anisotropy, e.g.:

• Quarkonium physics

• Energy loss and momentum broadening

• Photon/dilepton production

[Shuryak ’03-’04]



RHIC/LHC data:          - suppression in nucleus-nucleus collisions 
when compared to proton-proton or proton/nucleus collisions. 

dissociation temperature         that is higher than the deconfinement 
temperature       (lattice predicts:                            ).

Quarkonium refers to charm-anticharm mesons (        ,      ,      , ... )J/  0 �c

and bottom-antibottom mesons (    ,     , ... ).⌥ ⌥0

         mesons survive as bound states in a hot medium up to some J/ 

J/ 

Tc

Td

Td(J/ ) ' 2Tc

mesons are screened in the quark gluon plasma.J/ 



The mesons may move with significant transverse momentum 
through the hot medium. What is the effect of such “wind”? 

It is interesting to understand this screening. 

What is the effect of the anisotropy?

The gauge/string duality (a.k.a. AdS/CFT correspondence) might help 
to address these questions.

Given the strong coupling nature of the system, the application of 
perturbative methods is problematic.



This is a realization of the holographic principle: 
a theory of quantum gravity in a region of space should be described by 
a non-gravitational theory on the boundary. 

UV

IR

RG flow

boundary of space

bulk of space
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u = 1

u

Lightning review of AdS/CFT



AdS5 ⇥ S5

To construct an explicit example of such duality one needs 
string/brane toolkits: [Maldacena, ’97]
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Parameters:

The limit in which the quantum string theory reduces to a 
classical theory of gravity
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QCD N=4 SYM

T=0 Nc=3, 
confining,...

Nc large, 
conformal, 
supersymmetric,... 

T>Tc
strongly coupled 
plasma, 
fundamental 
matter,...

strongly coupled 
plasma, 
fundamental and 
adjoint matter,...

T>>Tc weakly coupled strongly coupled

Moreover, certain observables might be quite universal.

Of course, N=4 SYM is not QCD. Nonetheless, at the typical 
temperatures of the QGP, it is a ‘reasonable’ proxy:



[Picture credit: K. Landsteiner]



External quark = Fundamental string

u = 0

u = uh

=

Quark

T 6= 0

• The string endpoint represents the quark, while the rest of the string 
models the gluon field.

• A fundamental string extending from the boundary at             to the
horizon corresponds to an infinitely massive quark.

u = 0



meson moving
at constant velocity

= U-shaped string moving at 
constant velocity

u = 0

u = uh

=

T 6= 0

We are interested in studying an anisotropic strongly coupled plasma.

How can we do that using the AdS/CFT correspondence?

`

`



Addressing time evolution and anisotropy at the same 
time is hard.

As a first step, let’s study a static anisotropic plasma:
this is a good approximation if  t       << t              .

We want a gravity solution which is:

* static and spatially anisotropic

* with a horizon and regular on and outside the horizon

* with AdS boundary conditions in the UV

char evolution



It is hard to find a source of anisotropy that satisfies all 
the requirements above:

* vector current: dissipates, non static

* anisotropic stress-tensor imposed by hand: 
         gives a singularity

* non-commutativity: destroys AdS in the UV
[Hashimoto-Itzhaki ’99]
[Maldacena-Russo ’99]

[Janik-Witaszczyk ’08]
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(t, x, y, u) ! (kt, kx, ky, ku) , z ! k

2/3
z

This triggers an RG flow to an IR Lifshitz fixed point:

axion
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Thee We take a 10-dim. Ansatz which is a direct product: 

(recall that the D7-branes preserve the SO(6) isometry).

The action reduces to 5-dim. axion-dilaton AdS gravity: 

Important: this has a full-fledged embedding in string theory, 
it is not a bottom-up model.
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a/T = 4.4 a/T = 86
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RG flow between AdS (UV) and Lifshitz type (IR) 

The entropy density interpolates between

T � a s ⇠ T 3 T ⌧ a s ⇠ a1/3T 8/3and

Regular on and outside the horizon



Holographic stress tensor

The 1-point function of boundary operators (e.g. the stress-tensor of 
the theory) can be read off from the asymptotic fall-off of the bulk fields, 
via a procedure called holographic renormalization.

This procedure gives us expressions for the energy and 
pressures of the plasma: [Papadimitriou, ’11]
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The stress tensor is:

* anisotropic

* conserved  (translation invariance is preserved in this state)

* non traceless

The conformal anomaly has important consequences:

    
    is an arbitrary scale introduced in the renormalization process. 
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We work in the canonical ensemble with free energy

The anisotropy is responsible for the difference in pressures:

F = E � Ts dF = �sdT + �da

Thermodynamics and instabilities
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The canonical ensemble phase diagram is:

unstable

stable 
homogeneous phase

metastable

P 0 =
1

8
⇡2N2

c T
4

I: Pz > P 0 � > 0 �0 > 0

II: Pz > P 0 � < 0 �0 > 0

III: Pz < P 0 � < 0 �0 > 0

IV: Pz < P 0 � < 0 �0 < 0

bubbles of isotropic 
phase can form and 
expand

inhomogeneous coexistence, 
stable minimum of the free 
energy



such that for                                it is energetically favorable for the pair
The screening length        is defined as the separation between a      Ls

to be bound (unbound).  

qq̄

We will determine       by comparing the action         of the       pair toLs qq̄
the action           of the unbound system:Sunb

The screening length is the maximum value of    for which         is positive �S

(In Euclidean signature, this criterion corresponds to determining 
which configuration has the lowest free energy).

