
The EMC effect: Past, Present and Future

Ian Cloët Argonne National Laboratory

II Workshop on Perspectives in Nonperturbative QCD São Paulo, 12–13 May 2014

EMC effect

- In the early 80s physicists at CERN thought that nucleon structure studies using DIS could be enhanced (by a factor A) using nuclear targets
- The European Muon Collaboration (EMC) conducted DIS experiments on an iron target
 - J. J. Aubert et al., Phys. Lett. B 123, 275 (1983)

"The results are in complete disagreement with the calculations ... We are not aware of any published detailed prediction presently available which can explain behavior of these data."

• Measurement of the *EMC effect* destroyed a particle-physics paradigm regarding QCD and nuclear structure

- more than 30 years after discovery a broad consensus on explanation is lacking
- what is certain: valence quarks in nucleus carry less momentum than in a nucleon

One of the most important nuclear structure discoveries since advent of QCD • understanding its origin is critical for a QCD based description of nuclei table of contents

Recent data for EMC effect in light nuclei

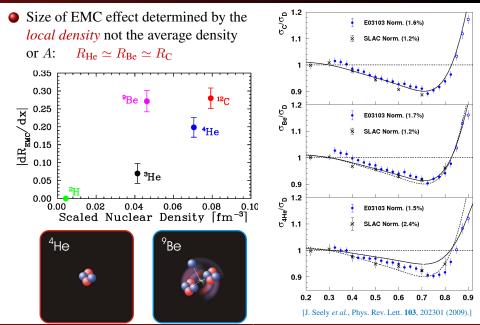
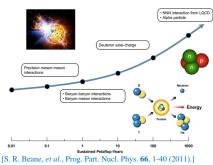
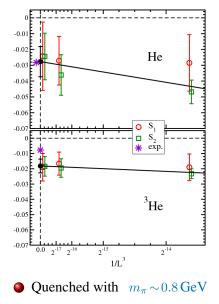
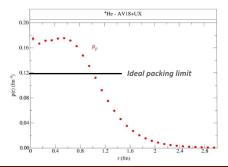



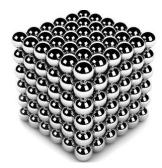
table of contents


San Paulo 13th May

Lattice QCD and nuclear physics

- Lattice QCD is beginning to make inroads into nuclear physics
- Calculations require huge computational resources
- Lattice QCD will not calculate an EMC effect in foreseeable future
 - importantly lattice will NOT explain why there is an EMC effect

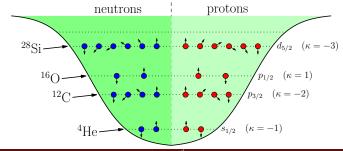

[PACS-CS Collaboration, Phys. Rev. D81, 111504 (2010).]



What do we know about nuclei?

- Nuclei are complex, strongly-interacting many-body systems
 - effective description in terms of bound nucleons and mesons works well
 - typical velocities for nucleons in nuclei are $\sim 30\%$ speed of light
- \bigcirc Nuclei are extremely dense, 10^{14} times denser that ordinary matter
 - proton rms radius is $r_p \simeq 0.85$ fm, corresponds to hard sphere with $r_p \simeq 1.15$ fm
 - ideal packing gives $\rho = 0.12 \, \text{fm}^{-3}$, nuclear matter has density $\rho \simeq 0.16 \, \text{fm}^{-3}$
 - bound nucleon wave functions must be overlapping

Theoretical approaches to EMC effect


In general must determine nuclear quark distributions:

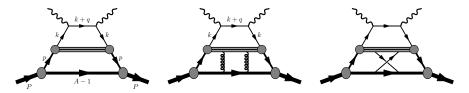
$$q_A(x_A) = \frac{P^+}{A} \int \frac{d\xi^-}{2\pi} e^{iP^+ x_A \xi^- / A} \langle A, P | \overline{\psi}_q(0) \gamma^+ \psi_q(\xi^-) | A, P \rangle$$

Approximate using convolution formalism

$$q_A(x_A) = \sum_{\alpha} \int_0^A dy_A \int_0^1 dx \ \delta(x_A - y_A x) \ f_\alpha(y_A) \ q_\alpha(x)$$

• $\alpha = (bound)$ protons, neutrons, pions, deltas. ...

