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We	  may	  think	  of	  ecosystems	  as	  
enduring	  parts	  of	  nature	  

hIp://travel.na,onalgeographic.com	  



But	  ecosystems	  and	  the	  biosphere	  are	  
dynamic,	  with	  lots	  of	  species	  turnover,	  

especially	  on	  local	  scales	  

Sweeney	  .	  Ed..	  



However,	  though	  species	  come	  and	  go,	  there	  are	  
characteris,c	  regulari,es	  in	  the	  macroscopic	  paIerns	  	  

in	  all	  ecosystems	  

www.yale.edu/yibs	  

www.csiro.au	  

www.bio.unc.edu	  



These	  regulari,es	  characterize	  biomes	  

www.marieIa.edu	  



Characteris,c	  macroscopic	  paIerns	  are	  emergent,	  
independent	  of	  much	  microscopic	  detail	  

Volkov, Banavar, Hubbell and Maritan 
Nature 424, 1035-1037 

Abundance	  distribu,ons,	  stoichiometry,	  nutrient	  cycling	  



Must	  scale	  up	  

Carpinteri	  et	  al.,2002,Chaos,	  Solitons	  and	  Fractals,	  	  



This	  implies	  a	  need	  to	  relate	  
phenomena	  across	  scales,	  from	  



A	  perspec,ve	  from	  mathema,cs	  and	  	  
physics	  can	  help	  

•  “Sta,s,cal	  mechanics”	  of	  ecological	  
communi,es	  

•  Cri,cal	  transi,ons	  
•  Collec,ve	  phenomena	  and	  collec,ve	  mo,on	  

– Emergence	  and	  paIern	  forma,on	  
– Sta,s,cal	  mechanics	  

•  Conflict	  and	  collec,ve	  ac,on	  
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Mathema,cal	  challenges:	  
Simplifica,on	  approaches	  



PaIern	  emerges	  even	  in	  simplest	  
models	  of	  ecological	  compe,,on	  

DurreI	  and	  Levin	  1994	  
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…	  path	  dependency,	  especially	  due	  to	  
finite-‐size	  effects,	  and	  cri,cal	  slowing	  

down	  

J. theor. Biol. (1998) 192, 363–376
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‘‘Critical Slowing Down’’ in Time-to-extinction: an Example of Critical
Phenomena in Ecology
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We study a model for two competing species that explicitly accounts for e}ects due to discreteness,
stochasticity and spatial extension of populations. The two species are equally preferred by the
environment and do better when surrounded by others of the same species. We observe that the final
outcome depends on the initial densities (uniformly distributed in space) of the two species. The
observed phase transition is a continuous one and key macroscopic quantities like the correlation length
of clusters and the time-to-extinction diverge at a critical point. Away from the critical point, the
dynamics can be described by a mean-field approximation. Close to the critical point, however, there
is a crossover to power-law behavior because of the gross mismatch between the largest and smallest
scales in the system. We have developed a theory based on surface e}ects, which is in good agreement
with the observed behavior. The course-grained reaction–di}usion system obtained from the mean-field
dynamics agrees well with the particle system.

7 1998 Academic Press Limited

1. Introduction

One of the central questions in ecology is to
understand the fate of a native species in the face of
invasion by a competitor. If the invader is more fit
under all conditions, one would expect it to displace
the native species; the question then is how long it
takes for the native species to become extinct. If the
native species can form colonies/pockets and delay
the process by mutual cooperation, then it might take
a very long time indeed for extinction to occur.
Furthermore, as we shall show in a later paper, the
local nature of interactions may even lead to survival
of the native species if the incursions are small enough
in strength. It is not surprising, therefore, that under
more general conditions, bistability is a serious
possibility, especially in finite-size domains; either
species may resist invasion. Of course, much depends

on the details of how the species interact with each
other and with the environment.

This is the first of a series of papers reporting on
the work inspired by these and related questions. In
this paper, we begin by considering the dynamics of
two competing species that have the same growth rate
in isolation. This understanding will serve as a good
reference point in Gandhi et al. (1998b) for extension
to the dynamics of competing species where one
species has a higher growth rate in isolation. The rules
of interaction between the species are such that the
individuals do better when surrounded by others of
the same species. The questions we will ask in this
paper and Gandhi et al. (1998b) are: starting from
uniformly distributed configurations of the two
species with specified initial densities (i) which one is
expected to win? and (ii) how long will it take? In this
paper, the environment does not unambiguously
select out either species and so the species with the
higher initial density will win with a very high
probability. The time taken depends crucially on the

*Present address: Microsoft Corporation, 27511 One Microsoft
Way, Redmond, WA 98052, U.S.A.

†Author to whom correspondence should be addressed.
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FIG. 5. Snapshot from L=128 simulation at t=0, 15, 30, 45, 60, 75 for W=1. S1 particles are light grey and S2 particles are black.
The run required a million particles.
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Forest	  growth	  models	  have	  been	  well-‐
developed,	  and	  exhibit	  similar	  path	  

dependence	  
(	  Pacala,	  Botkin,	  Shugart,	  others)	  

14	  Deutschman,	  DH,	  SA	  Levin,	  C	  Devine	  and	  LA	  BuIel.	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  1997.	  	  Science	  277:1688.	  



hIp://www.hpcx.ac.uk/research/environment/polcoms	  



For	  forests	  and	  oceans	  alike,	  challenge	  
is	  to	  simplify	  these	  descrip,ons	  

through	  aggrega,on	  and	  
simplifica,on,	  for	  example	  moment	  

closure	  methods	  



Another	  sort	  of	  scaling	  relates	  the	  
ecological	  and	  evolu,onary	  ,me	  scales	  
•  Adap,ve	  dynamics	  and	  emergent	  popula,on	  
proper,es	  
– Features	  of	  forests,	  grasslands	  and	  oceans	  

•  Public	  goods	  problems	  
– N	  fixa,on	  
– Stoichiometry	  
– Bacterial	  biofilms	  



18	  

	  Ecosystems	  and	  the	  Biosphere	  
are	  Complex	  Adap,ve	  Systems	  

Heterogeneous collections of individual 
units (agents) that interact locally, and 
evolve based on the outcomes of those 
interactions. 



