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The media influences:
• individual behaviour

(eg gift-chasing)
• formation and 

implementation of 
public policy
(eg biometrics)

• perception of risk
(eg SARS in Chinatown).
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During a pandemic

• Government information released is often 
restricted to only the number of infections 
and deaths

• Mass media are key tools in risk 
communication

• However, they have 
been criticised for 
making risk a 
spectacle.
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Hypodermic theory

• The original interpretation of media effects in 
communication theory was the “hypodermic 
needle”

• It was thought that a particular media 
message would be directly injected into the 
minds of media spectators

• This suggests that media have a direct and 
rapid influence on everyday understanding

• However, this has been revised in recent 
years.
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Contemporary media theories
• Media is shaped by the dominant cultural 

norms
• It is impossible to separate the message 

from the society from which it originates
(eg WNV vs Chagas’ Disease)

• Consumers might only 
partially accept a 
particular media message

• Or they may resist the 
dominant media messages 
altogether.
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Implications for a pandemic

• Media effects may sway people into a panic
• Especially for a disease where scientific 

evidence is thin or nonexistent
(eg swine flu and 
pig-burning)

• Conversely, media may 
have little effect on 
more familiar diseases
(eg seasonal influenza).
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Media in a crisis

• Media reporting play a key role in
– perception
– management
– and even creation of a crisis

• Non-state-controlled 
media thrive in a crisis
(eg Wikileaks)

• However, state-controlled media are 
rewarded for creating an illusion of normalcy
(eg embedded journalists).
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An intersubjective anchorage

• Media messages are widely distributed
• Reports are retrievable
• Thus, they gain authority as an intersubjective 

anchorage for personal recollection
• This may make information

appear “more true” the 
more exposure it gets from
the media, regardless of 
the evidence
(eg climate change).
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Media and risk protection

• The evaluation of epidemics may be driven 
by the complex interplay between information 
and action

• Individuals may overprotect, which may have 
additional consequences for the disease

• eg, after an announcement of the 1994 
outbreak of plague in Surat, India, many 
people fled to escape the disease, thus 
carrying it to other parts of the country

• Media influences behaviour, which in turn 
influences media.
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Vaccination

• One of the most effective tools for reducing 
the burden of infectious diseases

• However, individuals often refuse or avoid 
vaccinations they perceive to be risky

• eg, rumours that the polio vaccine could 
cause sterility and spread HIV hampered 
polio eradication efforts in Nigeria

• Misplaced fears of autism in the developed 
world have stoked fears of vaccinations 
against childhood diseases.
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Demographic interruption

• Media exposure and 
attention partially mediate 
the effects of demographics 
and personal experience 
on risk judgements
(eg anti-smoking campaigns)

• However, this may be especially problematic 
for vaccines
(eg HPV vaccine).
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The model

• We model the dynamics of influenza based 
on a single strain without effective cross-
immunity

• We include a vaccine that confers temporary 
immunity

• Vaccinated individuals may still become 
infected but at a lower rate 
than susceptibles

• Media converage is 
included via a saturated 
incidence function.
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⇥1 � ⇥3
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mI + I

⇥
(1� ⇤)V I

dR

dt
= ⇧I � (µ + ⌥)R

Media affects 
mixing rates

• mI is the media half-saturation constant
• βi are the relative transmissibilities.

Λ=birth rate  µ=background death rate  θ=vaccination rate  
α=disease death rate  ω=waning rate  σ=loss of immunity  
γ=vaccine efficacy  λ=recovery rate  
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Media may also 
affect vaccination 
rates (in either 

direction).
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Media effects

• Susceptible and vaccinated people mix less 
with infecteds due to media

• As many people become infected, effects of 
media are reduced

• ie message reaches a 
maximum number of people 
due to information saturation

• This also reflects the fact that 
the media are less interested 
in a story once it’s 
established in society.
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Equilibria

The model has two equilibria:
• the disease-free equilibrium

• and an endemic equilibrium

which only exists for some 
parameter values.

(S̄, Ī, V̄ , R̄) =
�

�(µ + ⇤)
µ(� + µ + ⇤)

, 0,
��

µ(� + µ + ⇤)
, 0

⇥

(Ŝ, Î, V̂ , R̂)

S=susceptible  I=infected  V=vaccinated  
R=recovered  Λ=birth rate  µ=background 
death rate  θ=vaccination rate  ω=waning rate  
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Stability

• Using the next-generation method, we can 
calculate

• We can prove:
– If R0<1, the disease-free 

equilibrium is globally stable 
– If R0>1 the DFE is unstable.

