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Human papillomavirus

 Over 100 different strains

» 30-40 strains are transmitted through sexual
contact

« HPV causes:
— 5% of all cancers
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HPV infections

HPV infection results in

: ervix —
« genital warts s
] Anus [l
* cervical cancer N B HPV-induced
. Vagina/Vulva [l ] O Total
* penile cancer ons B
* anal cancer Vouth [
* respiratory Throat [T}
papi”omatosis 0 100,000 200,000 300,000 400,000 500,000

Annual number of cases worldwide

(vertical transmission)
...requiring frequent surgery.
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Prevalence in women

Including harmless strains, estimates are:
20 year old women: 20-40%

College women: >40%

Lifetime risk: 75%

(detection relies upon the pap smear, which
detects cellular abnormalities caused by
HPV)

Acquisition to malignancy takes >10 years

Cervical cancer is the second most common
cause of death from cancer in women.
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Infections in the US

» 6,200,000 infections per year

* 14,000 women diagnosed with cervical
cancer each year, leading to...

[ Incidence rate M Mortality rate
20.0 Taux d'incidence  Taux de mortalité

15.0 . 1

a 3A_
n ©
nn v

10.0

5.0

70-74 [

75-79 mmmwm

2024 [
80-84
85+

Rate (per 100,000)
Taux (pour 100 000)
S

1519 !

2529 |

3034 '

35-39

40-44 mm

4549

50-54 mmw———

65-69




Infections in the US

» 6,200,000 infections per year

* 14,000 women diagnosed with cervical
cancer each year, leading to...

e 3,900 deaths
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Infections in the US

» 6,200,000 infections per year

14,000 women diagnosed with cervical
cancer each year, leading to...

* 3,900 deaths
(many fewer than would be caused by HPV,

due to effective pap |

smear screening sz ﬁ

and precancer 2 o )0 | . |

treatments). 2 LHH i I
= 00..11“-]!' | I
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HPV strains of interest

* Types 6 and 11 account for 90% of genital
wart infections

(as well as respiratory papillomatosis)

Long control region

 Types 16, 18, 31 and ...
45 lead to cancer Ve
» Types 16 and 18 are g
responsible for 65% of HPV-16

7904 bp

cervical cancer cases.

L2

PolyA Signal 1
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Prevention

Without condom use, risk of transmission is
close to 90%

With condom use, risk is close to 40%
No antivirals have been developed for HPV
Vaccines are estimated at 90-100% efficacy.
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The vaccines

» Gardasil (Merck) protects against strains 6,
11, 16 and 18

(the four most common strains)

* Cervarix (GSK) protects against strains 16
and 18

(the two most common cancer-causing
strains)

* Some evidence of cross-protection against
strains 31 and 45 (the other cancer strains).
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Gardasil

Protects against both persistent and incident
infections

No side effects

Three shots over six months, costing
$US360

Recommended for women
aged 9-26

Highly immunogenic (98%)
No evidence of waning

(so far).
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Men??

* The vaccine has recently been approved for
men

 However, uptake rates are low

 Thus, we'll assume vaccinated men have a
negligible effect on the outcome.
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The rollout program

Canadian provinces are now vaccinating
girls aged 9-13

(ie before they become sexually active)
The vaccine is available to women aged

14-26, but is not covered by Canadian
health plans

However, different provinces vaccinate at
different ages
Some also give two doses instead of three

— piggybacking on other vaccination programs
tends to result in greater uptake rates.



