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The theory of infectious diseases has 
a rich history	
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Despite a century of elegant theory, 
new diseases emerge, old reemerge	



http://edie.cprost.sfu.ca/gcnet	
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Antibiotic resistance threatens the 
effectiveness of our most potent 

weapons against bacterial infections	
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Significant theoretical challenges 
remain	



www.calcsea.org	
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Whom should we vaccinate?	



www.nursingworld.org	
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Whom should we vaccinate?	



www-personal.umich.edu/~mejn	
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Prediction is difficult	



•  Disease systems are complex, characterized by 
nonlinearities and sudden flips	



image.guardian.co.uk/ 
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 encarta.msn.com 

www.who.int 
www.nobel.org 

lshtm.ac.uk	
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Many important diseases exhibit 
oscillations on multiple temporal and 

spatial scales	
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Measles in the U.K.; Grenfell et al. 
2001 (Nature)	
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Influenza A reemerges year after year, 
despite the fact that infection leads to 

lifetime immunity to a strain	
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U.S. mortality in the 20th century 
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Latent 
E	



EPIDEMICS—Classical Theory	


(Kermack - McKendrick)	
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Simplest SIR Model	


(No latency)	
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dS
dt
= −βSI

dI
dt
=βSI −γ I

dR
dt
=γ I
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http://mathbio.colorado.edu/mediawiki/index.php/Image:Sir.png	



dS
dt
= −βSI

dI
dt
=βSI −γ I

dR
dt
=γ I



22	



dS
dt
= −βSI

dI
dt
=βSI −γ I

dR
dt
=γ I
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dI
dS

= −1+γ /βS

€ 

I = −S + (γ /β)lnS



24	



€ 

dI
dS

= −1+γ /βS

€ 

I = −S + (γ /β)lnS

or

S + I − (γ /β)lnS = constant
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and states that in order to have an outbreak, the number of secondary cases (in
a population of N individuals and S

0

susceptibles) from a single infective must
be greater than one.

Figure 9: Phase plane for problem (4).

A phase portrait for the (S, I) trajectories of problem (4) is shown in Figure
9. Actually all trajectories are represented by the equations

S + I ° ∞

∏

0

lnS = const

for diÆerent values of the constant which depends on the initial values. From this
we obtain the value of S1 = lim

t!1
S(t) and is implicitely given by the equation

S1 °
∞

∏

0

lnS1 = S

0

+ I

0

° ∞

∏

0

lnS

0

(11)

3 Disease endemicity

The analysis of the simple outbreak of an epidemics shows that the epidemics
stops and decays due to the depletion of susceptibles below the threshold value

S

th

=
∞

∏

0

=
N

R
0

.

Thus sustained infections must occur in the presence of susceptibles replace-
ment. Two diÆerent mechanism may lead to such replacement and consequently
to endemic states of the disease. The first is related to non-immunizing diseases,
the other to demographic input of susceptible newborns.
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Modified from notes 	


The Mathematical Modeling of Epidemics by Mimmo Ianneli 2005	



S + I − (γ / β)lnS = constant

γ / β)

S*=γ/β	
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€ 

e.g. dS
dt

= a + bN( ) −βSI − µS +ωR

or dS
dt

= a + bN( )−βS I
N
−µS +ωR

S Births 
Immigrants	



Loss of immunity	



infection	



deaths	



where N is total population size	
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e.g. dI
dt
=βSI −µI − γI

or dI
dt
=βS I

N
−µI − γI

I	

infection	

 removal	



deaths	
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e.g. dI
dt
=βSI −µI − γI

or dI
dt
=βS I

N
−µI − γI

I	

infection	

 removal	



deaths	
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Threshold for outbreak or endemic	



that is,	



βSI − µI − γI >0;

Rs =
βS
µ+γ

>1

e.g. dI
dt
=βSI −µI − γI

or dI
dt
=βS I

N
−µI − γI
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€ 

R0 = βN ⋅
1

µ + γ
>1

Secondary
infections

time


Average 
infectious

period



Thus R0 is the #secondary/primary infection.	



