Testing Dark Energy: a unified approach

Luca Amendola

University of Heidelberg

in collaboration with Frank Koennig, Martin Kunz, Mariele Motta, Ippocratis Saltas, Ignacy Sawicki, Alejandro Trilleras, Adrian Vollmer, Simone Fogli

Testing dark energy

expansion

perturbations

The two main problems of testing dark energy

1) Problem of initial conditions

For instance, how do we know if the shape of the power spectrum we observe is due to dark energy or to initial conditions?

The two main problems of testing dark energy

1) Problem of initial conditions

e.g, how do we know if the shape of the power spectrum we observe is due to dark energy or to initial conditions?

2) Problem of design

If our model parameter space is sufficiently large, we can design a model to fit any observation

Cosmological constant, Dark energy w=const. Dark energy w=w(z), Quintessence. scalar-tensor models, coupled quintessence, mass varying neutrinos, k-essence, Chaplygin gas, Cardassian, quartessence, quiessence, phantoms, f(R), Gauss-Bonnet, anisotropic dark energy, brane dark energy, backreaction, degravitation, TeVeS, Galileons, KGB, multiple dark matter,...

Prolegomena zu einer

jeden künftigen Dark Energy physik ©Kant

Observations:

- Isotropy
- Large abundance
- Slow evolution
- Weak clustering

Theory:

Scalar field?

 $\square \Omega_{\rm DE} \approx \Omega_{\rm m}$

• Weff \approx -1

 $c_{s} \approx 1$

The past ten years of DE research

$$\int dx^4 \sqrt{-g} \left[R + \frac{1}{2} \phi_{,\mu} \phi^{,\mu} + V(\phi) + L_{matter} \right]$$
$$\int dx^4 \sqrt{-g} \left[f(\phi)R + \frac{1}{2} \phi_{,\mu} \phi^{,\mu} + V(\phi) + L_{matter} \right]$$

$$\int dx^4 \sqrt{-g} \left[f(\phi)R + K(\frac{1}{2}\phi_{\mu}\phi^{\mu}) + V(\phi) + L_{matter} \right]$$

$$\int dx^4 \sqrt{-g} \left[f(\phi, \frac{1}{2}\phi_{,\mu}\phi^{,\mu})R + G_{\mu\nu}\phi^{,\nu}\phi^{,\mu} + K(\frac{1}{2}\phi_{,\mu}\phi^{,\mu}) + V(\phi) + L_{matter} \right]$$

Cosmological constant, Dark energy w=const, Dark energy w=w(z),quintessence, scalar-tensor model, coupled quintessence, k-essence, f(R), Gauss-Bonnet, Galileons, KGB,

The Horndeski Lagrangian

The most general 4D scalar field theory with second order equation of motion

$$\int dx^4 \sqrt{-g} \left[\sum_i L_i + L_{matter} \right]$$

$$\mathcal{L}_{2} = \underline{K(\phi, X)},$$

$$\mathcal{L}_{3} = \underline{-G_{3}(\phi, X)} \Box \phi,$$

$$\mathcal{L}_{4} = \underline{G_{4}(\phi, X)} R + G_{4,X} \left[(\Box \phi)^{2} - (\nabla_{\mu} \nabla_{\nu} \phi) (\nabla^{\mu} \nabla^{\nu} \phi) \right],$$

$$\mathcal{L}_{5} = \underline{G_{5}(\phi, X)} G_{\mu\nu} \left(\nabla^{\mu} \nabla^{\nu} \phi \right) - \frac{1}{6} G_{5,X} \left[(\Box \phi)^{3} - 3(\Box \phi) (\nabla_{\mu} \nabla_{\nu} \phi) (\nabla^{\mu} \nabla^{\nu} \phi) + 2(\nabla^{\mu} \nabla_{\alpha} \phi) (\nabla^{\alpha} \nabla_{\beta} \phi) (\nabla^{\beta} \nabla_{\mu} \phi) \right].$$

- First found by Horndeski in 1975
- rediscovered by Deffayet et al. in 2011
- no ghosts, no classical instabilities
- it modifies gravity!
- it includes f(R), Brans-Dicke, k-essence, Galileons, clustering DE etc etc
- Invariant under conformal and disformal transformations

Massive gravity

Pauli-Fierz (1939) action: the only ghost-free quadratic action for a massive spin two field

$$\int d^4x \sqrt{g} R_g + m^2 \int d^4x h_{\mu\nu} h_{\alpha\beta} \left(\eta^{\mu\alpha} \eta^{\nu\beta} - \eta^{\mu\nu} \eta^{\alpha\beta} \right)$$

The three capital sins of Pauli-Fierz theory:

• It does not reduce to massless gravity for $m \rightarrow 0$ (vDVZ disc.)

