

Conductance Fluctuations in Graphene Systems: The Relevance of Classical Dynamics

Celso Grebogi (*)

Institute for Complex systems and Mathematical Biology King's College, University of Aberdeen, UK http://www.abdn.ac.uk/icsmb/people/details/grebogi

Collaborators:

Mr. Lei Ying. Arizona State University Prof. Liang Huang, Lanzhou University and ASU Prof. Ying-Cheng Lai, ASU and Univ. of Aberdeen

(*) Freiburg Institute for Advanced Studies (FRIAS)

Conductance fluctuations in relativistic quantum dynamics

Purpose:

Integrable systems

Chaotic system

The nature of the corresponding classical dynamics can play a key role in the conductance-fluctuation pattern in RQD.

> Sharp conductance fluctuations

Smooth conductance fluctuations For a relativistic quantum system (graphene), we are interested in how the geometry influences the conductance fluctuations and how these fluctuations change when a magnetic field is applied.

OUTLINE

1. Model and calculation method

2. Periodic conductance oscillations and

emergence of random conductance fluctuations

3.Semi-classical theory of regular conductance oscillations: scaling relationship

- 4. Universal transition to random conductance fluctuations
- 5. Summary

L.Ying, L. Huang, Y.-C. Lai, and C. Grebogi, "<u>Conductance fluctuations in graphene</u> <u>systems: The relevance of classical dynamics</u>" Phys. Rev. B 85 245448 (2012)

Model: vertical magnetic field applied in device region

$$Green's function:$$

$$conductace and LDS calculations$$

$$G(E) = (2e^{2}/h)T_{G}(E)$$

$$T(E) = Tr(\Gamma_{L}G_{D}\Gamma_{R}G_{D}^{\dagger})$$

$$G_{D} = (EI - H_{D} - \Sigma_{L} - \Sigma_{R})^{-1}$$

$$\Gamma_{L,R} = i(\Sigma_{L,R} - \Sigma_{L,R}^{\dagger})$$
Local density of states (LDS):

$$\rho = -\frac{1}{\pi} Im[diag(G_{D})].$$

OUTLINE

1. Model and calculation method

ance of random

2. Periodic conductance oscillations and emergence of random conductance fluctuations

3.Semi-classical theory of regular conductance oscillations: scaling relationship

- 4. Universal transition to random conductance fluctuations
- 5. Summary

Emergence of random conductance fluctuations: stadium and rectangle

OUTLINE

1. Model and calculation method

2. Periodic conductance oscillations and

emergence of random conductance fluctuations

3.Semi-classical theory of regular conductance oscillations: scaling relationship

- 4. Universal transition to random conductance fluctuations
- 5. Summary

 $S/L = \frac{2\hbar S_0}{\sqrt{3}eat_0} \frac{\Delta E}{\Delta \phi}$

Device size scaling

For hexagonal geometry: $S = \sqrt{3}D^2/2$ and $L = 2\sqrt{3}D$

$$D_{\rm hex} = \frac{12\hbar S_0}{\sqrt{3}eat_0} \frac{\Delta E}{\Delta \phi}$$

OUTLINE

1. Model and calculation method

2. Periodic conductance oscillations and emergence of random conductance fluctuations

3.Semi-classical theory of regular conductance oscillations: scaling relationship

4. Universal transition to random conductance fluctuations

5. Summary

Universal transition to random conductance fluctuations

Conductance Fluctuations in Relativistic Quantum Dynamics

Summary

We use tight-binding framework and Green's function method to calculate the conductance for integrable and chaotic dot systems under a transversal magnetic field.

The results show Landau levels divide conductance curves into periodic-oscillation and random-fluctuation regions for hexagonal, rectangular and stadium shapes.

Bohr-Sommerfed Quantisation Condition elucidates the fine-scale structure.

From regular oscillation regions for different sizes, we verify the size scaling

 $S/L = \frac{2\hbar S_0}{\sqrt{3}eat_0} \frac{\Delta E}{\Delta \phi}$ relationship derived from the semi-classical theory.

L.Ying, L. Huang, Y.-C. Lai, and C. Grebogi, "Conductance fluctuations in graphene systems: The relevance of classical dynamics" Phys. Rev. B 85 245448 (2012)