R0 =
⇥1�(µ + ⌥) + ⇥1(1� ⇤)⌅�
µ(� + ⇧ + µ)(⌅ + µ + ⌥)

Λ=birth rate  µ=background death rate  θ=vaccination rate  
α=disease death rate  ω=waning rate  γ=vaccine efficacy  
λ=recovery rate  β1=infection rate (susceptibles)  
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Optimal control

We introduce two controls, each representing 
a possible method of influenza control:
• uv is the control variable for vaccination

(affecting the vaccination uptake)
• um is the control 

variable for media 
coverage
(affecting the media 
half-saturation 
constant).
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Objective functional

• A control scheme is optimal if it maximises 
the objective functional

• B1 and B2 can represent the amount of 
money expended over a finite period, or the 
perceived risk.

J(uv(t), um(t)) =
� tf

t0
[S(t) + V (t)�B1I(t)�B2(u2

v(t) + u2
m(t))]dt
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Weight 
constraint for 
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Weight 
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S=susceptible  I=infected  V=vaccinated  
uv=vaccine control  um=media control
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• Given optimal controls uv and um, there exist 
adjoint variables λi (i=1,2,3,4) satisfying

S=susceptible  I=infected  V=vaccinated  µ=background death rate  
θ=vaccination rate  ω=waning rate  σ=loss of immunity  γ=vaccine 
efficacy  λ=recovery rate  γ=vaccine efficacy  mI=media half-saturation 
constant  B1=weight constraint (infection) B2=weight constraint 
(controls)  β2=transmissibility reduction due to media (susceptibles)  
β3=transmissibility reduction due to media (vaccinated)   
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Optimal controls

• We can calculate the optimal controls 
explicitly:

– a11 and b11 are lower and upper bounds for uv

– a22 and b22 are lower and upper bounds for um

• The optimal controls are unique if tf is small.
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Media has beneficial effect on vaccine

Figure 1: Schematic model flow diagram
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Figure 2: Graphs of the optimality system when media coverage has a beneficial e�ect on the vaccination
rate, when the weight constraint for the infected population varies. (a) Infected individuals. (b) Vaccinated
individuals. Initial conditions: S(0) = 20.0, I(0) = 25.0, V (0) = 50.0, R(0) = 40.0. The value of the weights
used are (i) B1 = 0.0025 corresponds to variables with subscript 1, (ii) B1 = 25.0 corresponds to variables
with subscript 2, (iii) B1 = 250000.0 corresponds to variables with subscript 3. The value B2 = 0.0025 is kept
constant in all three cases.
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Figure 3: Graphs of the optimality system when media coverage has a beneficial e�ect on the vaccination rate,
when the weight constraint for the infected population varies. (a) Graph of infectives, (b) Graph of vaccinated
individuals. Initial conditions: S(0) = 20.0, I(0) = 25.0, V (0) = 50.0, R(0) = 40.0. The value of the weights
used are (i) B2 = 25.0 corresponds to variables with subscript 1 (++), (ii) B2 = 2500.0 corresponds to variables
with subscript 2 (xx), (iii) B2 = 250000.0 corresponds to variables with subscript 3 (**). The value B1 = 0.0025
is kept constant in all three cases.
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Figure 4: Graphical representation of the evolution of the various populations when media coverage has an
adverse e�ect on the vaccination rate, when the weight constraint for the control population varies. (a) Graph
of infectives. (b) Graph of vaccinated individuals. Initial conditions: S(0) = 20.0, I(0) = 25.0, V (0) = 50.0
,R(0) = 40.0. The value of the weights used are (i) B1 = 0.0025 corresponds to variables with subscript 1, (ii)
B1 = 25.0 corresponds to variables with subscript 2, (iii) B1 = 250000.0 corresponds to variables with subscript
3. The value B2 = 0.0025 is kept constant in all three cases.
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Adverse outcome due to media?

• To illustrate a potentially adverse outcome, 
consider a simplified model

• Suppose, initially, the media and the general 
population are unaware of the disease

• Thus, nobody gets vaccinated, allowing the 
disease to spread initially

• New infected individuals arrive 
at fixed times

• We will ignore recovery in this 
simple model.
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Media awareness threshold

• Suppose there are a critical number of 
infected individuals whereupon people 
become aware of the disease, via the media

• Above this threshold, susceptibles do not 
mix with infecteds

• However, vaccinated 
individuals mix 
significantly with infecteds

• Even though they may 
still potentially contract 
the virus.
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• For I<Icrit, the model is
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• For I<Icrit, the model is
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Simplified model - lower region

• For I<Icrit, the model is

• tk are (fixed) arrival times of new infecteds
• This approximates low-level mixing
• If arrival times are not fixed, the results are 

broadly unchanged.
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• For I>Icrit, the model is