Theoretical approaches to EMC effect


In general must determine nuclear quark distributions:

$$q_A(x_A) = \frac{P^+}{A} \int \frac{d\xi^-}{2\pi} e^{iP^+ x_A \xi^- / A} \langle A, P | \overline{\psi}_q(0) \gamma^+ \psi_q(\xi^-) | A, P \rangle$$

Approximate using convolution formalism

$$q_A(x_A) = \sum_{\alpha} \int_0^A dy_A \int_0^1 dx \ \delta(x_A - y_A x) \ f_\alpha(y_A) \ q_\alpha(x)$$

- $\alpha = (bound)$ protons, neutrons, pions, deltas. ...
- $q_{\alpha}(x)$ lightcone distribution of quarks q in bound hadron α
- $f_{\alpha}(y_A)$ lightcone distribution of hadrons α in nucleus

Convolution Formalism and Sum Rules

Recall convolution model:

$$q_A(x_A) = \sum_{\alpha} \int_0^A dy_A \int_0^1 dx \ \delta(x_A - y_A x) \ f_\alpha(y_A) \ q_\alpha(x)$$

All credible explanations of the EMC effect must satisfy baryon number and momentum sum rules:

$$\int_{0}^{A} dx_{A} u_{A}^{-}(x_{A}) = 2 Z + N, \qquad \int_{0}^{A} dx_{A} d_{A}^{-}(x_{A}) = Z + 2 N,$$
$$\int_{0}^{A} dx_{A} x_{A} \left[u_{A}^{+}(x_{A}) + d_{A}^{+}(x_{A}) + \dots + g_{A}(x_{A}) \right] = Z + N = A,$$

In convolution formalism these sum rules imply

$$\sum_{\alpha} n_B \int_0^A dy_A f_\alpha(y_A) = A \quad \sum_{\alpha} \int_0^A dy_A y_A f_\alpha(y_A) = A$$

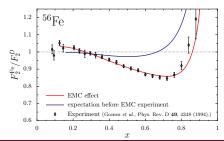
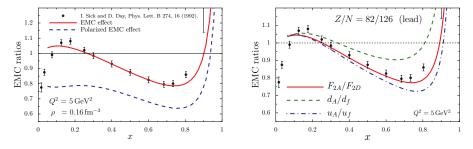
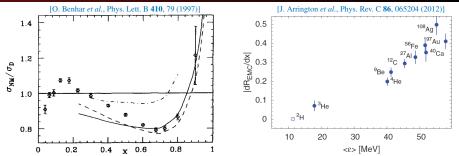

• quark distributions $q_{\alpha}(x)$ should satisfy baryon number and momentum sum rules for hadron α

table of contents

Explanations of EMC effect


- Explanations of EMC effect include:
 - Nuclear binding and Fermi motion
 - Pion excess in nuclei
 - Dynamical rescaling
 - Multi-quark clusters, e.g. 6, 9, ... quark bags
 - Nucleon swelling and suppresion of point-like configurations
 - Medium modification of bound nucleon wave functions
 - Short-range nucleon-nucleon correlations
- After 30 years data has ruled out almost none of these explanations!

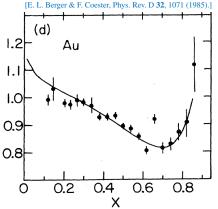


Polarzied and Isovector EMC effects

- The puzzle posed by the EMC effect will only be solved by conducting new experiments that expose novel aspects of the EMC effect
- Two important measurements are:
 - the flavour dependence of the EMC effect Isovector EMC effect
 - the EMC effect in spin-dependent structure functions Polarzied EMC effect
- Proposed explanations predict various behaviours for these new EMC effects
- New experiments at e.g. Jefferson Lab will measure both these EMC effects

 Nucleons are bound inside a nucleus, therefore binding, Fermi motion and off-shell corrections must be considered in any explanation of EMC effect