Rs =
βS
µ+γ

>1
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Control strategies focus on R	



Rs =
βS
µ+γ

>1
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Interpretation if threshold is exceeded	
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Complications	



www.lareau.org	
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Lecture outline	
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Oscillations	
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Oscillations	
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Oscillations	
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Oscillations	
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Drift variation 	
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Shift variation (reassortment)	



And now a new H1N1	
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The “Spanish Flu” of 1918 



42	



Influenza A capsid 
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two-­‐strain	
  model	
  

n	
  strains	
  

~	
  2n	
  variables	
  

Courtesy Josh Plotkin	





lin,	
  andreasen,	
  levin	
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Courtesy Josh Plotkin	
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On State-Space Reduction in Multi-Strain
Pathogen Models, with an Application
to Antigenic Drift in Influenza A
Sergey Kryazhimskiy1*, Ulf Dieckmann2, Simon A. Levin3, Jonathan Dushoff3,4
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Many pathogens exist in phenotypically distinct strains that interact with each other through competition for hosts.
General models that describe such multi-strain systems are extremely difficult to analyze because their state spaces are
enormously large. Reduced models have been proposed, but so far all of them necessarily allow for coinfections and
require that immunity be mediated solely by reduced infectivity, a potentially problematic assumption. Here, we
suggest a new state-space reduction approach that allows immunity to be mediated by either reduced infectivity or
reduced susceptibility and that can naturally be used for models with or without coinfections. Our approach utilizes the
general framework of status-based models. The cornerstone of our method is the introduction of immunity variables,
which describe multi-strain systems more naturally than the traditional tracking of susceptible and infected hosts.
Models expressed in this way can be approximated in a natural way by a truncation method that is akin to moment
closure, allowing us to sharply reduce the size of the state space, and thus to consider models with many strains in a
tractable manner. Applying our method to the phenomenon of antigenic drift in influenza A, we propose a potentially
general mechanism that could constrain viral evolution to a one-dimensional manifold in a two-dimensional trait
space. Our framework broadens the class of multi-strain systems that can be adequately described by reduced models.
It permits computational, and even analytical, investigation and thus serves as a useful tool for understanding the
evolution and ecology of multi-strain pathogens.

Citation: Kryazhimskiy S, Dieckmann U, Levin SA, Dushoff J (2007) On state-space reduction in multi-strain pathogen models, with an application to antigenic drift in
influenza A. PLoS Comput Biol 3(8): e159. doi:10.1371/journal.pcbi.0030159

Introduction

Microbial pathogens are tremendously diverse. Pathogens
that cause one and the same disease may differ remarkably in
both their genotype and their phenotype, like in HIV/AIDS
[1], influenza [2], malaria [3], and meningitis [4]. Phenotypi-
cally different variants of the same pathogen are called
strains. If several strains exist in a host population, they
interact with each other in two ways.

The first type of interaction may be referred to as
ecological interference [5,6]. For many infectious diseases, a
host infected with one strain is removed, for the duration of
the disease, from the population of hosts susceptible to the
pathogen. This is because (a) the immune system of the host
becomes activated upon infection by the first strain, so that it
is hard for a second strain to enter and/or replicate in this
host, and (b) the infected host may be physically removed
from the susceptible population, by dying or staying at home.
Ecological interference takes place even between unrelated
pathogens [6].