So	  too	  are	  the	  socio-‐economic	  systems	  
with	  which	  they	  are	  interlinked	  

19	  www.suite101.com	  



Features	  of	  CAS	  

•  Mul,ple	  spa,al,	  temporal	  and	  organiza,onal	  
scales	  

•  Self-‐organiza,on,	  and	  consequent	  
unpredictability	  

•  Mul,ple	  stable	  states,	  path	  dependence,	  
hysteresis	  

•  Contagious	  spread	  and	  systemic	  risk	  
•  Poten,al	  for	  destabiliza,on	  and	  regime	  shics	  
through	  slow-‐,me-‐scale	  evolu,on	  

20	  



Stock	  markets	  crash	  



Cri,cal	  transi,ons	  occur	  in	  
physiological	  states	  	  

hIp://www.edmontonneurotherapy.com/treatment_of_migraine.html	  



Are	  there	  early	  warning	  indicators?	  

www.aesnet.org	  
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Critical phenomena in atmospheric
precipitation
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Critical phenomena occur near continuous phase transitions.
As a tuning parameter crosses its critical value, an
order parameter increases as a power law. At criticality,

order-parameter fluctuations diverge and their spatial
correlation decays as a power law1. In systems where the tuning
parameter and order parameter are coupled, the critical point
can become an attractor, and self-organized criticality (SOC)
results2,3. Here we argue, using satellite data, that a critical value
of water vapour (the tuning parameter) marks a non-equilibrium
continuous phase transition to a regime of strong atmospheric
convection and precipitation (the order parameter)—with
correlated regions on scales of tens to hundreds of kilometres.
Despite the complexity of atmospheric dynamics, we find that
important observables conform to the simple functional forms
predicted by the theory of critical phenomena. In meteorology
the term ‘quasi-equilibrium’ refers to a balance between slow
large-scale driving processes and rapid release of buoyancy
by moist convection4. Our study indicates that the attractive
quasi-equilibrium state, postulated long before SOC (ref. 5), is
the critical point of a continuous phase transition and is thus an
instance of SOC.

At short timescales the majority of tropical rainfall occurs in
intense events with rain rates exceeding the climatological mean
by an order of magnitude or more. Moist convection and the
accompanying precipitation have been found to be sensitive to
variations in water vapour along the vertical on large space and
timescales both in observations6,7 and in models8–10. This is due
to the effect of water vapour on the buoyancy of cloud plumes as
they entrain surrounding air by turbulent mixing. We conjecture
that the transition to intense convection, accompanying the onset of
intense precipitation, shows signs of a continuous phase transition.
Note that such a large-scale continuous phase transition involving
the flow regime of the convecting fluid is entirely different from
the well-known discontinuous phase transition of condensation
at the droplet scale. We analysed satellite microwave estimates
of rainfall rate, P, water vapour, w, cloud liquid water and sea
surface temperature (SST) from the Tropical Rainfall Measuring
Mission from 2000 to 2005. Observations from the western Pacific
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Figure 1 Order parameter and susceptibility. The collapsed (see text) precipitation
rates ⟨P ⟩(w) and their variances σ2

P (w) for the tropical eastern (red) and western
(green) Pacific as well as a power-law fit above the critical point (solid line). The
inset shows on double-logarithmic scales the precipitation rate as a function of
reduced water vapour (see text) for western Pacific (green, 120E to 170W), eastern
Pacific (red, 170W to 70W), Atlantic (blue, 70W to 20E), and Indian Ocean (pink, 30E
to 120E). The data are shifted by a small arbitrary factor for visual ease. The straight
lines are to guide the eye. They all have a slope of 0.215, fitting the data from all
regions well.

provided initial support for our conjecture: a power-law pick-up
of precipitation above a critical value, wc, of water vapour was
observed. We proceeded to test whether other observables also
behaved as predicted by the theory of phase transitions.

To motivate our conjecture in terms of the current
understanding of SOC, consider a generic lattice-based model.
Particle-conserving rules defining the model ascribe a number of
particles to every lattice site, and demand hopping of particles to

nature physics VOL 2 JUNE 2006 www.nature.com/naturephysics 393
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Lecture	  outline	  

•  Sta,s,cal	  mechanics	  of	  ecological	  
communi,es	  

•  Cri,cal	  transi,ons	  



Shallow	  Lakes	  
(Scheffer,	  Carpenter)	  

hIp://www.lifeinfreshwater.org.uk/Web%20pages/ponds/Pollu,on.htm	  



There	  has	  been	  a	  lot	  of	  recent	  
aIen,on	  to	  cri,cal	  transi,ons	  	  

29	  

Anticipating Critical Transitions
Marten Scheffer,1,2* Stephen R. Carpenter,3 Timothy M. Lenton,4 Jordi Bascompte,5
William Brock,6 Vasilis Dakos,1,5 Johan van de Koppel,7,8 Ingrid A. van de Leemput,1 Simon A. Levin,9
Egbert H. van Nes,1 Mercedes Pascual,10,11 John Vandermeer10

Tipping points in complex systems may imply risks of unwanted collapse, but also opportunities
for positive change. Our capacity to navigate such risks and opportunities can be boosted by
combining emerging insights from two unconnected fields of research. One line of work is
revealing fundamental architectural features that may cause ecological networks, financial
markets, and other complex systems to have tipping points. Another field of research is uncovering
generic empirical indicators of the proximity to such critical thresholds. Although sudden
shifts in complex systems will inevitably continue to surprise us, work at the crossroads of these
emerging fields offers new approaches for anticipating critical transitions.

About 12,000 years ago, the Earth sud-
denly shifted from a long, harsh glacial
episode into the benign and stable Hol-

ocene climate that allowed human civilization to
develop. On smaller and faster scales, ecosystems
occasionally flip to contrasting states. Unlike grad-
ual trends, such sharp shifts are largely unpre-
dictable (1–3). Nonetheless, science is now carving
into this realm of unpredictability in fundamental
ways. Although the complexity of systems such
as societies and ecological networks prohibits ac-
curate mechanistic modeling, certain features turn
out to be generic markers of the fragility that may
typically precede a large class of abrupt changes.
Two distinct approaches have led to these in-
sights. On the one hand, analyses across networks
and other systems with many components have
revealed that particular aspects of their structure
determine whether they are likely to have critical
thresholds where they may change abruptly; on
the other hand, recent findings suggest that cer-
tain generic indicators may be used to detect if a
system is close to such a “tipping point.”We high-
light key findings but also challenges in these

emerging research areas and discuss how excit-
ing opportunities arise from the combination of
these so far disconnected fields of work.

The Architecture of Fragility
Sharp regime shifts that punctuate the usual fluc-
tuations around trends in ecosystems or societies
may often be simply the result of an unpredict-
able external shock. However, another possibility
is that such a shift represents a so-called critical
transition (3, 4). The likelihood of such tran-
sitions may gradually increase as a system ap-
proaches a “tipping point” [i.e., a catastrophic
bifurcation (5)], where a minor trigger can invoke
a self-propagating shift to a contrasting state. One
of the big questions in complex systems science
is what causes some systems to have such tipping

points. The basic ingredient for a tipping point
is a positive feedback that, once a critical point
is passed, propels change toward an alternative
state (6). Although this principle is well under-
stood for simple isolated systems, it is more chal-
lenging to fathom how heterogeneous structurally
complex systems such as networks of species,
habitats, or societal structures might respond to
changing conditions and perturbations. A broad
range of studies suggests that two major features
are crucial for the overall response of such sys-
tems (7): (i) the heterogeneity of the components
and (ii) their connectivity (Fig. 1). How these
properties affect the stability depends on the na-
ture of the interactions in the network.

