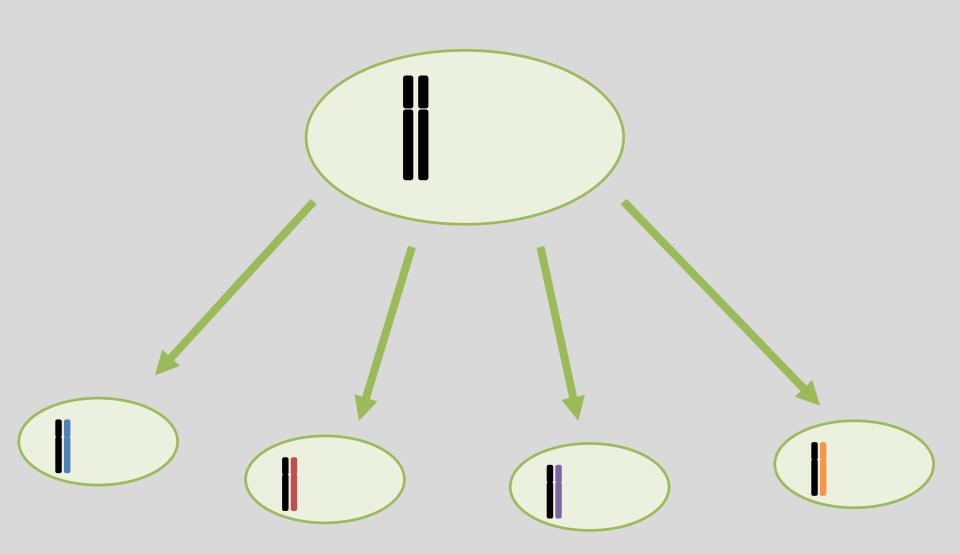
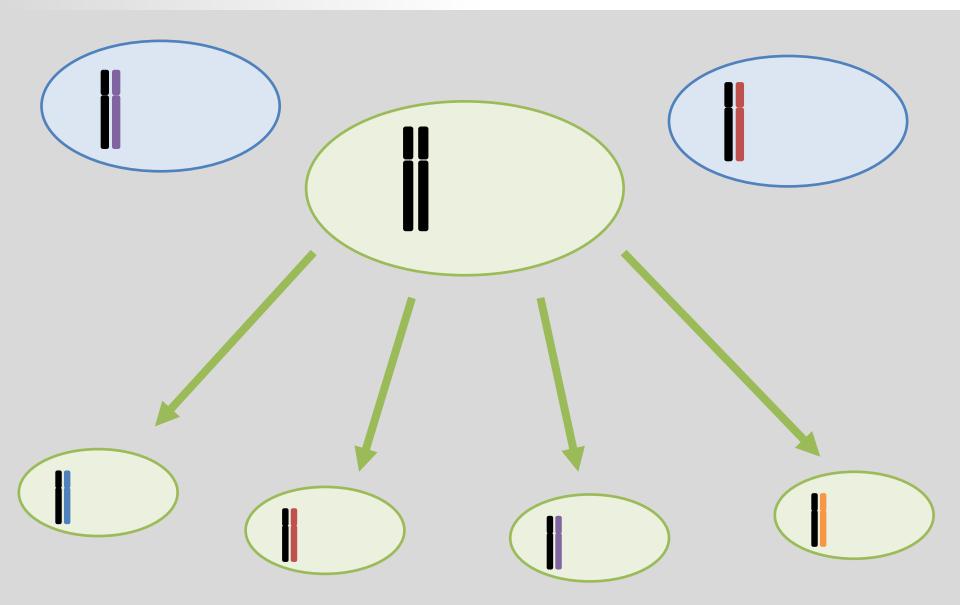
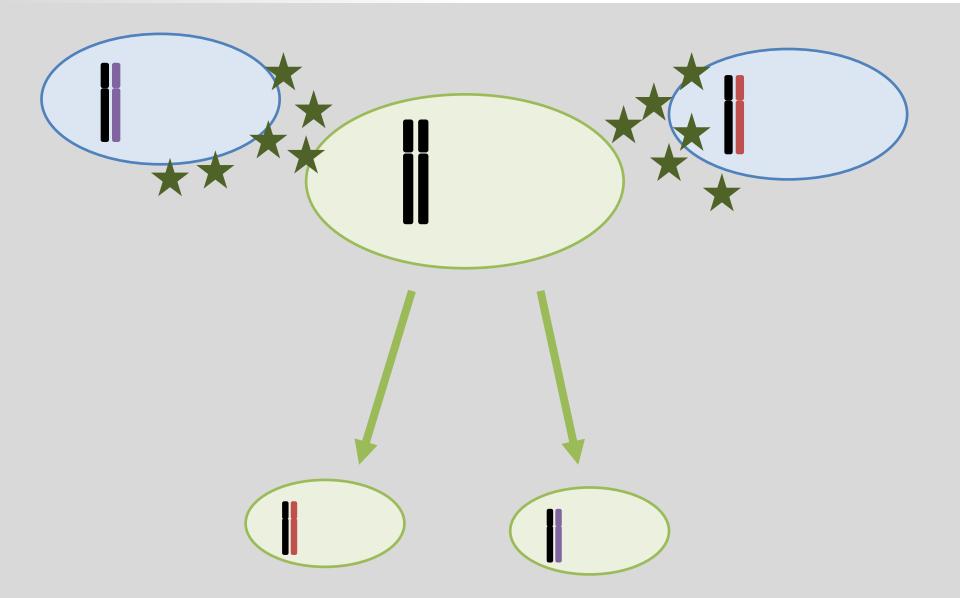
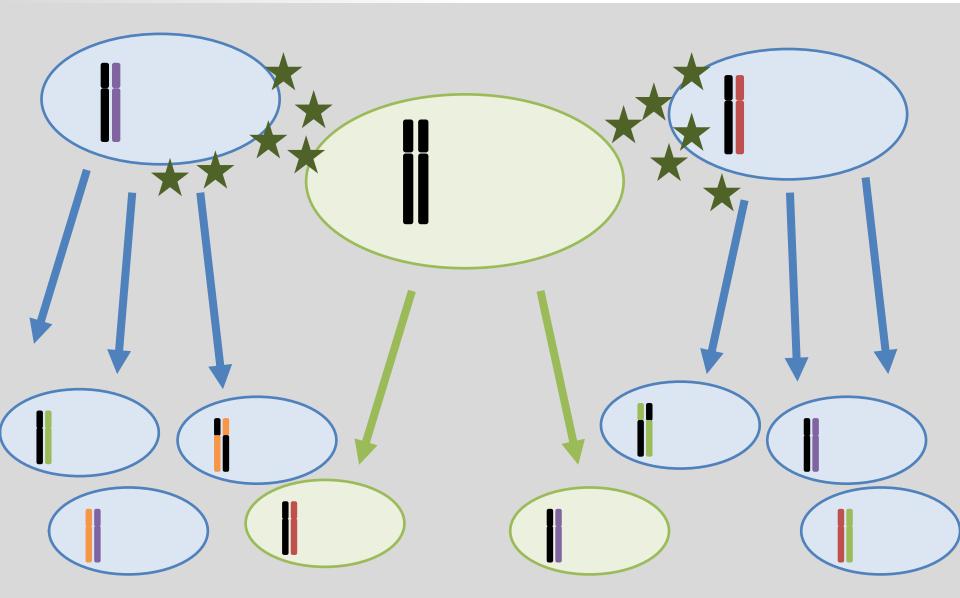
Topics in evolutionary dynamics