• It is linear

• It contains a ghost when extended to non-linear level (Boulware-Deser ghost)

Massive gravity versus bigravity

- The first problem was partially solved by Vainshtein (1972): there exists a radius below which the linear theory cannot be applied;
- For the Sun, this radius is larger than the solar system!
- The second and third problems have been reconsidered very recently:

$$S = -\frac{M_g^2}{2} \int d^4x \sqrt{-\det g} R(g) - \frac{M_f^2}{2} \int d^4x \sqrt{-\det f} R(f)$$
$$+ m^2 M_g^2 \int d^4x \sqrt{-\det g} \sum_{n=0}^4 \beta_n e_n(\sqrt{g^{\alpha\beta} f_{\beta\gamma}}) + \int d^4x \sqrt{-\det g} L_m(g, \Phi)$$

The only ghost-free local non-linear massive gravity theory is a second order theory!

deRham, Gabadadze, and coll., 2010 Hassan & Rosen, 2011

The next ten years of DE research

Combine observations of background, linear and non-linear perturbations to reconstruct as much as possible the Horndeski & Massive Gravity model

... or to rule them out!

The Great Horndeski Hunt

Let us assume we have only

- 1) a perturbed FRW metric
- 2) pressureless matter
- 3) the Horndeski field

Standard rulers

Standard rulers

BAO ruler

Charles L. Bennett Nature 440, 1126-1131(27 April 2006)

Sao Paulo 2014

Background: SNIa, BAO, ...

Then we can measure H(z) and

$$D(z) = \frac{1}{H_0 \sqrt{-\Omega_{k0}}} \sinh(H_0 \sqrt{-\Omega_{k0}} \int \frac{dz}{H(z)})$$

and therefore we can reconstruct the full FRW metric

$$ds^{2} = dt^{2} - \frac{a(t)^{2}}{\left(1 - \frac{\Omega_{k0}}{4}r^{2}\right)^{2}}(dx^{2} + dy^{2} + dz^{2})]$$

Two free functions

The most general linear, scalar metric

$$ds^{2} = a^{2}[(1+2\Psi)dt^{2} - (1+2\Phi)(dx^{2} + dy^{2} + dz^{2})]$$

Poisson's equation

$$\nabla^2 \Psi = 4\pi G \rho_m \delta_m$$

anisotropic stress

 $1 = -\frac{\Psi}{\Phi}$

Two free functions

The most general linear, scalar metric

$$ds^{2} = a^{2}[(1+2\Psi)dt^{2} - (1+2\Phi)(dx^{2} + dy^{2} + dz^{2})]$$

• Poisson's equation
$$\nabla^2 \Psi = 4\pi G Y(k,a) \rho_m \delta_m$$

anisotropic stress

$$\eta(k,a) = -\frac{\Phi}{\Psi}$$

Modified Gravity at the linear level

standard gravity	Y(k,a) = 1	
	$\eta(k,a) = 1$	
 scalar-tensor models 	$Y(a) = \frac{G^*}{FG_{cav,0}} \frac{2(F+F'^2)}{2F+3F'^2}$ $\eta(a) = 1 + \frac{F'^2}{F+F'^2}$	Boisseau et al. 2000 Acquaviva et al. 2004 Schimd et al. 2004 L.A., Kunz &Sapone 2007
• f(R)	$Y(a) = \frac{G^*}{FG_{cav,0}} \frac{1 + 4m\frac{k^2}{a^2R}}{1 + 3m\frac{k^2}{a^2R}}, \eta(a) = 1 + \frac{m\frac{k^2}{a^2R}}{1 + 2m\frac{k^2}{a^2R}}$	Bean et al. 2006 Hu et al. 2006 Tsujikawa 2007
• DGP	$Y(a) = 1 - \frac{1}{3\beta}; \beta = 1 + 2Hr_c w_{DE}$ $\eta(a) = 1 + \frac{2}{3\beta - 1}$	Lue et al. 2004; Koyama et al. 2006
 massive bi-gravity 	$Y(a) = \dots$ $\eta(a) = \dots$	see F. Koennig and L. A. 201