The second type of interaction, referred to as cross-
immunity interference, is specific to different strains of the
same pathogen: these can confer full or partial immunity to
each other. This means that a host infected with one strain
becomes substantially less susceptible to certain other
strains of the pathogen for a prolonged period of time
after the initial infection is cleared. Cross-immunity is
highest between phenotypically similar strains. Since phe-
notypic similarity usually implies recent common ancestry, a

pathogen’s ecology is thus intrinsically entangled with its
evolution.
Understanding the dynamics of multi-strain pathogens at

a general theoretical level turns out to be extremely
difficult. Numerous models have been proposed during the
past twenty years (e.g., [3,7–9]). Although these models share
many similarities, they substantially differ in particulars,
often resulting in conflicting model predictions. In conse-
quence, there is little agreement as to how best to gain
insights into the ecology and evolution of multi-strain
pathogens. Models of multi-strain pathogens can be either
equation- or agent-based. Agent- or individual-based models
have recently become increasingly elaborate and interesting
[10–13], largely due to an increase in computational
capabilities. Since these models, however, are not designed
for analytical tractability, we do not dwell on this type of
model here.
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HIV-­‐1	
  env	
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  HA	
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  1997	
  

Thanks to Josh Plotkin	
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Epidemiological modeling of flu	
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The nature of oscillations in influenza A	
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Lecture outline	
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Bush, Fitch, Cox 
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Empirical study of ���
HA evolution	



•  Database of 560 aligned H3-subtype HA1 
sequences, 329 aa long	
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“Distance” between ���
HA sequences	



•  Measure distance as sum over each pairwise acid:	



•  Amino-acid metrics d:	


–  Binary (Hamming); ignores synonymous change 
–  Stereochemical (Miyata) 
–  Replacement frequencies (PAM matrix)	



∑
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Clustering sequence data	



•  Method	


–  Choose threshold distance d 
–  Join sequences within distance d 
–  Clusters are connected components	



•  Result	


–  Cluster hierarchy, as d varies 
–  Cluster size curve	



Clustering complementary to phylogeny 	
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HA cluster size curve 
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Timeseries of viral clusters 
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The nature of oscillations in influenza A	
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academic.brooklyn.cuny.edu	





Influenza hemagglutinin (HA) and antibody 
interference:Ndifon, Wingreen, Levin	



Antibody interference is one facet of Peter Nara’s theory of 
deceptive imprinting.	



(Paul Digard)	



Influenza A 	



Wingreen	





Current work:���
Does antibody interference affect influenza 

population genetics? 	



Koelle et al., Science 2006	
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Lecture outline	
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Problems of The Commons	



www.aisobservers.com	
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Problems of The Commons	



pubs.acs.org	



images.usatoday.com	
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Problems of The Commons	



www.bath.ac.uk	
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Antibiotic resistance is on the rise	



www.wellcome.ac.uk	
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Would you deny your child antibiotics to 
maintain global effectiveness?	
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Antibiotic resistance is an increasing 
problem	
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Reasons for rise of antibiotic resistance	



www.history.navy.mil/ac	
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Hospitals are a major source of spread	



Methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus 
(VRE) isolates by hospital day of admission. Early peak corresponds to patients entering the 
hospital with MRSA or VRE bacteremia.  Later peak likely represents nosocomial acquisition. 
(San Francisco County) 

Huang et al, Emerging Infectious Diseases, 2002	





74	





75	



Individuals may harbor ARB on 
admission…carriers	
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Individual movement���
Basic model structure	



Smith et al, PNAS 2004	
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Individual movement���
Basic model structure	



Smith et al, PNAS 2004	
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Bigger hospitals have bigger problems	
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Hospitals in larger cities have larger 
problems	





80	



Smith, Levin, Laxminarayan	
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Lecture outline	
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Social norms and medical practice	
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Social norms and medical practice���
Games among	





85	



Dushoff et 
al.	


McDonnell 
Social 
Norms 
Group	
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McDonnell #2(Buchman et al.) ���
J. Am. College of Surgeons	





Modeling 	



•  How are behaviors sustained?	


•  When do they shift?	


•  How can we intervene (where on the 

network)?	


•  How can the public goods challenges be 

addressed (Dixit?	
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blog-msb.embo.org	
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Conclusions	