` < Ls (` > Ls)

S(`)

�S(`) = S(`)� Sunb

`

Quarkonium physics



Warm-up: static case

u = 0

u = uh

✓

Given the rotational symmetry in the xy-plane, the most general case
is to consider the dipole (=       pair) in the xz-plane. 
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We choose the static gauge           ,              and the embedding⌧ = t � = u

Z(u) = z(u) cos ✓ X(u) = x(u) sin ✓

qq̄



The action for the U-shaped string takes the form
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`

From the boundary conditions we obtain the relation between the 
⇧z ⇧

x

momenta      ,       and the quark-antiquark separation 

Finally, to determine       , we need to subtract from the U-shaped string
action that of the unbound pair (i.e. two straight strings)
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Ls '
0.24

T
[Rey et al; Brandhuber et al]
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: direction of the wind (velocity)
  with respect to the anisotropic
  direction

✓v

✓,�: parametrize the orientation
  of the dipole
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Dipole rest frame

Dipole in a plasma wind 



As in the static case, to determine the screening length we need to 
compare the actions of a bound and an unbound quark-antiquark pair.

The unbound action is that of 2 strings moving with constant velocity

The position of the turning point is now

Let us summarize the important steps:

[Chernicoff, Fernandez, Mateos, DT, `12]

u
max

⌘ u
max

(a, T,⇧i, v)



v ! 1

We will first consider the ultra-relativistic limit. 
Two reasons for doing this:

It is relevant for the experiments.

It can be understood analytically. 

Ls(T, v) ⇠ (1� v2)1/4
[Liu et al.]

(We send first the quark mass to infinity and then               )

It is easy to check that for a fixed separation of the string endpoints

Then the dynamics of the string can be determined using the near 
boundary expansion of the metric (known analytically).

lim
v!1

u
max

! 0

[Mateos, DT, `11]

For the isotropic case:  



Finally, using the boundary conditions, we obtain how the screening
length scales in the ultra-relativistic limit:

We want to compare the two actions in the ultra-relativistic limit and see
how they scale with               .                  (1� v2)

After some algebra:

motion outside the transverse plane

motion within the transverse plane

�S(l, v) ⇠ (1� v2)�1/2 ⇥ (finite integral)

�S(l, v) ⇠ (1� v2)�1/4 ⇥ (finite integral)

Ls ⇠
8
<

:

(1� v2)1/2 ⇥ I(a,⇧i,O(u6)) if ✓v 6= ⇡/2

(1� v2)1/4 ⇥ J (a, T,⇧i,O(u6)) if ✓v = ⇡/2



The proper velocity along “z” of a point on the string at some  u

v
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Another interesting limit to consider: a/T � 1
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! 0 Again, use near boundary metric to
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Ls / T�1

adiss ⇠ `�1

for a fixed value of vz 6= 0 Ls ⇠ a�1)

The                  limit can be understood as               at fixed     , or a/T � 1 a ! 1 T
as              at fixed    .  T ! 0 a

For motion within the transverse plane (            ) or static dipoles:  vz = 0

It is straight-forward (dimensional analysis) to check that

Even as                a meson of size      will dissociate above   T ! 0 `



So far we have studied                   , but clearly we could also think of  Ls(a, T, v)

and

i.e.                      characterizes the dissociation of a      pair of fixed size
in a plasma with a given degree of anisotropy     . Analogously for        a adiss

Using our results for the screening length, we can study the behavior 
and adiss(T, `, v)
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Numerical results:

As explained before, even at zero temperature a meson of size
will dissociate if the anisotropy is increased above

and the proportionality “constant” is a decreasing function of the velocity.

at rest
moving along the z-direction (             )v = 0.45

adiss(T = 0, `) / 1/`

`



O(u2)

Conclusions

• Complete characterization of the screening length for quarkonia
moving with arbitrary velocities and orientations in an anisotropic, 
strongly coupled plasma.

• Mesons dissociate above a certain critical value of the anisotropy, 
even at zero temperature.

• There is a limiting velocity (<1) for mesons moving through the plasma, 
even at zero temperature.

• The gravity calculation involves only the coupling of the string to the 
background metric, so any anisotropy source that gives rise to a qualitatively
similar metric (in particular, a non-boost invariant              term in the 
asymptotic expansion) will yield qualitatively similar results. 



Extra slides



A glimpse of the numerical results:

Wind along “z” and dipole along “x”
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Numerical results for motion within the transverse plane:
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[Liu et al.]
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Numerical results for motion outside the transverse plane:

The anisotropy is responsible for the dissociation.
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Examples:

* as             energy and pressures approach their isotropic values

* specific heat and speeds of sound are positive

* energy and pressures can become negative, but still bounded 
   from below

a ! 0