Modified Gravity at the linear level

In the quasi-static limit, every Horndeski model is characterized at linear scales by the two functions

$$\eta(k,a) = h_2 \left(\frac{1+k^2 h_4}{1+k^2 h_5} \right)$$

$$k = \text{wavenumber}$$

$$h_i = \text{time-dependent}$$

$$functions$$

$$Y(k,a) = h_1 \left(\frac{1+k^2 h_5}{1+k^2 h_3} \right)$$

De Felice et al. 2011; L.A. et al.PRD, arXiv:1210.0439, 2012

Modified Gravity at the linear level

$$\begin{split} h_1 &\equiv \frac{w_4}{w_1^2} = \frac{c_{\rm T}^2}{w_1}, \qquad h_2 \equiv \frac{w_1}{w_4} = c_{\rm T}^{-2}, \\ h_3 &\equiv \frac{H^2}{2XM^2} \frac{2w_1^2w_2H - w_2^2w_4 + 4w_1w_2\dot{w}_1 - 2w_1^2(\dot{w}_2 + \rho_{\rm m})}{2w_1^2}, \\ h_4 &\equiv \frac{H^2}{2XM^2} \frac{2w_1^2H^2 - w_2w_4H + 2w_1\dot{w}_1H + w_2\dot{w}_1 - w_1(\dot{w}_2 + \rho_{\rm m})}{w_1}, \\ h_5 &\equiv \frac{H^2}{2XM^2} \frac{2w_1^2H^2 - w_2w_4H + 4w_1\dot{w}_1H + 2\dot{w}_1^2 - w_4(\dot{w}_2 + \rho_{\rm m})}{w_4}, \end{split}$$

$$\begin{split} & w_1 \equiv 1 + 2 \left(G_4 - 2XG_{4,X} + XG_{5,\phi} - \dot{\phi} XHG_{5,X} \right) , \\ & w_2 \equiv -2 \dot{\phi} \left(XG_{3,X} - G_{4,\phi} - 2XG_{4,\phi X} \right) + \\ & + 2H \left(w_1 - 4X \left(G_{4,X} + 2XG_{4,XX} - G_{5,\phi} - XG_{5,\phi X} \right) \right) - \\ & - 2 \dot{\phi} XH^2 \left(3G_{5,X} + 2XG_{5,XX} \right) , \\ & w_3 \equiv 3X \left(K_{,X} + 2XK_{,XX} - 2G_{3,\phi} - 2XG_{3,\phi X} \right) + 18 \dot{\phi} XH \left(2G_{3,X} + XG_{3,XX} \right) - \\ & - 18 \dot{\phi} H \left(G_{4,\phi} + 5XG_{4,\phi X} + 2X^2G_{4,\phi XX} \right) - \\ & - 18H^2 \left(1 + G_4 - 7XG_{4,X} - 16X^2G_{4,XX} - 4X^3G_{4,XXX} \right) - \\ & - 18XH^2 \left(6G_{5,\phi} + 9XG_{5,\phi X} + 2X^2G_{5,\phi XX} \right) + \\ & + 6 \dot{\phi} XH^3 \left(15G_{5,X} + 13XG_{5,XX} + 2X^2G_{5,XXX} \right) , \\ & w_4 \equiv 1 + 2 \left(G_4 - XG_{5,\phi} - XG_{5,X} \ddot{\phi} \right) . \end{split}$$

De Felice et al. 2011; L.A. et al., PRD, arXiv:1210.0439, 2012

Yukawa Potential

$$\eta(k,a) = h_2 \left(\frac{1+k^2 h_4}{1+k^2 h_5}\right)$$
$$Y(k,a) = h_1 \left(\frac{1+k^2 h_5}{1+k^2 h_3}\right)$$

Momentum space

$$\nabla^2 \Psi = 4\pi G Y(k, a) \rho_m \delta_m$$

$$\Psi = -\frac{GM}{r}h_2(1 + \frac{h_4 - h_5}{h_5}e^{-r/\sqrt{h_5}}) = -\frac{GM}{r}(1 + Qe^{-mr})$$
 Real space