- Binding energy (~8 MeV) is too small to explain EMC effect; therefore average nucleon separation energy usually considered
 - Koltan sum rule: $\frac{E_A}{A} = \frac{1}{2} \left[\langle t \rangle + \langle \varepsilon \rangle \right]$; total binding energy for ⁴He = 28 MeV


Approach does not satisfy momentum sum rule – completely unconstrained

• The spin structure of nuclei is dominated by the valence nucleons, therefore binding would predict a small polarized EMC effect

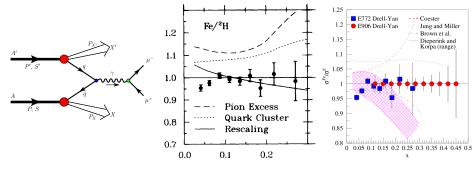
table of contents

Pion Excess

- Pions are responsible for (*inter alia*) long range part of NN interaction
- Natural to expect pions are important for EMC effect [Ericson & Thomas (1983); Llewellyn Smith (1983); Berger, Coester & Wiringa (1984)]
- Introduce lightcone distribution for pions in a nucleus: $f_{\pi}(y_A); \quad \int dy_A f_{\pi}(y_A) = n_{\pi}$

Momentum conservation now implies:

 $\int_0^A dy_A \, y_A \, f_N(y_A) + \int_0^A dy_A \, y_A \, f_\pi(y_A) = A$


• can explain EMC effect; e.g. for Au: $n_{\pi} = 0.114$, $\langle y_A \rangle = 0.061$ per-nucleon

Pion excess predicts large enhancement in sea-quark distributions in nuclei

• Because $\Delta f_{\pi}(y_A) = 0$ pion excess predicts small polarized EMC effect

Anti-quarks in nuclei and Drell-Yan

- Pions play a fundamental role in traditional nuclear physics
 - may expect pion (anti-quark) enhancement in nuclei compared to nucleon
- Drell-Yan experiment set up to probe anti-quarks in target nucleus
 - $\bar{q}q \rightarrow \mu^+\mu^-$ E906: running Fermilab, [E772: Alde *et al.*, PRL. 64, 2479 (1990).]

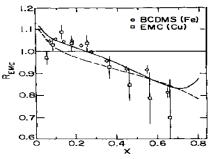
[proposed in R. P. Bickerstaff, M. C. Birse and G. A. Miller, Phys. Rev. Lett. 53, 2532 (1984).]

• no anti-quark enhancement compared to free nucleon was observed

Important to understand anti-quarks in nuclei: Drell-Yan & PV DIS

table of contents

Dynamical Rescaling



Idea arises from observation:

$$F_{2A}(x,Q^2) \simeq F_{2N}(x,\,\xi_A(Q^2)\,Q^2)$$

- where $\xi_A(Q^2) > 1$
- empirically $\xi \simeq 2$ at $Q^2 = 20 \,\mathrm{GeV^2}$
- promoted by several "luminaries" e.g.
 O. Nachtmann, H. Pirner; F. E. Close,
 R. G. Roberts, G. G. Ross; R. L. Jaffe

- Attributed to increase in confinement radius of bound nucleon; which is associated with change in factorization scale: $r_A \mu_A = r_N \mu_N$; $\mu_A < \mu_N$
- Assuming $q_A(x,Q^2 = \mu_A^2) = q_N(x,Q^2 = \mu_N^2)$ LO QCD implies

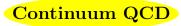
$$\xi_A(Q^2) = \left(\mu_N^2/\mu_A^2\right)^{\alpha_s(\mu_N^2)/\alpha_s(Q^2)}; \quad \xi \sim 2 \implies r_A/r_N \sim 1.15$$

 Dynamical rescaling predicts a polarized and usual EMC effect of a similar size; since DGLAP evolution is flavour bind no isovector EMC effect