Provincial vaccination strategies

Strategy | Province(s) | Grade | Doses Coverage Rate
1 NWT 4 3 unknown
2 QU 4,9 | 2, 1(last) 81-86%
3 AB 5 3 50-60%
4 BC 6,9 2 62%

5 NL 6,9 3 85%

6 MB 6 3 52-61%

6 NU 6 3 unknown
6 PE 6 3 85%

6 SK 6 3 58-66%

6 YK 6 3 unknown
7 NS 7 3 85%

7 NB 7 3 unknown
8 ON 8 3 49- 59%




Coverage levels

* |nitial surveys suggested that the majority of
parents (77%) would be receptive to their
children being vaccinated, if suitably
informed about HPV




Coverage levels

* |nitial surveys suggested that the majority of
parents (77%) would be receptive to their
children being vaccinated, if suitably
informed about HPV

* |n the first year, Ontario reported only 53%

vaccination coverage =
- s / '/




Coverage levels

* |nitial surveys suggested that the majority of
parents (77%) would be receptive to their
children being vaccinated, if suitably
informed about HPV

* |n the first year, Ontario reported only 53%
vaccination coverage ‘

* This has not increased
substantially over
subsequent years.
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Research questions

* Does the age at which girls are vaccinated
significantly affect the outcome?
— we’ll use grade instead of age, in line with how
the program is organised
* What are the implications of two vs three
doses?

» Should we attempt to standardise across
Canada?

— health is provincial, but the Public Health
Agency of Canada, based in Ottawa, can make
recommendations.
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Baseline model

Our first approximation considered a single
childhood class

Children progress to adults
(defined as sexually active individuals)

Either children or adults can be
vaccinated

We only study heterosexual
transmission.
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Full model

We now extend the baseline model to
multiple classes of children

— these represent different school grades

— vaccination occurs at a particular grade

— otherwise the vaccination rate is zero
Some children may already be infected
— eg childhood sexual abuse

These individuals will proceed
directly to the infected class

We also include recovery of
infected individuals.
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* The rate of vaccination of adults is
. CED
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Adult vaccination rate

* The rate of vaccination of adults is
L cep
1P =11
where c/y is the maximum possible rate of
vaccination, assuming perfect efficacy and
Immunogenicity
* This rate is zero if nobody is vaccinated and
high (but not infinite) if everybody is.

e=immunogenicity (adults)
p=coverage (adults)




The model

Girls in grade 4 (approx. 9 years old) are described as

dC
d—: =Tw — (1 + [.Lc)C4.
Girls in grade 5 (approx. 10 years old) are described as
dCs
dtU = (1 —epa)Cs — (1 + pc)Csu
dCs
dtv = ep4Cy — (1 + pc)Csy.
Girls in grade 6 (approx. 11 years old) are described as
dC,
d;,w = (1 —ep5)Csv — (1 + puc)Csu
dC,
div = epsCsy + Csv — (1 + pc)Csy.
Girls in grade 7 (approx. 12 years old) are described as
dC'
d:U = (1 —€eps)Cosu — (1 + pc)Cru
dC'
dzv = epsCeu + Cov — (1 + pc)Crv.

Girls in grade 8 (approx. 13 years old) are described as

dC,
d:U = (1—ep7)Crv — (1 + pc)Csu
dC,
d:v = ep7Cru + Crv — (1 4+ pe)Csy.
Girls in grade 9 (approx. 14 years old) are described as
dC.
diu = (1 — eps)Csv — (14 pc)Cou
dC.
d:v = epgCsy + Csv — (1 + pc)Cov.
Girls in grade 10 (approx. 15 years old) are described as
dC
d—ltou = (1 —ep9o)Cou — (1 + pc)Crou
dC
dltov = epgCoy + Cov — (1 + pc)Chov.
Uninfected adult women are described as
dA Ay N
d—tU = (1—¢v)Ciov +&vlv — f(ewpw)Au — ﬂWTU — paAy
dA 1-— AvN
—dtv = (1-¢v)Crov +&viv + fewpw)Au — (A =¥)bwAvN ¢)5W Y= — pady.
Infected adult women are described as
dIU _ ﬁWAUN
i ¢uChou + 3 Evly — paly
dI 1-— Ay N
d—tv = ¢vCiov + % —&vly —paly.
Uninfected men are described as
dM BylyM By Iy M
TS =mym+EuN — MQU - MQV — paM.