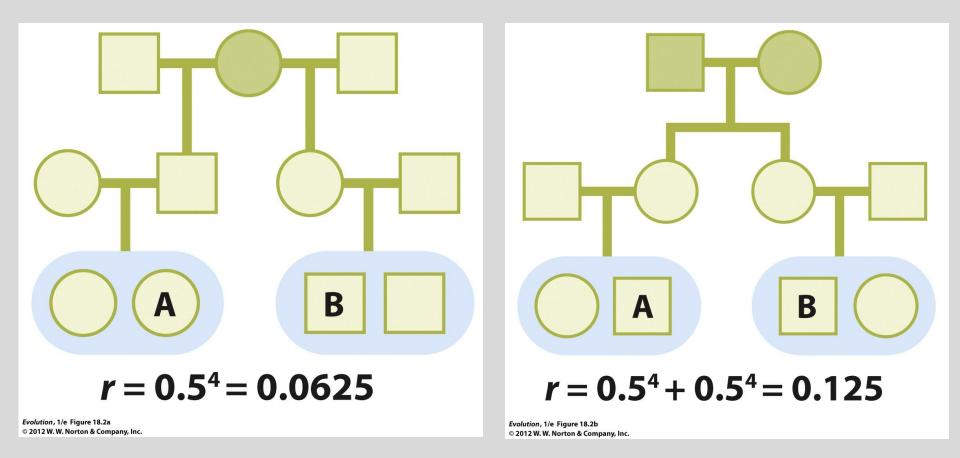
Lecture 3: Evolution in metapopulations


François Massol 3rd summer school on Mathematical Biology São Paulo, February 2014


Lecture outline


- 1. Kin selection & group selection
- 2. Fitness in metapopulations
- 3. Case study: the evolution of dispersal

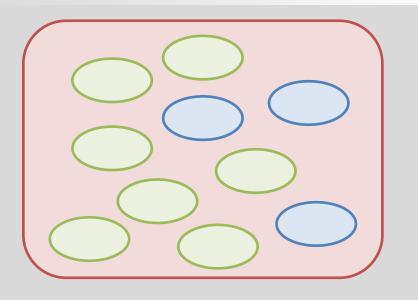

KIN SELECTION & GROUP SELECTION

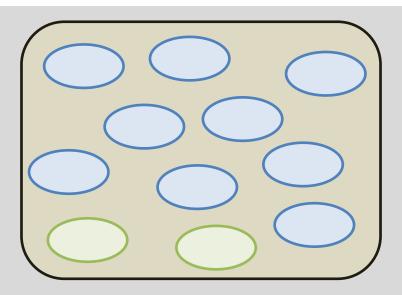


Overall effect = relatedness × benefit to helped – cost to helper

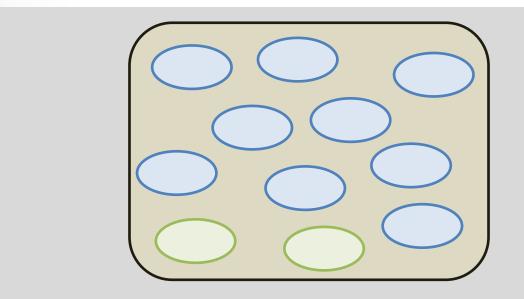
Relatedness

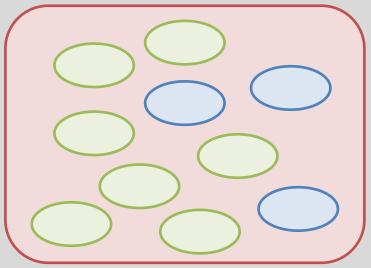
Relatedness

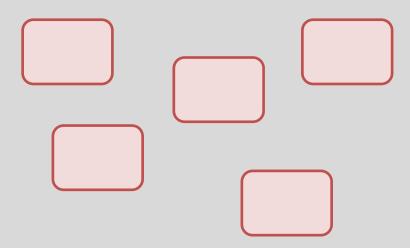

In a population, relatedness depends on:

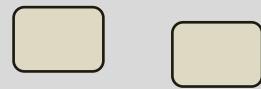

- immigration rate
- population size
- Also called "identity by descent" (i.e. whether two alleles at the same locus, carried by two random individuals, come from the same ancestor)

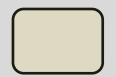
e.g. discrete-time model with constant N individuals and migration m


$$r = 1/[N-(N-1)(1-m)^{2}]$$


Group selection






Group selection

Group selection

- "The reputation of group selection comes <u>not from</u> <u>mathematical models</u>, nor from deliberate discussion of group selection, but from a certain <u>naivety</u> practised by laymen and many biologists alike in their day-to-day thinking about the adaptedness of animals to their environments.
- (...) adaptations arise only by natural selection, and natural selection does not normally promote adaptations for the good of any unit larger than the organism."

A. Grafen, in Krebs & Davies 1984

Problems with group selection

• Groups do not carry genes, individuals do

 "for the benefit of the group" = very Panglossian way of thinking about evolution

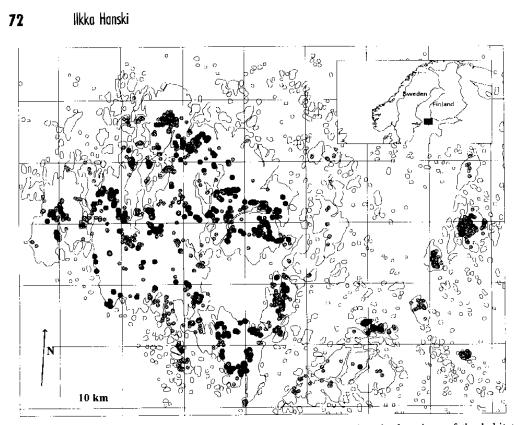
 Even with group benefits, separation of time scales might advantage groups containing genotypes impeding the creation of new groups

Further reading on group selection

doi:10.1111/j.1558-5646.2012.01835.x

TOWARDS A GENERAL THEORY OF GROUP SELECTION

Burton Simon,^{1,2} Jeffrey A. Fletcher,³ and Michael Doebeli⁴


$$\frac{\partial \theta}{\partial t} + \sum_{i} \frac{\partial (\alpha_{i} \theta)}{\partial x_{i}} = g(\vec{x})$$

 $\theta(\vec{x},t)$ Density of groups made of $x_1, x_2, ...$ individuals of genotypes 1, 2, ...

$$\alpha_{i}(\vec{x}) = b_{i}(\vec{x}) + i_{i}(\vec{x}) - d_{i}(\vec{x}) - e_{i}(\vec{x})$$

Birth rate Death rate Immigration rate Emigration rate

Simon et al. 2013 Evolution

FIGURE 1 Map of Åland islands in southwestern Finland, showing the locations of the habitat patches (dry meadows) suitable for the Glanville fritillary *Melitaea cinxia* (dots). Patches that were occupied in late summer 1993 are shown by black dots. The size of the grid is 100 km² (modified from Hanski *et al.*, 1995a).

FITNESS IN METAPOPULATIONS

Spatially structured fitness?

Main issue:

How to compute fitness when...

- interactions occur at a small scale (patch)
- individuals disperse among patches
- patches harbor finite populations

Spatially structured fitness?

Main issue:

How to compute fitness when...

- interactions occur at a small scale (patch)
- individuals disperse among patches

patches harbor finite populations

Crux of the problem!

Otherwise, simple models would do the trick

Spatially structured fitness?

Main issue:

How to compute fitness when...

- interactions occur at a small scale (patch)
- individuals disperse among patches

patches harbor finite populations

Specific issue:

what is typical scarcity in this context?

Inclusive fitness & Direct fitness

Both methods allow for the computation of selection gradients

$$\frac{dW}{dx} \approx \frac{\partial W}{\partial y} \operatorname{Cov}[x, y] + \frac{\partial W}{\partial z} \operatorname{Cov}[x, z]$$

when W is the 'individual fitness' of focal (genotype x, phenotype y) with patch mates having average phenotype z

Cov(x,z)/Cov(x,y) = relatedness among patch mates

Hamilton (1964) J Theor Biol.; Taylor & Frank (1996) J Theor Biol

Inclusive fitness & Direct fitness

Ζ

Both methods allow for the computation of selection gradients

$$\frac{dW}{dx} \approx \frac{\partial W}{\partial y} \operatorname{Cov}[x, y] + \frac{\partial W}{\partial z} \operatorname{Cov}[x, z]$$

when W is the 'individual fitness' of focal (genotype x, phenotype y) with patch mates having average phenotype

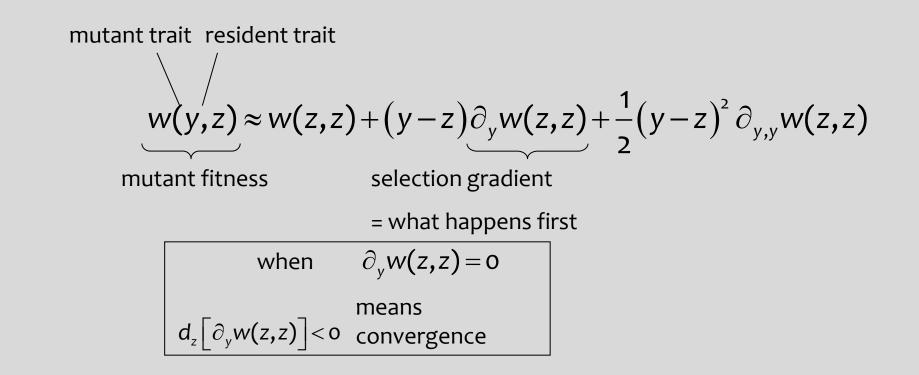
finite populations = non-zero relatedness

