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The forward approach to model parameterization
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The Bayesian state-space approach to model parameterization
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How to combine the forward and inverse-approaches in practice?

State-space models

Also called Hidden Markov models, process based models...

observation model:
how did we
collect the data?

process model:
what happens
In nature?




How to combine the forward and inverse-approaches?

Bayesian state-space models

prior:
what did we know about the
process model parameters
before collecting the data?

prior:
what did we know about the
observation model parameters
before collecting the data?

process model:
what happens
in nature?

observation model:
how did we
collect the data?




Example: stochastic logistic model

Number of individualsisn = n(t) = 0,1,2,3, ...
Individuals produce new individuals at per-capita fecundity rate f

The per-capita death rateis d + c(n — 1), where d is the density-independent
background mortality rate and the parameter ¢ describes the additional death rate
imposed by competitive effects of the n — 1 individuals to the focal individual

The model is a stochastic Markov process. The deterministic mean-field model is

M (f-d 2 = rn(1 - n/K
E_(f_ Jn—cn® =rn(l —n/K),

r = f — d is the growth rate of the population at low density
K = r/cis the carrying capacity



Model simulation with “true” parameter values f = 3,d = 1 and K = 50.
Initial state n(0) = 5.
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Model simulation with “true” parameter values f = 3,d = 1 and K = 50.
Initial state n(0) = 5.
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Model simulation with “true” parameter values f = 3,d = 1 and K = 50.
Initial state n(0) = 5.
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“True” parameter values f = 3,d = 1 and K = 50.
Simulations with f = 3,d = 1 and K = 50.
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“True” parameter values f = 3,d = 1 and K = 50.
Simulations with f = 2,d =1 and K = 50.
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“True” parameter values f = 3,d = 1 and K = 50.
Simulations with f = 1.5, d = 1 and K = 50.
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“True” parameter values f = 3,d = 1 and K = 50.
Simulations with f = 1,d = 1 and K = 50.
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Likelihood of observing the data

The data: y =(20,40,43,40,53,64,48,50,41,42)
The parameters: 0 = (f,d,K)

OTRUE = (3/1,50)

The probability (likelihood) of observing the data,
given the model and the model parameters: p(¥16)



How to compute the likelihood of observing the data
The data: ¥ = (20,40,43,40,53,64,48,50,41,42)

The experiment was initiated at day O with 5 individuals. What is the
probability that there would be 20 individuals at day 1, assuming § TRUE?
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How does the likelihood depend on model parameters?

x 10715 0"RYE = (f,d,K) = (3,1,50)
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How does the likelihood depend on model parameters?
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Bayesian inference

p(y|0): the likelihood of observing the data y conditional on the parameters 6

p(8|y): the posterior: the probability distribution of parameters, given y.

p(0): the prior: what we assumed about the parameters before seeing the data

Bayes theorem:

p(Bly) x p(8)p(y|0)



How to choose the prior

Sometimes there is prior information, e.g. from other studies.

“We followed singly grown individuals through their life-times, from which data
we estimate the density-independent death rate d to be between 0.7 and 1.1.”

Often there is no prior information. Then one may assume an “uninformative prior”.

Let us assume, for the sake of illustration, the following prior:

p(6) = 1/20000if0 < f,d < 10and 0 < K < 200

otherwise p(8) = 0



The marginal posterior distributions

posterior mean (95% credibility interval)

probability density
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The joint posterior distribution
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The posterior distribution of a derived parameter

probability density
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State-space models often have a hierarchical structure

Population-level
model

Individual-level
model

observation model



Example: Glanville fritillary metapopulation dynamics

~ prof. llkka Hanski



Building metapopulation dynamics from individual behavior
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Harrison, P. J., Hanski, I. and Ovaskainen, O. 2012. Bayesian state-space modeling of
metapopulation dynamics in the Glanville fritillary butterfly. Ecological Monographs 81, 581-598.



Part of the individual-based model

The amount of time all The number of larval groups that
females spend in a patch survive through the winter: N ~ Bin(E, ¢)

N\ /

T

The number of egg groups in the autumn: E ~ Poisson(A4)



Example of model prediction at the individual level
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Examples of model prediction at the population level
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Examples of model prediction at the metapopulation level
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Strategies for model validation

Do nothing, just trust the model (still most common
option!)

Fit model to data, then check if the model can reproduce
the same data

Cross-validation: split the data into two parts. Use data 1
for fitting the model, and check if the model is able to
reproduce data 2

If you have data from different situations, see if the
model fitted to situation 1 can reproduce the data
collected from situation 2



Landscape A

Example of model validation (strategy 4)
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Empirical data on Landscape B

Ovaskainen, O., Luoto, M., Ikonen, I., Rekola, H., Meyke, E. and Kuussaari, M. 2008. An empirical test of a diffusion
model: predicting clouded apollo movements in a novel environment. American Naturalist 171, 610-619.



Strategies for model selection

Try only one model and hope it fits nicely enough (still
most common option!)

See which model reproduces the data (or preferably
some independent data) using a summary statistic you
best like / think is biologically relevant

Use formal model selection methods: AIC, BIC, DIC,
Bayes factor, ...



L2: take home messages

State-space models combine a process model with an observation model. They
provide a very general framework of formulating and fitting movement models.

State-space models can be visualized using a DAG (directed acyclic graph).
DAG is a very useful way to illustrate how the components of the model link to
each other.

State-space models allow one to bring biological knowledge into statistical
inference, parameterize dynamic models of movement, and to use data with
missing observations.

Fitting state-space models to data can be technically challenging. A great
number of methods exist (essentially variants of MCMC approaches).

All models are wrong, but some are still useful. Take model selection and
validation seriously!