Infected men are described as

dN _ ﬂMfuM ,BMIVM
i - o + o EuN — paN.
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Q and &

* The denominators are the total numbers of
women (including girls) and men:

Q@ =C4+ Csy + Csv + Cov + Cev + Cry + Crv + Cgy + Csv + Coy + Cov
+ Crov + Crov + Au + Ay + Iy + Iy,

d =M+ N.

Cj=children
Aj=uninfected adults
li=infected adults
M,N=men
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 The DFE Is

(04) CSU, CSV, CGU, CGV, C7U) C?V} CSU) CBV) CQU, CQV, ClOU) ClOV} AU) AV) IU, ]V) M) N))

where

Tw
1+ pe

Cyw =

Cj=children Ai=uninfected adults
li=infected adults M,N=men

f=adult uptake u=death rates
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w

Cyr =
AU 1+ fc
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Disease-free equilibrium

 The DFE Is

(04) CSU, CSV, CGU, CGV, C7U) C?V} CSU) CBV) CQU) CQV, ClOU) ClOV} AU) AV) IU) IV) M) N))

where

Tw
1+ pe

 For 4<i£10, we have

Cyw =

_ (1 = ep(-1))Cli—yw g epi-1)Cli-nu + C—1yv
v 1+ pe v 1+ pe

Q

— _ (1=9¢u)Ciou —  fewpw)Au + (1 — ¢v)Crov
fEwDw) + pa LA
I; =0 Iy =0 Cj=children Aj=uninfected adults

li=infected adults M,N=men
— M — f=adult uptake u=death rates
M=— N =0. mv=male birth rate ej=efficacy

Ha pj=coverage ®;j=childhood infection
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Stability

 We found the Jacobian matrix and used the

Routh—Hurwitz criterion to determine stability
of the DFE

* This is valid. so long as we have the
condition ¢ <;-
— i.e. the duration of infection for vaccinated

individuals is shorter than the duration -

of infection for unvaccinated ~
. . . “t.';_-_._
individuals ==

« We expect this to occur. T L

- .



Basic reproduction number

* The stability comes down to the sign of the
constant term in the characteristic
polynomial




Basic reproduction number

* The stability comes down to the sign of the
constant term in the characteristic
polynomial

 From this, we find




Basic reproduction number

* The stability comes down to the sign of the
constant term in the characteristic
polynomial

 From this, we find

Ry — Bw B (1 — ) (pa + &) Av + (1a +&v) Av)
Qua(pa? + paléy + &v + €nr) + (Evéy +Evén + ngM)) ’
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Basic reproduction number

* The stability comes down to the sign of the
constant term in the characteristic
polynomial

* From this, we find
_ Bw B (1 — V) (ra + &u)Av + (pa + &v)Av)
Qpa(pa?+ palv +&v +&um) + (Euvéy + §V§M + §V§M)) ’

where the Ay and Ay values | .
are evaluated at the TN
disease-free equilibrium.

Aj=uninfected adults uj=death rates
Bi=transmissibilities Q@ =total women
W=protection {=duration of infection
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Reformulated equilibria

* Let k™ be the grade of vaccination
* Then for 4<i<10, we have

Crv = . fork < k*
~ WW(l_fpk—l) .

Crv = (1+ po)F3 fork > k
Crv =0 fork < k*
— TweE
Crv = fork > k*

kV (1 I ,uc)k“‘
Ay = W
(f(owew) + pa)(1 — peo)’ C/=children A=uninfected adults
f=adult uptake u=death rates
A, — Tw f mw=female birth rate ej=efficacy
v (flpwew) + pa)(1 — pe)™ pj=coverage ®=childhood infection
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Critical childhood vaccine immunogenicity