Domino effects. One broad class of networks
includes those where units (or “nodes”) can flip
between alternative stable states and where the
probability of being in one state is promoted by
having neighbors in that state. Onemay think, for
instance, of networks of populations (extinct or
not), or ecosystems (with alternative stable states),
or banks (solvent or not). In such networks, het-
erogeneity in the response of individual nodes
and a low level of connectivity may cause the net-
work as a whole to change gradually—rather than
abruptly—in response to environmental change.
This is because the relatively isolated and differ-
ent nodes will each shift at another level of an en-
vironmental driver (8). By contrast, homogeneity
(nodes beingmore similar) and a highly connected
network may provide resistance to change until a
threshold for a systemic critical transition is reached
where all nodes shift in synchrony (8, 9).

This situation implies a trade-off between lo-
cal and systemic resilience. Strong connectivity
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Fig. 1. The connectivity and homogeneity of the units affect the way in which distributed systems with
local alternative states respond to changing conditions. Networks in which the components differ (are
heterogeneous) and where incomplete connectivity causes modularity tend to have adaptive capacity in
that they adjust gradually to change. By contrast, in highly connected networks, local losses tend to be
“repaired” by subsidiary inputs from linked units until at a critical stress level the system collapses. The
particular structure of connections also has important consequences for the robustness of networks,
depending on the kind of interactions between the nodes of the network.
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Many	  such	  transi,ons	  have	  
characteris,c	  signals	  

•  Cri,cal	  slowing	  down	  
•  Increasing	  variance	  
•  Increasing	  autocorrela,on	  
•  Flickering	  

Bardy,	  B.;	  Oullier,	  O.;	  Bootsma,	  R.	  J.;	  
Stoffregen,	  T.	  A.;J.	  Exp.	  Psych.	  Vol	  28(3):
499-‐514.	  



More	  on	  this	  and	  the	  need	  for	  cau,on	  
tomorrow	  



Alterna,ve	  stable	  states	  
are	  well-‐documented	  in	  ecology	  

©          Nature Publishing Group1977

www.greateryellowstonescience.org	  



Savanna-forest systems exhibit bistability in 
vegetation distribution 

Staver et al. 2011 (Ecology and Science) 

Changes	  in	  precipita,on	  can	  drive	  system	  flips	  



Fire separates savanna from forest within the intermediate 
climate envelope. 

Savanna/Forest	  Distribu,ons	  

Staver et al. 2011 (Ecology and Science) 



Carla	  Staver	  

KRUGER	  NATIONAL	  PARK,	  	  SAVANNA	  



dG
dt

= µS +νT −βGT

dS
dt

= βGT −ω(G)S −µS

dT
dt

=ω(G)S −νT

G + S +T =1

Staver et al. 2011 (Ecology) and Staver & Levin 
(Amer.Natur.) 

Grass	  

Saplings	  

Trees	  

Grass	  

ω(G
) (all	  tree)	   (all	  grass)	  



Archibald,	  Staver,	  Levin	  PNAS2011	  
Recrea,ng	  historical	  regimes	  

37	  

conditions for spread, can burn as much if not more of the
landscape than 100 fires burning under suboptimal conditions
(Fig. 2). However, in highly fragmented landscapes close to the
percolation threshold, ignition frequency can substantially in-
crease burned area, particularly when fire spread probability (λ) is
high enough to compensate for low connectivity (ρ)—i.e., pri-
marily during the dry season (Fig. 5). Thus, landscapes low in
connectivity are more responsive to changes in fire season and
ignition frequency than open landscapes. Areas that are highly
dissected by river channels, where the vegetation has increased
moisture content (38); areas with insufficient (<200 gm−2) grass
cover (39); or areas of sufficiently high forest/thicket cover, as
occurs in savanna-forest mosaics (40), seem to have intrinsically
low landscape connectivity. The spatial distribution of these

barriers can affect the precise percolation threshold (SI Materials
and Methods) (41) but should not qualitatively change the results.
It is therefore likely that human activities spread fire further into
these disconnected systems in the past, as is certainly the case in
forest-grassland mosaics today (42), and, because fire acts to
prevent forest encroachment into savannas, that this could have
affected the rates of forest expansion and contraction associated
with wetting and drying cycles in Africa.
The threshold responses of fire to parameters ρ and λ are

consistent with observed patterns. Archibald et al. (5) found
burned area to decrease suddenly when 40% of the landscape is
inflammable (covered with trees), and Hennenberg et al. (43)
also found thresholds (around 40% tree cover) where fire cannot
spread. Similarly, below a critical fireline intensity (FI; ∼1,400
kW·m−1), fires will not burn in savannas (16, 44).
This model necessarily presents a simplified perspective on the

evolution of human-driven fire regimes. We have largely ignored
people’s motivations for starting fires and the effect these have
had on spatial and temporal patterns of ignition. Hunter-gath-
erers light fires to attract game to the green regrowth and to
improve visibility and movement (2), whereas pastoralists light
fires to improve grazing land, and to reduce tick loads (45). By
contrast, agricultural communities light fire breaks to protect
their crops, and use fire to open new land for cropping and to
burn agricultural residue (46). In general, human ignitions are
clustered around settlements and concentrated in space (23).
These factors may have ramifications for the impacts that
humans have had on fire regimes, although we are inclined to
suggest that clustering of ignitions, particularly in areas that have
been intensively fragmented by humans, are likely to compound
the effects of landscape fragmentation observed herein.
Testing these results could extend beyond correlations with

charcoal data. Population-genetic studies of plants expected to
respond to dry season burning could corroborate the timing of
the predicted shift in fire regimes ∼200–300 kya. Carbon isotope
studies might test predictions of responsiveness to human igni-
tions across landscapes of varied connectivity. Better quantifi-
cation of spread probability (λ) diurnally, as well as seasonally,
would be useful, as would comparative studies in systems where
the timing of human impacts was different.
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Fig. 3. The effect of different human activities on fire spread. When ρ and
λ are above their threshold values, one or two ignitions can burn the
landscape. Below the threshold, the ignitions required to burn 50% of the
landscape rapidly increase to unrealistic numbers. When close to these
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iously flammable landscapes inflammable. Similarly, increasing λ through
dry season burning could make previously inflammable landscapes
flammable.
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Fig. 4. Broadly showing the six stages of human evolution used to determine parameters for the stochastic model runs. The parameters μ and ρ were derived
from published relationships between population density and fire density (B) and population density and land transformation (D), respectively; λ was de-
termined from field data on fire spread probability in the wet and dry seasons in a savanna national park (C). See Table 1 andMaterials and Methods for more
details on the parameterization. In B and D the data represent medians with 75th and 25th percentiles.
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Grass	  

Archibald	  et	  al.	  2009	  

The	  form	  of	  the	  transi,on	  func,ons	  can	  
be	  derived	  from	  fire	  percola,on	  models	  
(Archibald	  	  PNAS	  2011;	  Schertzer,	  Staver,	  Levin	  in	  prep.)	  