De Felice et al. 2011; L.A. et al.PRD, arXiv:1210.0439, 2012

Quasi-static approximation

 $c_s^2 k^2 \gg a^2 H^2$

From a wave equation:

$$\begin{split} E_{\delta\phi} &\equiv D_1 \ddot{\Phi} + D_2 \ddot{\delta\phi} + D_3 \dot{\Phi} + D_4 \dot{\delta\phi} + D_5 \dot{\Psi} + D_6 \frac{k^2}{a^2} \dot{\chi} \\ &+ \left(D_7 \frac{k^2}{a^2} + D_8 \right) \Phi + \left(D_9 \frac{k^2}{a^2} - M^2 \right) \delta\phi + \left(D_{10} \frac{k^2}{a^2} + D_{11} \right) \Psi + D_{12} \frac{k^2}{a^2} \chi = 0 \,, \end{split}$$

To a "Poisson" equation:

$$B_7 \frac{k^2}{a^2} \Phi + \left(D_9 \frac{k^2}{a^2} - M^2 \right) \delta \phi + A_6 \frac{k^2}{a^2} \Psi \simeq 0,$$

Reconstruction of the metric

$$ds^{2} = a^{2} [(1 + 2\Psi)dt^{2} - (1 + 2\Phi)(dx^{2} + dy^{2} + dz^{2})]$$

Non-relativistic particles respond to Ψ

$$\delta_m'' + (1 + \frac{\mathcal{H}'}{\mathcal{H}})\delta_m' = -k^2 \Psi + \frac{\mathcal{H}'}{\mathcal{H}} \delta_m' = -k^2 \Psi + \frac{\mathcal{H}'}{\mathcal{H}} \delta_m' + \frac{\mathcal{H}'}{\mathcal{$$

Relativistic particles respond to Φ - Ψ

$$\alpha = \int \nabla_{perp} (\Psi - \Phi) dz$$

Deconstructing the galaxy power spectrum

Three linear observables: A, R, L

clustering

$$\delta_{gal}(k,z,0) = Gb\sigma_{\!\!8}\delta_{m,0}(k) \equiv A$$

μ=0

Amplitude

A

$$\delta_{gal}(k, z, 1) = G\sigma_8 f \delta_{m,0}(k) \equiv R$$

lensing

Lensing

$$k^{2}\Phi_{lens} = k^{2}(\Psi - \Phi) = -\frac{3}{2}\Sigma G\Omega_{m}\sigma_{8}\delta_{m,0}(k) \equiv L$$

$$\Sigma = Y(1 + \eta)$$

The only model-independent ratios

Redshift distortion/Amplitude

Lensing/Redshift distortion

Redshift distortion rate

Expansion rate

How to combine them to test the theory?

$$P_{1} = \frac{R}{A} = \frac{f}{b}$$

$$P_{2} = \frac{L}{R} = \frac{\Omega_{m0}Y(1+\eta)}{f}$$

$$P_{3} = \frac{R'}{R} = \frac{f'}{f} + f$$

$$E = \frac{H}{H_{0}}$$

Summarizing....

Matter conservation equation independent of gravity theory

$$\delta_m'' + (1 + \frac{\mathcal{H}'}{\mathcal{H}})\delta_m' = -k^2\Psi +$$

Observables

$$P_{2} = \frac{L}{R} = \frac{\Omega_{m0}Y(1+\eta)}{f} \qquad P_{3} = \frac{R'}{R} = \frac{f'}{f} + f \qquad E = \frac{H}{H_{0}}$$

The anisotropic stress is directly observable

A unique combination of model independent observables

Testing the entire Horndeski Lagrangian

A unique combination of model independent observables

Horndeski Lagrangian: not too big to fail

$$g(z,k) = \frac{(REa^2)'}{LEa^2}$$

$$2g_{k}g_{kkk} - 3(g_{kk})^{2} = 0$$

If this relation is falsified, the Horndeski theory is rejected*

L.A., M. Motta, I. Sawicki, M. Kunz, I. Saltas, 1210.0439

Beyond the quasi-static condition

General consistency relation

$$\eta \Gamma' + \eta'' + \Gamma \left(\eta \Gamma + 2\eta' + \bar{\alpha}_1 \eta - \bar{\alpha}_2\right) + \\ + \bar{\alpha}_1 \eta' + \bar{\alpha}_3 \eta - \bar{\alpha}_5 + k^2 \left(\bar{\alpha}_4 \eta - \bar{\alpha}_6\right) = \bar{\alpha}_7 \varpi .$$
$$\Gamma \equiv \frac{\Psi'}{\Psi} = \frac{L'}{L} - \frac{\eta'}{1+\eta} - 1 ,$$
$$\varpi = \frac{1+\eta}{P_2}$$