Cov(x,z)/Cov(x,y) = relatedness among patch mates

Hamilton (1964) J Theor Biol. ; Taylor & Frank (1996) J Theor Biol

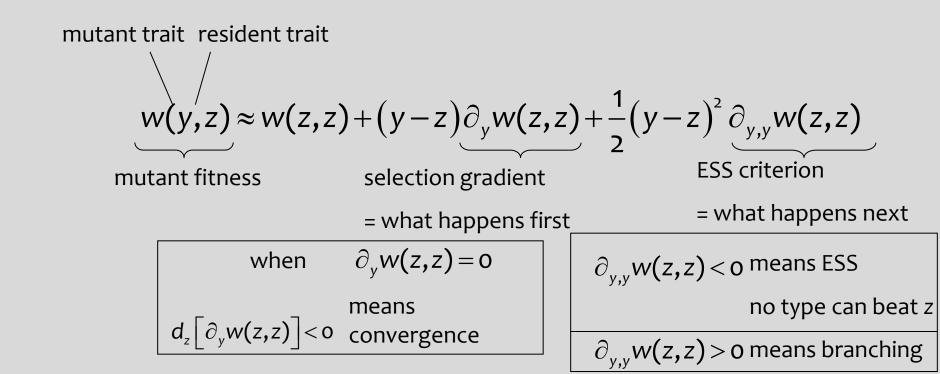
- **Inclusive fitness & Direct fitness**
- BUT these methods could not sort out evolutionary stability

Inclusive fitness & Direct fitness


BUT these methods could not sort out evolutionary stability

mutant trait resident trait $\underbrace{\bigvee}_{w(y,z)} \approx w(z,z) + (y-z)\partial_{y}w(z,z) + \frac{1}{2}(y-z)^{2}\partial_{y,y}w(z,z)$

mutant fitness


Inclusive fitness & Direct fitness

BUT these methods could not sort out evolutionary stability

Inclusive fitness & Direct fitness

BUT these methods could not sort out evolutionary stability

Inclusive fitness & Direct fitness

BUT these methods could not sort out evolutionary stability

R_m method

Principle: account for demographic variability among patches through state vectors

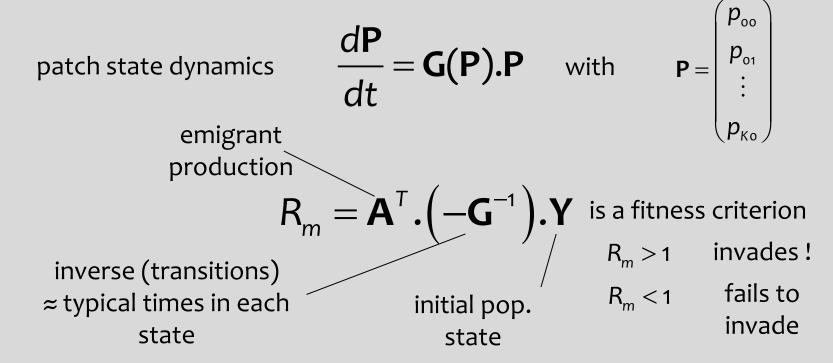
Chesson (1984) Z. Wahrschein. Verwand. Gebiete; Metz & Gyllenberg (2001) Proc R Soc

R_m method

Principle: account for demographic variability among patches through state vectors

patch state dynamics

$$\frac{d\mathbf{P}}{dt} = \mathbf{G}(\mathbf{P}).\mathbf{P} \quad \text{with} \quad \mathbf{P} = \begin{bmatrix} p_{00} \\ p_{01} \\ \vdots \\ p_{K0} \end{bmatrix}$$


 p_{00}

 $p_{_{01}}$

Chesson (1984) Z. Wahrschein. Verwand. Gebiete; Metz & Gyllenberg (2001) Proc R Soc

R_m method

Principle: account for demographic variability among patches through state vectors

Chesson (1984) Z. Wahrschein. Verwand. Gebiete; Metz & Gyllenberg (2001) Proc R Soc

R_m method

Principle: account for demographic variability among patches through state vectors

Two separate proofs that the R_m is an instability criterion

discrete time

Persistence of a Markovian Population in a Patchy Environment

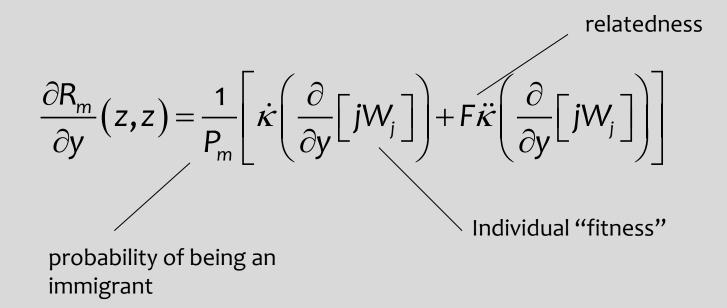
Peter L. Chesson*

continuous time

The metapopulation fitness criterion: Proof and perspectives François Massol^{a,b,c,*}, Vincent Calcagno^d, Julien Massol^e

> Massol et al. (2009) TPB

Chesson (1984) ZWtG


R_m method

Principle: account for demographic variability among patches through state vectors

Benefit: we get a "true" metapopulation fitness function $R_m(y,z)$

 \rightarrow convergence and evolutionary stability can be solved using the same tool

R_m and the inclusive fitness can be reconciled...