Staver et al. 2011 (Ecology) and Staver & Levin 2012 
(Amer.Natur.) 

G (all trees)    (all grass) 

Savanna/Forest	  Distribu,ons	  

ω(G) = µν
βG −ν

f1(G) =ω(G)

f2 (G) =
µν

βG −ν

f1"(G)> f2"(G)

At equilibrium: 

For stability: 



•  Responses	  to	  changes	  in	  
rainfall	  status	  will	  be	  rapid,	  
threshold	  transi,ons	  

•  Changes	  will	  not	  be	  linear	  or	  
easy	  to	  reverse	  

•  Similar	  phenomena	  in	  other	  
systems,	  such	  as	  lakes	  and	  
pathogen	  systems	  

Modified very slightly from Scheffer et al. 2003, Nature 

Precipita,on	  

Precipita,on	  



dG
dt

= µS +νT +φ(G)F −βGT −αGF

dS
dt

= βGT −ω(G)S −µS −αSF

dT
dt

=ω(G)S −νT −αTF

dF
dt

= (α 1−F( )−φ(G))F

G + S +T +F =1

Staver	  and	  Levin,	  American	  Naturalist	  2012	  

Adding	  Forest	  Trees	  (fire	  sensi,ve)	  



This	  model	  exhibits	  complex	  orbits.	  	  How	  real	  are	  they?	  

Full	  nonlinear	  analysis	  s,ll	  lacking	  

*Heteroclinic	  cycles.	  

Staver	  &	  Levin	  (American	  Naturalist,	  2012)	  



Lecture	  outline	  

•  Sta,s,cal	  mechanics	  of	  ecological	  
communi,es	  

•  Cri,cal	  transi,ons	  
•  Collec,ve	  phenomena	  and	  collec,ve	  mo,on	  

– Emergence	  and	  paIern	  forma,on	  
– Sta,s,cal	  mechanics	  





Vol 449|13 September 2007|doi:10.1038/nature06060!

Power	  laws	  can	  
arise	  in	  many	  ways	  

Null	  Model	  of	  	  
Complete	  	  
Spa>al	  	  
Randomness	  

Satellite	  
Observa>ons	  

Model	  with	  	  
local	  	  
facilita>on	  

Courtesy	  Kelly	  Caylor	  



Vegeta,on	  paIerns	  in	  semi-‐arid	  
landscapes	  are	  self-‐organized	  

Meron	  et	  al.	  	  2004.	  Chaos,	  Solitons	  &	  Fractals	  
Volume	  19,	  Issue	  2,	  January	  2004,	  Pages	  367–376	  



PaIern	  forms	  from	  a	  combina,on	  of	  
interac,on	  and	  redistribu,on	  



There is a long history concerned with 
the modeling of animal movements 

Haldane	   Fisher	   Wright	  



The null movement hypothesis: a  
random walk plus growth 

mathworld.wolfram.com	  

€ 

∂n /∂t = D(∂ 2n /∂x 2 +∂ 2n /∂y 2) + f (n)



50 € 

∂u
∂t

=F u,v( )+Du∇
2u

∂v
∂t

=G u,v( )+Dv∇
2v



Alan Turing posited the existence of two 
interacting chemicals (morphogens) in a 

homogeneous space 

Developmental	  Biology	  



    

∂u
∂t = F u,v( )+ Du∇

2u
∂v
∂t =G u,v( )+ Dv∇

2v



Dissipative structures 



Do such mechanisms underlie 
spatial patterns in ecology? 



Plankton are patchy on almost 
every scale 



56 

Could Turing apply to planktonic 
patchiness? 



57 

Turing mechanism didn’t work 



Zooplankton don’t move randomly, 
but aggregate 



Other approaches to movement 

•  Long-distance spatial contact process 
•  Correlated random walk 

hIp://privatewww.essex.ac.uk/~ecodling/	  



Other approaches to movement 

•  Anomalous diffusion 
– Variance increases as a power of time 

www.wikipedia.org	  
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Superdiffusion and encounter rates in diluted,
low dimensional worlds
F. Bartumeus1,a, P. Fernández2, M.G.E. da Luz3, J. Catalan4, R.V. Solé5, and S.A. Levin1

1 Department of Ecology and Evolutionary Biology & Princeton Environmental Institute, Princeton,
NJ 08544, USA

2 Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya, Colom 1,
08222 Terrassa (Barcelona), Spain

3 Departamento de Fisica, Universidade Federal do Parana, 81531-990 Curitiba-PR, Brazil
4 Centre d’Estudis Avançats de Blanes (CEAB), CSIC, Accés a la Cala Sant Francesc,
17300 Blanes (Girona), Spain

5 ICREA-Complex Systems Research Laboratory, Universitat Pompeu Fabra C/Dr. Aiguader 80,
08003 Barcelona, Spain

Abstract. Rate limitation due to encounters is fundamental to many ecological
interactions. Since encounter rate governs reaction rates, and thus, dynamics of
systems, it deserves systematic study. In classical population biology, ecological
dynamics rely on the assumption of perfectly mixed interacting entities (e.g.,
individuals, populations, etc.) in a spaceless world. The so-called mean field
assumption assumes that encounter rates are driven exclusively by changes in
the density of the interacting entities and not on how they are distributed or
move in space. Therefore, the mean field assumption does not give any insight
into relevant spatiotemporal statistical properties produced by the trajectories of
moving entities through space. In the present study, we develop spatially explicit
simulations of random walking particles (i.e., Lévy walkers) to evaluate encounter
rate constraints beyond the mean field assumption. We show that encounter
rate fluctuations are driven not only by physical aspects such as the size or the
velocity of the interacting particles, but also by different motion patterns. In
particular, superdiffusion phenomena might be relevant at low densities and/or
low spatial dimensionality. Finally, we discuss potential adaptive responses of
living organisms that may allow individuals to control how they diffuse through
space and/or the spatial dimensions employed in the exploration process.

1 Introduction

Encounter rates play a central role in population and community dynamics by determining
which and how many individuals, populations, and species can interact strongly with each other
or with abiotic variables at a specific location. A food item that is not encountered cannot be
eaten. Hence the dynamics of encounters hold a central position in foraging theory [11].
Indeed, physical encounter, that is, the meeting of interacting entities in a space, is the

first step in any ecological interaction (i.e., predator-prey, male-female, pollinization, habitat
selection, etc.). The encounter is preceded by movements of one or the two interacting entities
in one, two, or three dimensions (i.e., 1D, 2D, and 3D). However, too often in ecology, the
existence of rate limitation due to encounter constrains is not considered, and the possible
role of encounter rates in the governance of ecological dynamics is underestimated. Most

a e-mail: fbartu@princeton.edu
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Does	  Levy	  search	  op,mize?	  