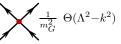
- 50 years of traditional nuclear physics tells us that the nucleus is composed of nucleon-like objects
- However if a nucleon property is not protected by a symmetry its value may change in medium – e.g.
 - mass, magnetic moment, size
 - quark distributions, form factors, GPDs, etc
- There must be medium modification:
 - nucleon propagator is changed in medium
 - off-shell effects $(p^2 \neq M^2)$
 - Lorentz covariance implies bound nucleon has 12 EM form factors

$$\langle J^{\mu} \rangle = \sum_{\alpha, \beta = +, -} \Lambda^{\alpha}(p') \left[\gamma^{\mu} f_{1}^{\alpha\beta} + \frac{1}{2M} i \sigma^{\mu\nu} q_{\nu} f_{2}^{\alpha\beta} + q^{\mu} f_{3}^{\alpha\beta} \right] \Lambda^{\beta}(p)$$

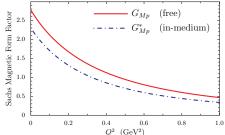
 Need to understand these effects as first step toward QCD based understanding of nuclei


- 50 years of traditional nuclear physics tells us that the nucleus is composed of nucleon-like objects
- However if a nucleon property is not protected by a symmetry its value may change in medium – for example:
 - mass, magnetic moment, size
 - quark distributions, form factors, GPDs, etc
- There must be medium modification:
 - nucleon propagator is changed in medium
 - off-shell effects $(p^2 \neq M^2)$
 - Becomes two form factors for on-shell nucleon

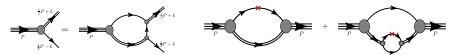
$$\langle J^{\mu} \rangle = \bar{u}(p') \left[\gamma^{\mu} F_1(Q^2) + \frac{1}{2M} i \sigma^{\mu\nu} q_{\nu} F_2(Q^2) \right] u(p)$$


Need to understand these effects as first step toward QCD based understanding of nuclei

Quarks and Nuclei

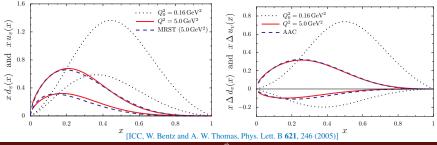


- this is just a modern interpretation of the Nambu-Jona-Lasinio (NJL) model
- model is a Lagrangian based covariant QFT, exhibits dynamical chiral symmetry breaking & quark confinement; elements can be QCD motivated via the DSEs
- For nuclei, we find that quarks bind together into color singlet nucleons
 - however contrary to traditional nuclear physics approaches these quarks feel the presence of the nuclear environment
 - as a consequence bound nucleons are modified by the nuclear medium


- Modification of the bound nucleon wave function by the nuclear medium is a *natural consequence* of quark level approaches to nuclear structure
- These studies provide a complementary approach to more traditional nuclear physics research (e.g. GFMC conducted here at Argonne)

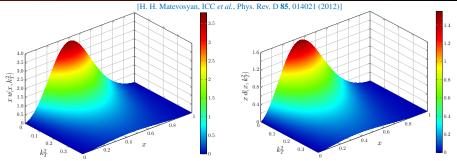
San Paulo 13th May

Nucleon quark distributions


• Nucleon = quark+diquark • PDFs given by Feynman diagrams: $\langle \gamma^+ \rangle$

Covariant, correct support; satisfies sum rules, Soffer bound & positivity

 $\langle q(x) - \bar{q}(x) \rangle = N_q, \ \langle x u(x) + x d(x) + \ldots \rangle = 1, \ |\Delta q(x)|, \ |\Delta_T q(x)| \leqslant q(x)$


• q(x): probability strike quark of favor q with momentum fraction x of target

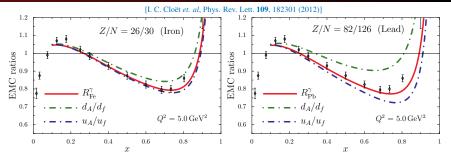
San Paulo 13th May

Transverse Momentum Dependent PDFs

So far only considered the simplest spin-averaged TMDs $-q(x, k_T^2)$

In phenomenology common to work with parametrization of the form:

$$q(x,k_T^2) = q(x) \frac{e^{-k_T^2/\langle k_T^2 \rangle_0}}{\pi \langle k_T^2 \rangle_0} \qquad \begin{cases} \langle k_T^2 \rangle^{Q^2 = Q_0^2} = 0.36^2 \operatorname{GeV}^2 \sim M^2 \\ \langle k_T^2 \rangle = 0.56^2 \operatorname{GeV}^2 \text{ [hermes]}, \quad 0.64^2 \operatorname{GeV}^2 \text{ [emc]} \end{cases}$$