Selection gradient with R_m = inclusive fitness (discrete-time, haploid, non-overlapping generations)

Ajar (2003) BMC EvolBiol

... and "inclusive fitness" can even get beyond the selection gradient!

probability that three different individuals
from the same patch descend from the same
immigrant
$$\frac{\partial^2 R_m}{\partial y^2}(z,z) = \frac{1}{P_m} \begin{bmatrix} \dot{\kappa} \left(\frac{\partial^2}{\partial y^2} [jW_j] \right) + F\ddot{\kappa} \left(\frac{\partial^2}{\partial y^2} [jW_j] \right) + F\ddot{\kappa} \left(\frac{\partial^2}{\partial y^2} [jW_j] \right) + K\ddot{\kappa} \left(\frac{\partial^2}{\partial y^2} [jW_j] \right) \\ + 4N^2(N-1)\pi_1 F \left(F\dot{\kappa} \left(\frac{\partial}{\partial y} [\pi_j] \right) + K\ddot{\kappa} \left(\frac{\partial}{\partial y} [\pi_j] \right) \right) \ddot{\kappa} \left(\frac{\partial}{\partial y} [jW_j] \right) \end{bmatrix}$$

Ajar (2003) BMC EvolBiol

Spatially structured fitness

Extensions / similar methods in spatially realistic models

SIAM J. APPLIED DYNAMICAL SYSTEMS Vol. 11, No. 2, pp. 567–596 © 2012 Society for Industrial and Applied Mathematics

 R_0 Analysis of a Spatiotemporal Model for a Stream Population*

H. W. Mckenzie[†], Y. Jin[†], J. Jacobsen[‡], and M. A. Lewis[†]§

PROCEEDINGS

Proc. R. Soc. A doi:10.1098/rspa.2011.0194 Published online

ORIGINAL ARTICLE

doi:10.1111/j.1558-5646.2011.01254.x

EVOLUTIONARY RESPONSES OF DISPERSAL DISTANCE TO LANDSCAPE STRUCTURE AND HABITAT LOSS

Ace North,^{1,2,3} Stephen Cornell,⁴ and Otso Ovaskainen¹

¹Department of Biosciences, University of Helsinki, Finland

²Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom

³E-mail: ace.north@zoo.ox.ac.uk

⁴Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom

Pattern solutions of the Klausmeier model for banded vegetation in semi-arid environments II: patterns with the largest possible propagation speeds

By Jonathan A. Sherratt*

Department of Mathematics and Maxwell Institute for Mathematical Sciences, Heriot–Watt University, Edinburgh EH14 4AS, UK

THE EVOLUTION OF DISPERSAL

What is dispersal?

Dispersal =

- Any movement of individuals or propagules contributing to gene flow
- Reproducing away from birth place

What is dispersal?

Dispersal =

- Any movement of individuals or propagules contributing to gene flow
- Reproducing away from birth place
- (zool.) movement between succesive breeding sites
- (bota.) movement of seeds or pollen

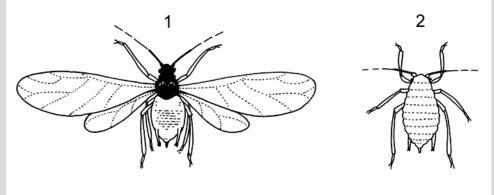
Motivations

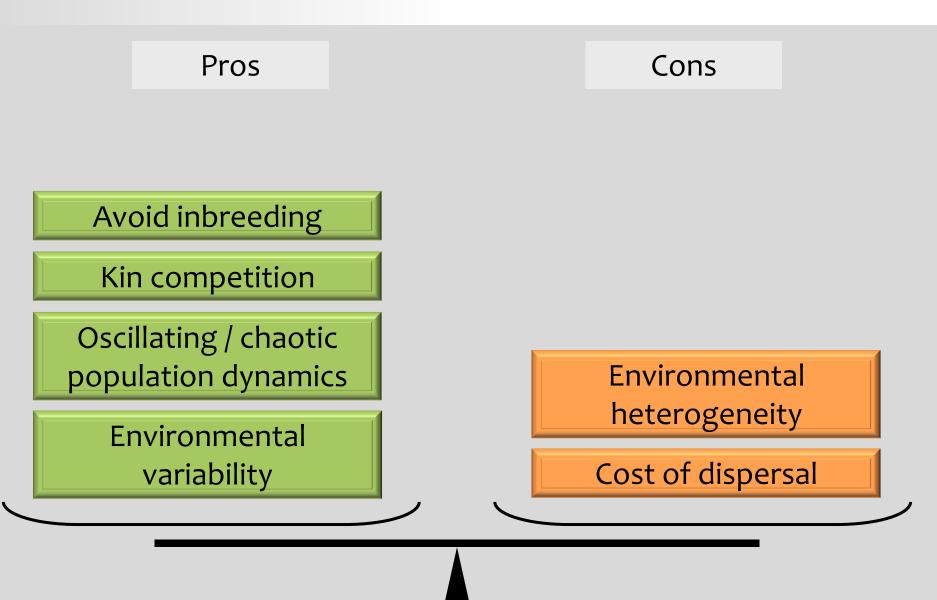
- On ecological grounds
 - Coexistence of species mediated by environmental heterogeneity and dispersal
 - Biology of invasive species
 - Persistence in a metapopulation depends on dispersal