M. Motta, L.A, I. Sawicki, M. Kunz, I. Saltas, 1305.0008 2013

Massive gravity versus bigravity

The only ghost-free local non-linear massive gravity theory

$$S = -\frac{M_g^2}{2} \int d^4x \sqrt{-\det g} R(g) - \frac{M_f^2}{2} \int d^4x \sqrt{-\det f} R(f) + m^2 M_g^2 \int d^4x \sqrt{-\det g} \sum_{n=0}^4 \beta_n e_n(\sqrt{g^{\alpha\beta} f_{\beta\gamma}}) + \int d^4x \sqrt{-\det g} L_m(g, \Phi) Two dynamical metrics! Only one is coupled
$$g_{\mu\nu}, \quad f_{\mu\nu}$$$$

Bigravity at the background level

Let us drastically simplify the problem: We assume two spatially flat FRW-like metrics, with two scale factors a(t), b(t) At the background level, one finds that the problem is one-dimensional

$$r' = \frac{3r\Omega_m(\beta_1 + 3\beta_2 r + 3\beta_3 r^2 + \beta_4 r^3)}{\beta_1 - 3\beta_3 r^2 + 2\beta_4 r^3 + 3(\beta_1 + 2\beta_2 r + \beta_3 r^2)r^2}, \quad r \equiv \frac{b}{a}$$

Final state always de Sitter No problem in recovering an approximate LCDM behavior, fitting SN etc.

Sao Paulo 2014

F. Koennig, L.A. (1312.3208, 1402.1988)

Minimal Bimetric Model

One parameter, analytical background behavior, as simple as LCDM, but fully distinguishable

$$\beta_1 = 1.38 \pm 0.03$$
 $W_{MBM} \sim -1.22 - 0.64 \frac{z}{1+z}$
Sao Paulo 2014

Bigravity at the linear level

The linear perturbations are much more complicated. 6 d.o.f., instead of 2 in standard gravity, for scalar perturbations.

$$\begin{split} \Phi &= -\frac{B_2 a^2 r}{2k^2 + 3B_2 a^2 r} k^2 \Delta E + \frac{3B_2 a^2 r}{2k^2 + 3B_2 a^2 r} \Phi_f + \frac{a^2 \rho_m}{2k^2 + 3B_2 a^2 r} \delta_m \\ \Psi &= -\Phi - A_2 a^2 r \Delta E \\ \Phi_f &= \frac{B_2 a^2}{3B_2 a^2 + 2k^2 r} k^2 \Delta E + \frac{B_2 a^2}{3B_2 a^2 + 2k^2 r} \Phi \\ Sub-horizon \\ approximation \quad \Psi_f &= \frac{2A_2 a^2}{3B_2 a^2 + 2k^2 (r + r')} k^2 \Delta E + \frac{6A_2 a^2}{3B_2 a^2 + 2k^2 (r + r')} \Phi \\ &+ \frac{3B_2 a^2}{3B_2 a^2 + 2k^2 (r + r')} \Psi + \frac{6A_1 a^2 r - 2k^2 (r + r')}{3B_2 a^2 + 2k^2 (r + r')} \Phi_f \\ \Psi_f &= -\Phi_f + \frac{A_2 a^2}{r + r'} \Delta E \end{split}$$

F. Koennig, M.Motta, L.A., in preparation

In the quasi-static limit we obtain again the Horndeski form!

$$\eta(k,a) = H_2 \left(\frac{1+k^2H_4}{1+k^2H_5}\right)$$
$$Y(k,a) = H_1 \left(\frac{1+k^2H_5}{1+k^2H_5}\right)$$

F. Koennig, L.A. 1402.1988

Bigravity at the linear level

Euclid in a nutshell

Simultaneous (i) visible imaging (ii) NIR photometry (iii) NIR spectroscopy 15,000 square degrees 70 million redshifts, 2 billion images Median redshift z = 1 PSF FWHM ~0.18'' >1000 peoples, >10 countries