Letters to Nature
Nature 401, 911-914 (28 October 1999) | doi:10.1038/44831; Received 10 May 1999; Accepted
12 August 1999

Optimizing the success of random searches

G. M. Viswanathan1,2,3, Sergey V. Buldyrev1, Shlomo Havlin1,4, M. G. E. da Luz6, E. P.

Raposo7 and H. Eugene Stanley1

Center for Polymer Studies and Department of Physics, Boston University, Boston,
Massachusetts 02215, USA

1.

International Center for Complex Systems and Departamento de Física Teórica e
Experimental, Universidade Federal do Rio Grande do Norte, 59072-970, Natal-RN, Brazil

2.

Departamento de Física, Universidade Federal de Alagoas, 57072-970, Maceió-AL, Brazil3.
Gonda-Goldschmied Center and Department of Physics, Bar Ilan University, Ramat Gan,
Israel

4.

Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138, USA5.
Departamento de Física, Universidade Federal do Paraná, 81531-970, Curitiba-PR, Brazil6.
Laboratório de Física Teórica e Computacional, Departamento de Física, Universidade
Federal de Pernambuco, 50670-901, Recife-PE, Brazil

7.

Correspondence to: G. M. Viswanathan1,2,3 Correspondence should be addressed to G.M.V.
(e-mail: Email: gandhi@fis.ufal.br).

We address the general question of what is the best statistical strategy to adapt in order
to search efficiently for randomly located objects ('target sites'). It is often assumed in
foraging theory that the flight lengths of a forager have a characteristic scale: from this
assumption gaussian, Rayleigh and other classical distributions with well-defined
variances have arisen. However, such theories cannot explain the long-tailed power-law

distributions1, 2 of flight lengths or flight times3, 4, 5, 6 that are observed experimentally.
Here we study how the search efficiency depends on the probability distribution of flight
lengths taken by a forager that can detect target sites only in its limited vicinity. We show
that, when the target sites are sparse and can be visited any number of times, an inverse
square power-law distribution of flight lengths, corresponding to Lévy flight motion, is an
optimal strategy. We test the theory by analysing experimental foraging data on selected
insect, mammal and bird species, and find that they are consistent with the predicted
inverse square power-law distributions.

Lévy flights are characterized by a distribution function

Unfortunately we are unable to provide accessible alternative text for this. If you require
assistance to access this image, or to obtain a text description, please contact npg@nature.com

Optimizing the success of random searches : Article : Nature http://www.nature.com/nature/journal/v401/n6756/full/401911...

1 of 9 12/30/13 1:49 PM
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Levy	  walks	  are	  just	  one	  of	  a	  variety	  of	  
more	  sophis,cated	  strategies	  

63	  
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Keller-Segel Model 



Lagrangian-Eulerian connections 

Flierl et at, 1999 





What is the relationship between an 
individual agent 



...and how it responds to its 
neighbors and local environment 





Lagrangian/Eulerian transformation 
Flierl,	  Grunbaum,	  Levin,	  Olson	  1999	  



Lagrangian/Eulerian transformation 



  

€ 

n x,v, t +δt( )=

d # x d # v PδX∫ (x − # x − # v δt ; # x , # v , t)

                        *PδV (v− # v − aδt ; # x , # v , t) n ( # x , # v , t)

Spatial/velocity density 

P   = probability particle at x´, velocity v´, time t 
has random jump δx = x-x´-v´δt, etc. 

€ 

δX



Lagrangian/Eulerian transformation 



    

∂
∂tn(x,v,t)=− ∂

∂xi
[vin(x,v,t)

−
∂
∂vi

[ain(x,v,t)]

+1
2

∂2

∂vi ∂vj
[γ ij n(x,v,t)]

 Closure and continuum equation	




If closures are good, these 
approximations work well 

Otherwise,	  equa,on-‐free	  methods	  (Kevrekidis)	  
Flierl	  et	  al.,	  JTB	  1999	  



But real aggregations are 
heterogeneous assemblages of 

individuals 



Claudo	  Carere	  
StarFLAG	  EU	  FP6	  project	  



Couzin, Krause, Franks, Levin 

Iain	  Couzin/BBC	  
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So the direction chosen by informed individuals must 
reconcile these tendencies.    

si(t) 

di(t+Δt) =  
si(t) + ω gi(t)	

si(t) + ω gi(t)	
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Courtey	  Iain	  Couzin	  



1 informed individuals in group of 100. 
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5 informed individuals in group of 100. 
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10 informed individuals in group of 100. 

C
ol

le
ct

iv
e 

de
ci

si
on

-m
ak

in
g 

Courtey	  Iain	  Couzin	  



Animal groups may be led by a 
small number of individuals 

From	  Couzin	  et	  al.,	  2005	  



85	  

Buchman	  et	  al.	  



Difference in preference 
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Compe,,on	  and	  consensus	  
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Kuramoto	  model	  
Leonard,	  Couzin,	  Levin,	  etc.	  

Gradient	  system,	  so	  all	  solu,ons	  go	  to	  equilibrium	  	  



92 

Courtesy,	  Ben	  Nabet	  



93 
Courtesy,	  Ben	  Nabet	  



Nabet,	  Leonard,	  et	  al.	  
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Courtesy,	  Ben	  Nabet	  



Courtesy	  Ben	  Nabet	  



Preliminary conclusions 

•  Naïve individuals are crucial to consensus 
•  Non-spatial models miss key detail 
•  Multi-scale analyses also essential 





Coupled	  oscillator	  approxima,on	  
Leonard	  et.	  al,	  PNAS	  

In	  subgroup	  1,	  represent	  as	  

where	  coupling	  coefficients	  respond	  dynamically	  



Coupled	  oscillator	  approxima,on	  
Leonard	  et.	  al,	  PNAS	  

In	  subgroup	  1,	  represent	  as	  

where	  coupling	  coefficients	  respond	  dynamically	  



Conclusions	  from	  analysis	  



dajl
dt

¼ K2
!
1− ajlðtÞ

"
ajlðtÞ

#
ρjlðtÞ− r

$
: [5]

Equilibrium solutions correspond to ajl(t) = 0 and ajl(t) = 1.
The state space for the model of Eqs. 1–3 and 5 is compact
because each θj is an angle and each ajl is a real number in the
interval [0, 1].

Results
The model exhibits fast and slow timescale behavior even for
moderate values of gains K1 and K2. Let N k be the subset of
indexes corresponding to individuals j in subgroup k for k = 1, 2,
3. For an initially aggregated group, the fast dynamics corre-
spond to the individuals in subgroup k (for each k = 1, 2, 3),
quickly becoming tightly coupled with one another: The coupling
weights ajl(t) for j ∈ N k and l ∈ N k converge to 1, and the di-
rection of motion θj(t) for each j ∈ N k converges to a common
angle Ψk(t). Also, for each pair of subgroups m and n where m ≠
n the coupling weights ajl(t) for j ∈ Nm and l ∈ N n quickly ap-
proach a common value of either 0 or 1. Thus, after the fast
transient, individuals in each subgroup move together in the
same direction and the coupling between subgroups becomes
constant; the slow dynamics describe the evolution of the average
direction of each of the three possibly interacting subgroups.
We can formally derive the fast and slow timescale dynamics

in the case that ε ¼ maxð1=K1; 1=K2Þ<< 1, using singular per-
turbation theory (23). We define for k = 1, 2, 3

Ψk ¼ arg

 
1

vcNk

X

l∈N k

vl

!