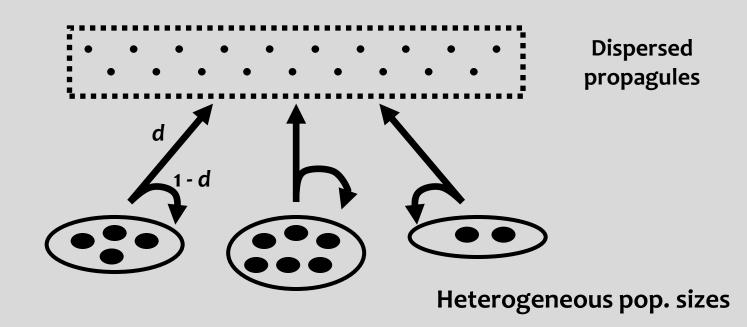
Motivations

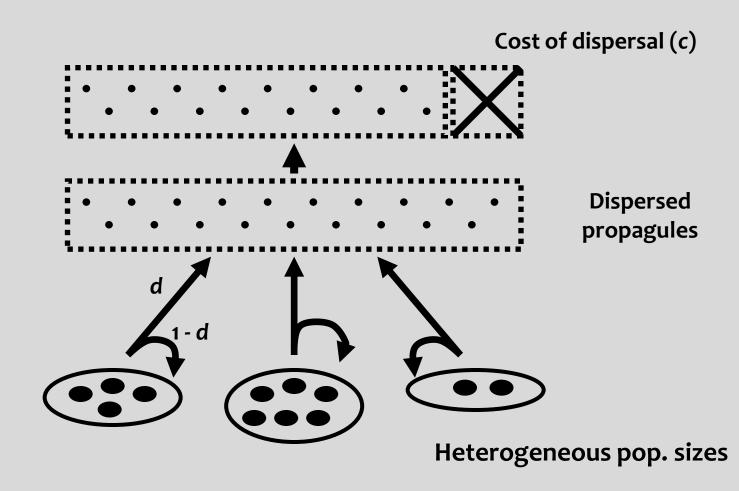
- On ecological grounds
 - Coexistence of species mediated by environmental heterogeneity and dispersal
 - Biology of invasive species
 - Persistence in a metapopulation depends on dispersal
- On evolutionary grounds
 - Local adaptation evolves in response to dispersal level
 - Speciation depends on dispersal
 - Dispersal can co-evolve with other traits