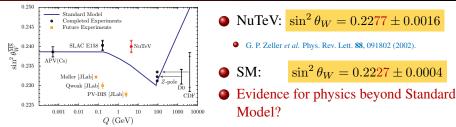

Gaussian ansatz fits our results well

• argeement with experiment reasonable as $\langle k_T^2
angle$ grows with Q^2

table of contents

San Paulo 13th May

Flavour dependence of (Isovector) EMC effect



Model provides a natural explanation of the EMC effect

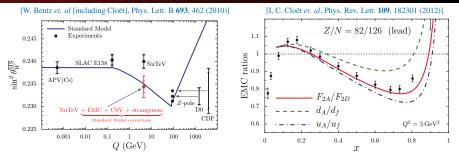
- Predicts that isovector nuclear forces result in a large quark flavor dependence of the EMC effect
 - parity-violating DIS experiments at JLab are sensitive to this flavor dependence
- $N > Z \implies d$ -quarks feel more repulsion than *u*-quarks: $V_d > V_u$
 - *u* quarks are more bound than *d* quarks
 - ρ^0 field has shifted momentum from u to d quarks
- If observed would provide strong evidence for medium modification

Weak mixing angle and the NuTeV anomaly

Paschos-Wolfenstein ratio motivated NuTeV study:

$$R_{PW} = \frac{\sigma_{NC}^{\nu A} - \sigma_{NC}^{\nu A}}{\sigma_{CC}^{\nu A} - \sigma_{CC}^{\nu A}} \stackrel{N \sim Z}{=} \frac{1}{2} - \sin^2 \theta_W + \left(1 - \frac{7}{3}\sin^2 \theta_W\right) \frac{\langle x \, u_A^- - x \, d_A^- \rangle}{\langle x \, u_A^- + x \, d_A^- \rangle}$$

• NuTeV used a steel target
$$-Z/N \simeq 26/30$$

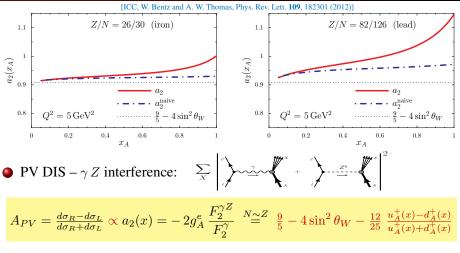

orrect for neutron excess ⇐⇒ flavour dependent EMC effect

Use our medium modified Iron quark distributions

 $\Delta R_{PW} = \Delta R_{PW}^{\text{naive}} + \Delta R_{PW}^{\text{EMC effect}} = -(0.0107 + 0.0032).$

• Flavour dependence of EMC effect explains up to 65% of anomaly

Isovector EMC effect & the NuTeV Anomaly


Corrections from the EMC effect (~1.5 σ) and charge symmetry violation (~1.5 σ) brings NuTeV result into agreement with the Standard Model

• NuTeV anomaly interpreted as evidence that nucleon structure is modified by the nuclear medium

NuTeV anomaly provides no evidence from physics beyond Stardard Model

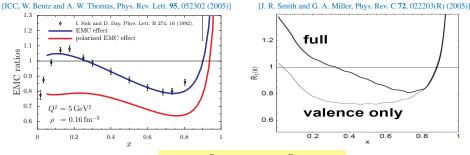
• from 2001 press conference: "99.75% probability that the neutrinos are not behaving like other particles ... only 1 in 400 chance that our measurement is consistent with prediction ... room full of physicists fell silent"