; ρk ¼

%%%%%
1

vcNk

X

l∈N k

vl

%%%%%:

Then Ψk is the average direction of motion of subgroup k and ρk
is the magnitude of the normalized average speed of subgroup k.
The variable ρk provides a measure of synchrony of all of the
heading directions in subgroup k; if ρk = 1, then all individuals in
subgroup k are heading in the same direction.
For every j = 1, . . . , N we associate the value of k such that j ∈

N k, and we define a variable αj as a function of Nkθj −
P

l∈N k
θl so

that it quantifies how close the heading of individual j is to the
average direction Ψk of its subgroup k. Rewriting Eqs. 1–4 in
terms of coordinates Ψk, αj, and ajl reveals that the variables Ψk
evolve at a slow (order 1) rate whereas αj and ajl evolve at a fast
(order 1/ε) rate (SI Text).
The fast dynamics have a number of isolated solutions. We

consider isolated solutions that correspond to ρk = 1 and ajl = 1,
for both j and l in subgroup k for k = 1, 2, 3. These solutions
correspond to those that emerge from groups that are initially
aggregated and correspond to every individual j in subgroup k
heading in the same direction Ψk. It follows that for these sol-
utions, every coupling weight ajl between an individual j in sub-
group 1 and an individual l in subgroup 2 takes the same value
A12. Likewise, ajl = A13 for j in subgroup 1 and l in subgroup 3
and ajl = A23 for j in subgroup 2 and l in subgroup 3. Each of A12,
A13, and A23 can take the value 0 or 1; so there are a total of
eight such solutions.
Each of these eight solutions defines an invariant manifold:

Each invariant manifold is defined such that if the dynamics start
with synchronized subgroups and interconnections between
subgroups defined by constants A12;A13;A23 each having value of
0 or 1, then they remain so for all time.
We identify the eight manifolds as follows. Manifold M101 is

defined by (A12, A13, A23) = (1, 0, 1) and manifold M110 by (A12,
A13, A23) = (1, 1, 0). M101 describes the case in which the two
informed subgroups 1 and 2 are coupled but the uninformed
subgroup 3 is coupled only with informed subgroup 2; M110
describes the symmetric case in which subgroups 1 and 2 are
coupled and subgroup 3 is coupled only with subgroup 1. Man-
ifold M000, defined by (A12, A13, A23) = (0, 0, 0), corresponds to
decoupled subgroups. Manifold M010 is defined by (A12, A13,
A23) = (0, 1, 0) where the coupling is between informed

subgroup 1 and the uninformed subgroup 3 as shown in Fig. 1,
Left. Manifold M001, defined by (A12, A13, A23) = (0, 0, 1),
describes the case symmetric to M010, where the coupling is
between informed subgroup 2 and the uninformed subgroup 3 as
shown in Fig. 1, Right. Manifold M100, defined by (A12, A13, A23)
= (1, 0, 0), corresponds to coupling only between the two in-
formed subgroups 1 and 2. Manifold M011, defined by (A12, A13,
A23) = (0, 1, 1), describes the case in which the uninformed
subgroup 3 is coupled with each informed subgroup 1 and 2, but
the two informed subgroups are not coupled with each other.
Manifold M111, defined by (A12, A13, A23) = (1, 1, 1), corre-
sponds to coupling among all three subgroups.
The derived (slow) dynamics on each of the eight manifolds

are defined by the rate-of-change of the average direction of
motion for each of the three subgroups:

dΨ1

dt
¼ sinð!θ1 −Ψ1ðtÞÞþ

K1

N
ðA12N2sinðΨ2ðtÞ−Ψ1ðtÞÞ

þ A13N3sinðΨ3ðtÞ−Ψ1ðtÞÞÞ

dΨ2

dt
¼ sin

#
!θ2 −Ψ2

!
t
"$

þ K1

N
ðA12N1sinðΨ1ðtÞ−Ψ2ðtÞÞ

þ A23N3sinðΨ3ðtÞ−Ψ2ðtÞÞÞ

dΨ3

dt
¼ K1

N
ðA13N1sinðΨ1ðtÞ−Ψ3ðtÞÞ

þA23N2sinðΨ2ðtÞ−Ψ3ðtÞÞÞ:
[6]

Each of the eight invariant manifolds is defined to be stable if
solutions corresponding to initial conditions near the manifold
approach the manifold with time; in this case the full dynamical
solution is well approximated by the stable solution of the slow
dynamics of Eq. 6. We can determine conditions under which
each of the eight manifolds is stable by computing the stability of
the boundary layer dynamics (fast dynamics) evaluated at the
stable solution(s) of the slow dynamics (23) (SI Text). Without
loss of generality we set !θ1 ¼ 0 and 0≤ !θ2 ≤ π ; thus, the differ-
ence in preferred directions !θ2 − !θ1 = !θ2. We focus on the case in
which the two informed subgroups have equal population size;
i.e., we take N1 = N2.
Our analysis shows that manifolds M101 and M110 (where the

uninformed subgroup couples with only one of the coupled informed
subgroups) are always unstable, but there are conditions such that
the remaining six manifolds are stable. The manifolds M010 and
M001 (where the uninformed subgroup couples with only one of the
uncoupled informed subgroups) are both stable if and only if

cos!θ2 < 2r2 − 1;

i.e., if and only if the difference in preferred direction !θ2 > !θc,
where the critical difference in preference direction !θc is given by

!θc ¼ cos− 1!2r2 − 1
"
: [7]

On the other hand, manifold M111 (where all subgroups are
coupled) is stable if !θ2 < !θc, i.e., if

Fig. 1. Coupling in manifolds M010 (Left) and M001 (Right) among sub-
groups 1, 2, and 3 as indicated by arrows.

Leonard et al. PNAS | January 3, 2012 | vol. 109 | no. 1 | 229
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Slow	  ,me	  scale	  

dajl
dt

¼ K2
!
1− ajlðtÞ

"
ajlðtÞ

#
ρjlðtÞ− r

$
: [5]

Equilibrium solutions correspond to ajl(t) = 0 and ajl(t) = 1.
The state space for the model of Eqs. 1–3 and 5 is compact
because each θj is an angle and each ajl is a real number in the
interval [0, 1].