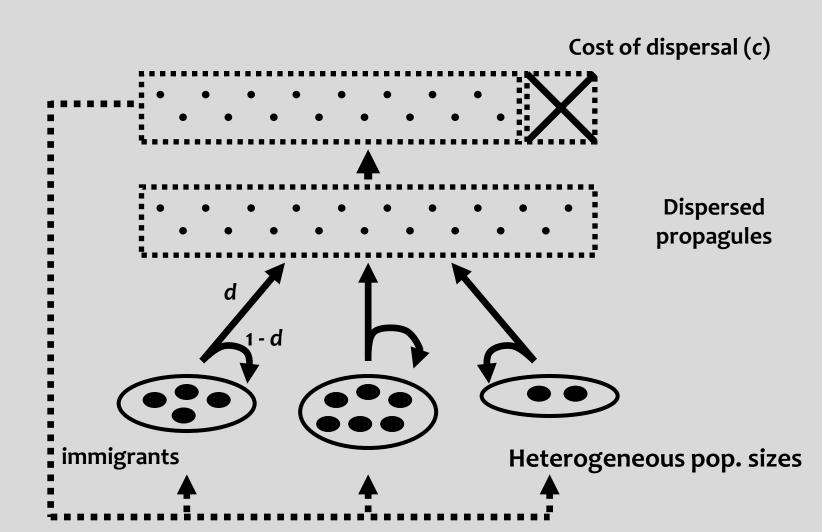
Dispersal variability in natura

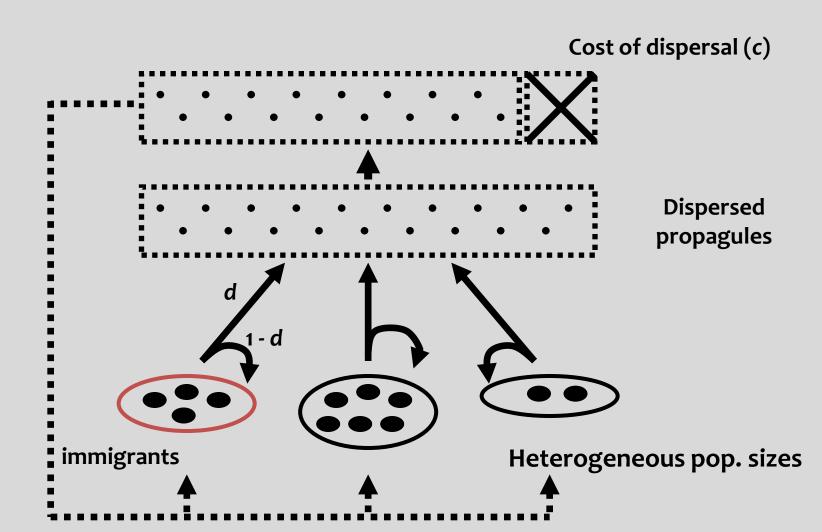


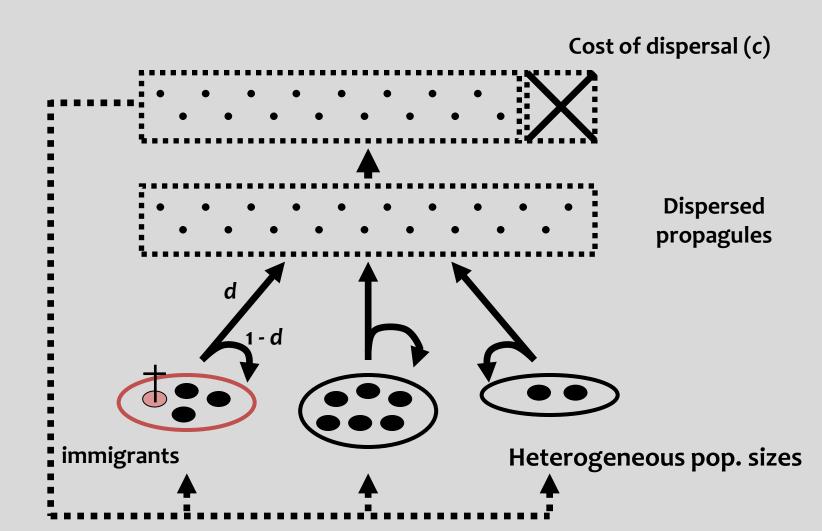


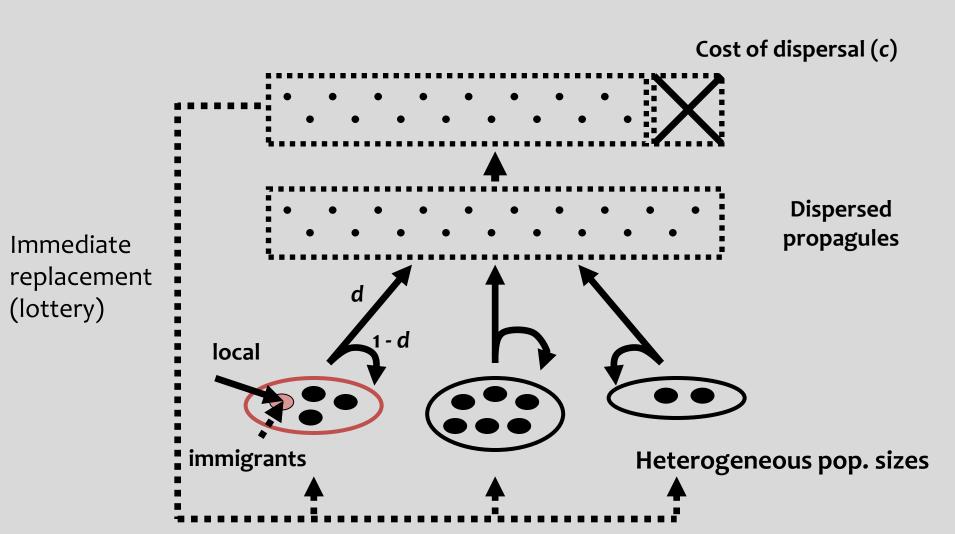

Photo : P. Goujon

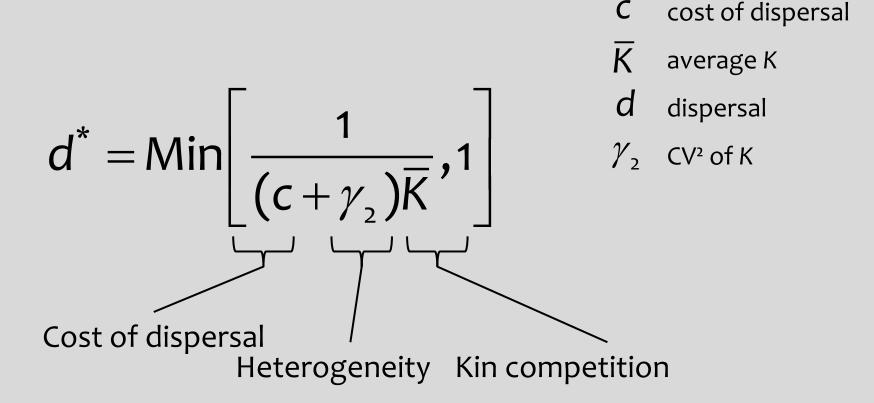


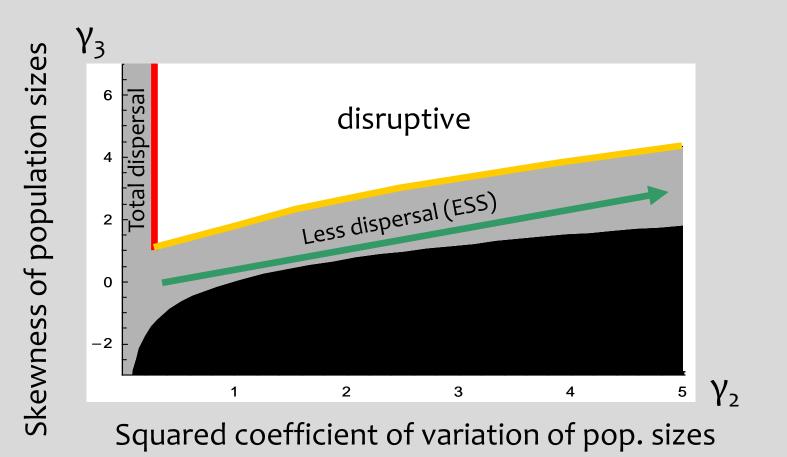

Selective pressures










Methods

- Model analysis
 - Metapopulation fitness criterion (R_m, Metz & Gyllenberg 1992)
 - Adaptive dynamics assumptions (Hofbauer & Sigmund 1990)
- Confirmed with simulations
- Supplementary simulations: what if replacement is not immediate? (answer: nothing changes much)

Results: singular strategies

Results: evolutionary outcome

Results: predict polymorphism

Results: what do data say?