S=susceptible  I=infected  V=vaccinated  Λ=birth rate  
µ=background death rate  θ=vaccination rate  α=disease 
death rate  ω=waning rate  γ=vaccine efficacy  
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• For I>Icrit, the model is
dS

dt
= � + ⌥V � (⌅ + µ)S

dI

dt
= ⇥5(1� ⇤)V I � (� + µ + ⇧)I

dV

dt
= ⌅S � (µ + ⌥)V � ⇥5(1� ⇤)V I

S=susceptible  I=infected  V=vaccinated  Λ=birth rate  
µ=background death rate  θ=vaccination rate  α=disease 
death rate  ω=waning rate  γ=vaccine efficacy  
λ=recovery rate  Icrit=vaccination panic threshold



Simplified model - upper region

• For I>Icrit, the model is
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Simplified model - upper region

• For I>Icrit, the model is

• No mixing of susceptibles and infecteds 
• The vaccinated mix with infecteds, allowing 

them to be infected 
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Simplified model - upper region

• For I>Icrit, the model is

• No mixing of susceptibles and infecteds 
• The vaccinated mix with infecteds, allowing 

them to be infected 
(at low rates).

dS

dt
= � + ⌥V � (⌅ + µ)S

dI

dt
= ⇥5(1� ⇤)V I � (� + µ + ⇧)I

dV

dt
= ⌅S � (µ + ⌥)V � ⇥5(1� ⇤)V I

S=susceptible  I=infected  V=vaccinated  Λ=birth rate  
µ=background death rate  θ=vaccination rate  α=disease 
death rate  ω=waning rate  γ=vaccine efficacy  
λ=recovery rate  Icrit=vaccination panic threshold
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Lower region

• If I<Icrit,we can prove that

where τ = tk+1 - tk

µ=background death rate  α=disease death rate  
λ=recovery rate  Icrit=vaccination panic threshold
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Lower region

• If I<Icrit,we can prove that

where τ = tk+1 - tk
• If m+>Icrit,then the system 

will eventually switch from 
the lower region to the 
upper region.

µ=background death rate  α=disease death rate  
λ=recovery rate  Icrit=vaccination panic threshold

I+ ⇤ Ii

1� e�(�+µ+⇥)⌅
⇥ m+
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Upper region

• If I>Icrit,there is an endemic equilibrium 
(S*,I*,V*)

• This equilibrium is stable if I*>Icrit

• ie once trajectories enter the upper 
region, they will stabilise there

• If I*>m+, then the outcome will be 
worse than without media effects

• Thus, even in this extremely simplified 
model, the media may make things 
significantly worse. S=susceptible  I=infected  V=vaccinated  m+=non-

media equilibrium  Icrit=vaccination panic threshold  
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Low-level mixing of susceptibles

• Low-level mixing may apply to the upper 
region as well

• Including these will increase the long-term 
number of infecteds

• It will also increase the peak of the epidemic 
wave.
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High-level mixing of susceptibles

• What if susceptibles mix with infecteds in 
more significant numbers?

• If these effects are included in the upper 
region, then the wave peak occurs earlier

• The long-term number 
of infecteds will also 
increase.
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Adverse outcome

• Thus, a small series of outbreaks that would 
equilibrate at some maximal level m+>Icrit 
may, as a result of the media, instead 
equilibrate at a much larger value I*>m+

• The driving factor here is overconfidence in 
an imperfect vaccine

• ie vaccinated people mix significantly more 
with infecteds than susceptibles do

• This may happen if people feel invulnerable, 
due to media simplifications around 
vaccines. m+=non-media equilibrium  Icrit=vaccination panic threshold  
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Recommendations

• As scientists, we could all 
benefit from media training

• Messages need to be 
straightforward 

• Plain language is crucial
• Speak in quoteable 

phrases, not paragraphs
• If you can’t explain it... 

...you didn’t do it.
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Summary

• Media simplifications can lead to 
overconfidence in the idea of a vaccine as a 
cure-all

• The result is a vaccinating panic and a net 
increase in the number of long-term infected

• Thus, media coverage of an 
emerging epidemic can have 
dire consequences

• It can also implicitly reinforce an 
imperfect solution as the only 
answer.
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Limitations

• More comprehensive modelling is needed to 
fully understand the complex interplay 
between media and human behaviour

• This will require interdisciplinary research 
across traditional boundaries of
– social
– natural
– medical sciences
– mathematics

• eg people may ignore the media, de-linking 
the vaccination rate from the control.
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Conclusions

• The media are responsible for treating risk 
as spectacle, panic in the face of fear and 
oversimplifications in the absence of data 

• While the media may encourage more 
people to get vaccinated, they may also 
trigger a vaccinating panic

• Or promote overconfidence in the ability of a 
vaccine to fully protect against the disease 

• When the next pandemic arrives, the 
outcome is likely to be significantly worse as 
a result of the media.
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