Results
The model exhibits fast and slow timescale behavior even for
moderate values of gains K1 and K2. Let N k be the subset of
indexes corresponding to individuals j in subgroup k for k = 1, 2,
3. For an initially aggregated group, the fast dynamics corre-
spond to the individuals in subgroup k (for each k = 1, 2, 3),
quickly becoming tightly coupled with one another: The coupling
weights ajl(t) for j ∈ N k and l ∈ N k converge to 1, and the di-
rection of motion θj(t) for each j ∈ N k converges to a common
angle Ψk(t). Also, for each pair of subgroups m and n where m ≠
n the coupling weights ajl(t) for j ∈ Nm and l ∈ N n quickly ap-
proach a common value of either 0 or 1. Thus, after the fast
transient, individuals in each subgroup move together in the
same direction and the coupling between subgroups becomes
constant; the slow dynamics describe the evolution of the average
direction of each of the three possibly interacting subgroups.
We can formally derive the fast and slow timescale dynamics

in the case that ε ¼ maxð1=K1; 1=K2Þ<< 1, using singular per-
turbation theory (23). We define for k = 1, 2, 3

Ψk ¼ arg

 
1

vcNk

X

l∈N k

vl

!

; ρk ¼

%%%%%
1

vcNk

X

l∈N k

vl

%%%%%:

Then Ψk is the average direction of motion of subgroup k and ρk
is the magnitude of the normalized average speed of subgroup k.
The variable ρk provides a measure of synchrony of all of the
heading directions in subgroup k; if ρk = 1, then all individuals in
subgroup k are heading in the same direction.
For every j = 1, . . . , N we associate the value of k such that j ∈

N k, and we define a variable αj as a function of Nkθj −
P

l∈N k
θl so

that it quantifies how close the heading of individual j is to the
average direction Ψk of its subgroup k. Rewriting Eqs. 1–4 in
terms of coordinates Ψk, αj, and ajl reveals that the variables Ψk
evolve at a slow (order 1) rate whereas αj and ajl evolve at a fast
(order 1/ε) rate (SI Text).
The fast dynamics have a number of isolated solutions. We

consider isolated solutions that correspond to ρk = 1 and ajl = 1,
for both j and l in subgroup k for k = 1, 2, 3. These solutions
correspond to those that emerge from groups that are initially
aggregated and correspond to every individual j in subgroup k
heading in the same direction Ψk. It follows that for these sol-
utions, every coupling weight ajl between an individual j in sub-
group 1 and an individual l in subgroup 2 takes the same value
A12. Likewise, ajl = A13 for j in subgroup 1 and l in subgroup 3
and ajl = A23 for j in subgroup 2 and l in subgroup 3. Each of A12,
A13, and A23 can take the value 0 or 1; so there are a total of
eight such solutions.
Each of these eight solutions defines an invariant manifold:

Each invariant manifold is defined such that if the dynamics start
with synchronized subgroups and interconnections between
subgroups defined by constants A12;A13;A23 each having value of
0 or 1, then they remain so for all time.
We identify the eight manifolds as follows. Manifold M101 is

defined by (A12, A13, A23) = (1, 0, 1) and manifold M110 by (A12,
A13, A23) = (1, 1, 0). M101 describes the case in which the two
informed subgroups 1 and 2 are coupled but the uninformed
subgroup 3 is coupled only with informed subgroup 2; M110
describes the symmetric case in which subgroups 1 and 2 are
coupled and subgroup 3 is coupled only with subgroup 1. Man-
ifold M000, defined by (A12, A13, A23) = (0, 0, 0), corresponds to
decoupled subgroups. Manifold M010 is defined by (A12, A13,
A23) = (0, 1, 0) where the coupling is between informed

subgroup 1 and the uninformed subgroup 3 as shown in Fig. 1,
Left. Manifold M001, defined by (A12, A13, A23) = (0, 0, 1),
describes the case symmetric to M010, where the coupling is
between informed subgroup 2 and the uninformed subgroup 3 as
shown in Fig. 1, Right. Manifold M100, defined by (A12, A13, A23)
= (1, 0, 0), corresponds to coupling only between the two in-
formed subgroups 1 and 2. Manifold M011, defined by (A12, A13,
A23) = (0, 1, 1), describes the case in which the uninformed
subgroup 3 is coupled with each informed subgroup 1 and 2, but
the two informed subgroups are not coupled with each other.
Manifold M111, defined by (A12, A13, A23) = (1, 1, 1), corre-
sponds to coupling among all three subgroups.
The derived (slow) dynamics on each of the eight manifolds

are defined by the rate-of-change of the average direction of
motion for each of the three subgroups:

dΨ1

dt
¼ sinð!θ1 −Ψ1ðtÞÞþ

K1

N
ðA12N2sinðΨ2ðtÞ−Ψ1ðtÞÞ

þ A13N3sinðΨ3ðtÞ−Ψ1ðtÞÞÞ

dΨ2

dt
¼ sin

#
!θ2 −Ψ2

!
t
"$

þ K1

N
ðA12N1sinðΨ1ðtÞ−Ψ2ðtÞÞ

þ A23N3sinðΨ3ðtÞ−Ψ2ðtÞÞÞ

dΨ3

dt
¼ K1

N
ðA13N1sinðΨ1ðtÞ−Ψ3ðtÞÞ

þA23N2sinðΨ2ðtÞ−Ψ3ðtÞÞÞ:
[6]

Each of the eight invariant manifolds is defined to be stable if
solutions corresponding to initial conditions near the manifold
approach the manifold with time; in this case the full dynamical
solution is well approximated by the stable solution of the slow
dynamics of Eq. 6. We can determine conditions under which
each of the eight manifolds is stable by computing the stability of
the boundary layer dynamics (fast dynamics) evaluated at the
stable solution(s) of the slow dynamics (23) (SI Text). Without
loss of generality we set !θ1 ¼ 0 and 0≤ !θ2 ≤ π ; thus, the differ-
ence in preferred directions !θ2 − !θ1 = !θ2. We focus on the case in
which the two informed subgroups have equal population size;
i.e., we take N1 = N2.
Our analysis shows that manifolds M101 and M110 (where the

uninformed subgroup couples with only one of the coupled informed
subgroups) are always unstable, but there are conditions such that
the remaining six manifolds are stable. The manifolds M010 and
M001 (where the uninformed subgroup couples with only one of the
uncoupled informed subgroups) are both stable if and only if

cos!θ2 < 2r2 − 1;

i.e., if and only if the difference in preferred direction !θ2 > !θc,
where the critical difference in preference direction !θc is given by

!θc ¼ cos− 1!2r2 − 1
"
: [7]

On the other hand, manifold M111 (where all subgroups are
coupled) is stable if !θ2 < !θc, i.e., if

Fig. 1. Coupling in manifolds M010 (Left) and M001 (Right) among sub-
groups 1, 2, and 3 as indicated by arrows.
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For some range of parameter values for whichM010 andM001
are stable, it is possible that M000, M100, and/or M011 are also
stable. This means that even if M010 and M001 are stable, for
some initial conditions the solution may converge to the stable
solutions of M000, M100, and/or M011, none of which corre-
sponds to a collective decision for preference 1 or 2. In fact, the
only stable solution on M000 corresponds to the three subgroups
moving apart. M100 can have up to two stable solutions and
M011 can have one stable solution; all of these correspond to
compromise solutions. Therefore, we examine the conditions
for stability of M000, M100, and M011 to isolate the parameter
space in which M010 and M001 are the only stable manifolds
among the eight under investigation.
The condition !θ2 > !θc is necessary for stability of M000.