Euclid satellite

arXiv Red Book 1110.3193

arXiv Theory Review 1206.1225

Euclid forecasts...

$$\eta(k,a) = H_2\left(\frac{1+k^2H_4}{1+k^2H_5}\right)$$

Model 1: η constant for all z, k Error on η around 1%

Model 2: η varies in z Error on η

\overline{z}	$P_1(\bar{z})$	ΔP_1	$\Delta P_1(\%)$	$P_2(\bar{z})$	ΔP_2	$\Delta P_2(\%)$	$P_3(\bar{z})$	ΔP_3	$\Delta P_3(\%)$	$(E'/E)(\bar{z})$	$\Delta E'/E$	$\Delta E'/E(\%)$	$ar\eta$	$\Delta \bar{\eta}$	$\Delta \bar{\eta}(\%)$
0.6	0.766	0.012	1.6	0.729	0.011	1.6	0.134	0.13	99.	-0.92	0.018	1.9	1	0.11	11.
0.8	0.819	0.01	1.2	0.682	0.0088	1.3	0.317	0.12	38.	-1.04	0.038	3.7	1	0.091	9.1
1.	0.859	0.0093	1.1	0.65	0.0086	1.3	0.46	0.12	26.	-1.13	0.085	7.5	1	0.089	8.9
1.2	0.888	0.0092	1.	0.628	0.014	2.3	0.569	0.13	23.	-1.21	0.11	9.5	1	0.097	9.7
1.4	0.911	0.01	1.1	0.613	0.019	3.2	0.654	0.05	7.7	-1.26	0.052	4.1	1	0.034	3.4

Results..

Model 3: η varies in z and k Error on $~\eta$

\bar{z}	i	P_1	ΔP_1	$\Delta P_1(\%)$	P_2	ΔP_2	$\Delta P_2(\%)$	P_3	ΔP_3	$\Delta P_3(\%)$	$\bar{\eta}$	$\Delta \bar{\eta}$	$\Delta \bar{\eta}(\%)$
0.6	1	0.766	0.14	18	0.729	0.12	17	0.134	1.4	1100		1.1	120
	2		0.032	4.1		0.030	4.1		0.33	240	1	0.26	26
	3		0.013	1.7		0.015	2.0		0.15	110		0.12	12
0.8	1		0.11	13	0.682	0.092	13	0.317	1.2	380	1	0.93	93
	2	0.819	0.024	2.9		0.021	3.1		0.26	83		0.2	20
	3		0.011	1.4		0.013	1.9		0.14	43		0.1	10
1.0	1		0.093	11	0.65	0.076	12	0.46	1.1	240	1	0.82	82
	2	0.859	0.020	2.3		0.019	2.9		0.23	51		0.17	17
	3		0.011	1.2		0.012	1.8		0.14	31		0.1	11
	1	0.888	0.084	9.4	0.628	0.074	12	0.569	1.1	190	1	0.78	78
1.2	2		0.017	2.0		0.021	3.3		0.23	40		0.16	16
	3		0.011	1.2		0.017	2.7		0.17	29		0.12	12
1.4	1		0.079	8.7	0.613	0.084	14	0.654	0.79	120		0.55	55
	2	0.911	0.017	1.9		0.027	4.4		0.17	26	1	0.12	12
	3		0.013	1.4		0.023	3.8		0.14	21		0.094	9.4

Sao Paulo 2014

L.A, M. Kunz, A. Vollmer, A. Trilleras, S. Fogli, 1311.4765, 2013

A cosmological exclusion plot

Model 4: η has the Horndeski form Error on h2, (h4-h5) in h/Mpc

10.00

$$\eta = h_2 \left(\frac{1 + k^2 h_4}{1 + k^2 h_5} \right)$$

Sao Paulo 2014

Under the carpet.

Problem of non-linearity: screening effects mix linear and non-linear scales

same density contrast

different physics

1

If DE is not a Horndeski field or massive gravity, then I don't know what could be

2

k-binned data are crucial! e.g. growth factor, redshift distortion parameter

3

Only by combining galaxy clustering and lensing can DE be constrained (or ruled out!) in a model-independent way

Dark Energy Theory and Observations

Luca Amendola and Shinji Tsujikawa

Cambridge University Press

MARIDGE