* We can evaluate the critical vaccine
immunogenicity for children €*

e We set Ro=1 and use our reformulated
equilibrium values

* We solve for €* by looking at childhood-only
vaccination
— we thus set pw=0

* Then we have

&= ui (1 — pe) (s + paly +&v + &um) + Euév + Euémr + Evém)
Bw Bumw (1 — ) (pa + &) — (na +&v)) '

ui=death rates rw=female birth rate
Bi=transmissibilities Q@ =total women
W=protection ¢=duration of infection
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» Similarly, we can find the critical adult
iImmunogenicity:

ta(l+7)(BwBumwéyv + pa(l + pc)’D)
Bw Brmw (¢ + pa(pa +€v)) — wa(1+ pe)™D’

where D is the denominator of Rg

» Using a similar method, we can find the
critical protection rate
W =1+ Bw B (pea + fU)A_U_—D
Bw B (pa + &v)Ay

*
€W=

ui=death rates rrw=female birth rate
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Other critical values

» Similarly, we can find the critical adult
iImmunogenicity:

pa(l+7)(BwBumwéy + pa(l + pe)'D)
Bw Bumw (¢ + papa +&v)) — wa(1+ po)’D’

where D is the denominator of Rg

» Using a similar method, we can find the
critical protection rate
W =1+ Bw Br(pa + fU)A_U_—D
BwBum(pa + &v)Av
* |f the vaccine protection is lower than this

*
€W=

va I ue th en we can never u=death rates mw=female birth rate
’ Bj=transmissibilities ¢ =total women

h ave e rad |Cat|on _ W=protection é=duration of infection

c/y=max possible vaccination
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Latin Hypercube Sampling

» We explored the sensitivity of Ro to
parameter variations using

— Latin Hypercube Sampling
— Partial Rank Correlation Coefficients

 Latin Hypercube Sampling
— samples parameters from a random grid

— resamples, but not from the same row or
column

(a bit like tic tac toe)
— runs 1,000 simulations.
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 Partial Rank Correlation Coefficients
(PRCCs)

— test individual parameters while holding all other
parameters at median values

— rank parameters by the amount of effect on the
outcome

« PRCCs > 0 will increase Ro when they are
iIncreased

« PRCCs < 0 will decrease Ro when they are
iIncreased.

Ro=basic reproductive ratio
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Timecourse of infection
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Summary

Three doses is more effective than two, but
not greatly

— this is in line with clinical evaluations of provinces
that use two vs three doses

The age of vaccination does not matter
terribly much for childhood vaccination

— thus the grade of vaccination should be chosen
based on vaccination-program limitations

What matters most is coverage levels

Childhood vaccination needs to be
supplemented by moderate adult vaccination.
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Eradicating targeted HPV types

The most effective way to decrease Ro is to
decrease transmission probabilities

This could be done through condom
distribution or through changes in sexual
behaviour

Using data from the literature, we found the
critical vaccine protection rate was 65.9%

This is significantly lower than the 90-95%
protection rates afforded by the vaccine

This suggests that eradication is feasible.
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Policy outcomes

This research was undertaken as part of a
MITACS internship by Carley Rogers, as
part of her M.Sc. at the University of Ottawa

Carley worked at the Public Health Agency
of Canada for four months

The model was developed in collaboration
with PHAC members

As a result of this research, Quebec
changed its HPV vaccination policy in
August 2013 from three to two doses.
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Mathematics and policy

This shows that we can have a direct
influence on policy

However, it has to be done collaboratively

Our aim is to have a conversation between
mathematicians and non-mathematicians

Only be designing the model together, so that
all parties have input, will we be able to
construct models that the intended audience
have faith in

— thus we have to build models from the ground up
This illustrates the cycle of modelling.
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Using math to solve real problems

Biological ) Mathematical
problem

model
Compare Mathematical
with data analysis

gl !

Biological ( Mathematical

conclusion conclusion
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Conclusions

Eradication of targeted HPV types is feasible

The age of vaccination is not a crucial
parameter

The number of doses barely affects the
outcome, except to facilitate greater uptake
rates

Childhood vaccination should be
supplemented by moderate adult vaccination

This could be achieved by enhanced HPV
awareness programs in colleges/universities.
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