However, M000 is unstable as long as the initial average heading
of the uninformed individuals is greater than −!θ2 and less than
2!θ2, i.e., as long as the uninformed individuals are not headed in
a direction that is dramatically different from the average of the
two preferred directions. The latter is not so likely for initially

aggregated individuals. Further, the likelihood of M000 being
stable shrinks as !θ2 grows.
M100 (coupled informed subgroups) is also unstable if the

initial average heading of the uninformed is not dramatically
different from the average of the two preferred directions.
Otherwise, if !θ2 < !θc, M100 is stable about its first stable solution.
The second stable solution of M100 does not exist if K1 < 2N/N1
and is not attracting if

r>
ffiffiffiffiffiffiffiffiffiffiffiffi
1− d2

p
; d ¼ Nsinð!θ2=2Þ

2N1K1
: [9]

The condition !θ2 > !θc is a necessary condition for stability of
M011 (uninformed coupled to uncoupled informed subgroups).
However, M011 is unstable if either of the following is satisfied:

r<
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ν2
p or r>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ν2

p

s

; [10]

where

ν ¼ Nsinð!θ2=2Þ
N3K1 þ Ncosð!θ2=2Þ

:

Table 1 summarizes the possible coexistence of stable manifolds
for different parameter ranges, assuming N3 > 2N1. For the
initial conditions we consider, M000 and M100 will be unstable,
in which case, when M111 is stable, it is exclusively stable among
the eight manifolds. Further, the parameter values that yield the
exclusive stability of M010 and M001 among the eight invariant
manifolds are those that satisfy Eq. 10; these values are shown as
dark gray regions in the parameter space plots in Fig. 5. In three
plots, the green curve plots r as a function of !θ2 in the case of
equality in the first condition of Eq. 10, and the orange curve
plots r as a function of !θ2 in the case of equality in the second
condition of Eq. 10. In each of the plots, N1 = N2 = 5 and K1 =
2. The number of uninformed individuals N3 ranges from N3 =
11 (Fig. 5, Upper Right) to N3 = 50 (Fig. 5, Lower Left) to N3 =
500 (Fig. 5, Lower Right). The plots show the dark gray region
expanding with increasing N3; i.e., the region of parameter space
that ensures unique stability of the collective decision for one
or the other preference expands with increasing number of un-
informed individuals. An increase in strength of social inter-
action K1 also increases this parameter space.

Discussion
The continuous-time, deterministic, dynamical system model
presented and analyzed in this paper approximates the decision
making of a group of informed and uninformed individuals on
the move as studied in ref. 1. In the case that the two informed
subgroups 1 and 2 are equally sized (N1 = N2), it is shown in ref.
1 that the whole group will decide with high probability to move
in one of the two preferred directions, as long as the difference in
directions !θ2 is greater than some critical threshold. Otherwise,
the group will compromise.
Our stripped-down model retains dynamically changing, local

social interactions, but neglects some of the details of the zonal-
based interaction rules of ref. 1. Nonetheless, it provides the

Table 1. Possible combinations of stable (S) and unstable (U)
manifolds given N3 > 2N1

M101 M110 M000 M010 M001 M100 M011 M111

U U S S S U U U
U U S S S U S U
U U S S S S U U
U U S S S S S U
U U U U U S U S

Fig. 4. Stability of decisions (onM010 andM001) versus compromise (onM111)
illustrated in a plot of direction of uninformed subgroup Ψ3 as a function of
preference difference !θ2. Here r = 0.707 and so !θc ¼ π=2. A solid line denotes
a stable solution and a dashed line denotes an unstable solution.

Fig. 5. Curves in the space of parameters !θ2 and r that determine the stability
ofmanifoldsM010 andM001 and, thus, the stability of a collective decision. In all
plots, K1 = 2 and N1 = N2 = 5. (Upper Left) Light gray parameter space corre-
sponds to stability ofM010 andM001, independent ofN3. (Upper Right)N3 = 11.
(Lower Left) N3 = 50. (Lower Right) N3 = 500. Dark gray parameter space cor-
responds to M010 and M001 being the only stable manifolds among the eight
invariant manifolds studied. The dark gray parameter space increases with in-
creasing number of uninformed individuals N3.

Leonard et al. PNAS | January 3, 2012 | vol. 109 | no. 1 | 231

EC
O
LO

G
Y

Subscripts	  refer	  to	  A12,	  A13,	  A23	  



Lecture	  outline	  

•  Sta,s,cal	  mechanics	  of	  ecological	  
communi,es	  

•  Cri,cal	  transi,ons	  
•  Collec,ve	  phenomena	  and	  collec,ve	  mo,on	  

– Emergence	  and	  paIern	  forma,on	  

•  Conflict	  and	  collec,ve	  ac,on	  
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•  How	  many	  leaders?	  
•  How	  many	  followers?	  
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Distributed, communicating 
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Recent	  work	  :	  The	  evolu,on	  of	  collec,ve	  migra,on	  



GuIal	  et	  al.	  
Simple	  model:	  wide	  range	  of	  dynamics	  

	  	  	  	  Gradient	  detec>on	  ability	  
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ci
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it
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Brownian	  swarms	  

Solitary	  	  
Migra>ons	  

Random	  walking	  
individuals	  

Collec,ve	  Migra,on	  
Migratory	  	  
Benefits	  per	  	  
indivudal	  	  

Thanks	  to	  Iain	  Couzin	  



Evolu,onary	  branching:	  leaders	  and	  
followers	  

•  Small	  frac,on	  of	  popula,on	  evolve	  to	  be	  leaders	  (large	  ωg	  but	  small	  ωs)	  

•  the	  rest	  naively	  follow	  others	  (small	  ωg;	  large	  ωs)	  

	   	  	  GuIal	  and	  Couzin,	  PNAS,	  2010	   Thanks	  to	  Iain	  Couzin	  
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Natural	  selec,on	  

•  Select	  for	  highest	  average	  migra,on	  speed,	  
minus	  a	  cost	  func,on	  



Evolu,on:	  
In	  absence	  of	  social	  informa,on,	  

fitness	  is	  

€ 

F = exp(−σ2 /4xg )exp(−cxg
2)

Mean Velocity Penalty 





Add	  these	  together	  

€ 

dθ t = (xgdθg + xsdθ s) /(xg + xs)





Conclusions	  