Understanding what nature says

$$c_{max} = \frac{\left(\gamma_{3} - 2\gamma_{2}^{1/2}\right)\gamma_{2}^{3/2}}{1 + \gamma_{2}}$$

When $c_{max} > 1$, we're sure that our mechanism can create dispersal polymorphism

Results: what do data say?

Data set	# patches	γ ₂	γ ₃	c _{max}	prediction
Ponds (Guadeloupe)	274	1.7	4.5	1.5	disruptive
Population in big cities (China)	664	1.5	6.7	3.2	disruptive
Dry meadows (Åland islands, Finland) Tuamotu archipelago (French	4,109	7.3	11.1	13.5	disruptive
Polynesia)	118	10.7	8.1	4.7	disruptive
Forest patches (Pennsylvania, USA)	252	44.7	12.0	-8.7	stabilising
Svalbard islands (Norway)	11	4.5	2.7	-2.7	stabilising
Coral reefs (Northern Florida Keys, USA)	1,034	1.3	3.8	1.0	disruptive

Results: what do data say?

Data set	# patches	γ ₂	γ ₃	c _{max}	prediction
Ponds (Guadeloupe)	274	1.7	4.5	1.5	disruptive
Population in big cities (China)	664	1.5	6.7	3.2	disruptive
Dry meadows (Åland islands, Finland) Tuametu archinelage (French	4,109	7.3	11.1	13.5	disruptive
Tuamotu archipelago (French Polynesia)	118	10.7	8.1	4.7	disruptive
Forest patches (Pennsylvania, USA)	252	44.7	12.0	-8.7	stabilising
Svalbard islands (Norway)	11	4.5	2.7	-2.7	stabilising
Coral reefs (Northern Florida Keys, USA)	1,034	1.3	3.8	1.0	disruptive

Conclusions

- Steady state of dispersal = balance between direct cost, environmental heterogeneity and kin competition
- 2. Skewed population size distribution \rightarrow disruptive selection on dispersal
- 3. Skewed distributions of proxies for pop. size are common in nature
- 4. Simplified criterion $c_{max} > 1 = \text{test to validate the}$ plausibility of our hypothesis
- Few large and many small populations
 = recipe for a better conservation of types that do and do not disperse

Thank you for your attention!

Further reading

Kin selection & group selection

Grafen A. (1984). Natural selection, kin selection and group selection. In: Behavioural Ecology: an Evolutionary Approach (eds. Krebs JR & Davies NB). Blackwell Oxford, pp. 62-84.

- Hamilton W.D. (1964). The genetical evolution of social behaviour. I. J Theor Biol, 7, 1-16.
- Hamilton W.D. (1964). The genetical evolution of social behaviour. II. J Theor Biol, 7, 17-52.
- Lehmann L. & Rousset F. (2010). How life history and demography promote or inhibit the evolution of helping behaviours. *Philos Trans R Soc Lond B Biol Sci,* 365, 2599-2617.
- Nowak M.A., Tarnita C.E. & Wilson E.O. (2010). The evolution of eusociality. *Nature*, 466, 1057-1062.
- Simon B., Fletcher J.A. & Doebeli M. (2013). Towards a general theory of group selection. *Evolution*, 67, 1561-1572.
- van Baalen M. & Rand D.A. (1998). The unit of selection in viscous populations and the evolution of altruism. *J Theor Biol,* 193, 631-648.

Further reading

Fitness in spatially structured populations

- Ajar E. (2003). Analysis of disruptive selection in subdivided populations. BMC Evol Biol, 3.
- Allen B., Nowak M.A. & Dieckmann U. (2013). Adaptive dynamics with interaction structure. *Am Nat,* 181, E139-63.
- Chesson P.L. (1984). Persistence of a Markovian population in a patchy environment. Zeitschrift Fur Wahrscheinlichkeitstheorie Und Verwandte Gebiete, 66, 97-107.
- McKenzie H., Jin Y., Jacobsen J. & Lewis M. (2012). R_o analysis of a spatiotemporal model for a stream population. SIAM Journal on Applied Dynamical Systems, 11, 567-596.
- Massol F., Calcagno V. & Massol J. (2009). The metapopulation fitness criterion: proof and perspectives. Theor Popul Biol, 75, 183-200.
- Metz J.A.J. & Gyllenberg M. (2001). How should we define fitness in structured metapopulation models? Including an application to the calculation of evolutionarily stable dispersal strategies. *Proc R Soc Lond B Biol Sci, 268, 499-508.*
- Parvinen K. & Metz J.A.J. (2008). A novel fitness proxy in structured locally finite metapopulations with diploid genetics, with an application to dispersal evolution. *Theor Popul Biol, 73, 517-528.*

Further reading

Evolution of dispersal

- Bengtsson B.O. (1978). Avoiding inbreeding: at what cost? J Theor Biol, 73, 439-444.
- Clobert J., Le Galliard J.-F., Cote J., Meylan S. & Massot M. (2009). Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. *Ecol Lett*, 12, 197-209.
- Duputié A. & Massol F. (2013). An empiricist's guide to theoretical predictions on the evolution of dispersal. *Interface Focus*, *3.*
- Gadgil M. (1971). Dispersal: population consequences and evolution. *Ecology*, 52, 253-261.
- Hamilton W.D. & May R.M. (1977). Dispersal in stable habitats. Nature, 269, 578-581.
- Parvinen K. (2002). Evolutionary branching of dispersal strategies in structured metapopulations. *J Math Biol, 45, 106-124.*
- Ronce O. (2007). How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu Rev Ecol Evol Syst, 38, 231-253.
- van Valen L. (1971). Group selection and the evolution of dispersal. Evolution, 25, 591-598.