Parity Violating DIS: Iron & Lead

• Large x dependence of $a_2(x) \rightarrow$ evidence for medium modification

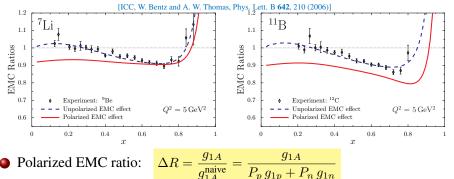
• $a_2(x)$ is also a excellent way to measure $\sin^2 \theta_W$

Predictions will be tested at Jefferson Lab


table of contents

San Paulo 13th May

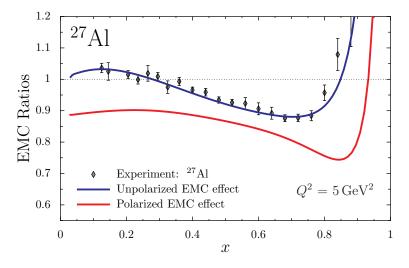
Polarized EMC effect


Polarized EMC ratio:

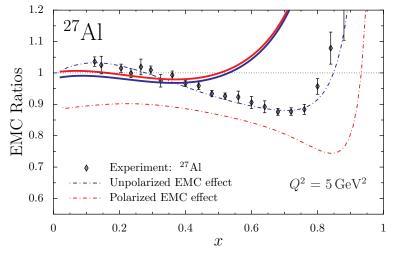
 $\Delta R = \frac{g_{1A}}{g_{1A}^{\text{naive}}} = \frac{g_{1A}}{P_p \, g_{1p} + P_n \, g_{1n}}$

- Spin-dependent cross-section is suppressed by 1/A
 - must choose nuclei with $A \lesssim 27$
 - protons should carry most of the spin e.g. \implies ⁷Li, ¹¹B, ...
- Ideal nucleus is probably ⁷Li
 - from Quantum Monte–Carlo: $P_p = 0.86$ & $P_n = 0.04$
 - Ratios equal 1 in limit of no nuclear effects

Polarized EMC effect



- Spin-dependent cross-section is suppressed by 1/A
 - must choose nuclei with $A \lesssim 27$
 - protons should carry most of the spin e.g. \implies ⁷Li, ¹¹B, ...
- Ideal nucleus is probably ⁷Li
 - from Green Function Quantum Monte–Carlo: $P_p = 0.86$ & $P_n = 0.04$
- Ratios equal 1 in limit of no nuclear effects

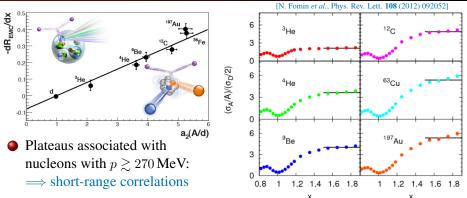

Is there medium modification

Is there medium modification

- Medium modification of nucleon has been switched off
- Relativistic effects remain
- Large splitting very difficult without medium modification

Nuclear spin sum

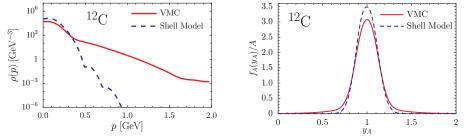
Proton spin states	Δu	Δd	Σ	g_A	
p	0.97	-0.30	0.67	1.267	
⁷ Li	0.91	-0.29	0.62	1.19	
$^{11}\mathbf{B}$	0.88	-0.28	0.60	1.16	
15 N	0.87	-0.28	0.59	1.15	
^{27}Al	0.87	-0.28	0.59	1.15	
Nuclear Matter	0.79	-0.26	0.53	1.05	


• Angular momentum of nucleon: $J = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + L_q + J_g$

- in medium $M^* < M$ and therefore quarks are more relativistic
- lower components of quark wavefunctions are enhanced
- quark lower components usually have larger angular momentum
- $\Delta q(x)$ very sensitive to lower components

• Therefore, in-medium quark spin \rightarrow orbital angular momentum

Short-Range Correlations

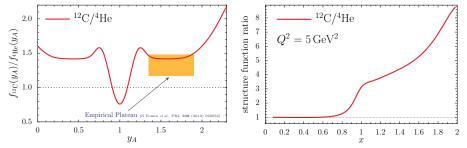

• Empirical correlation between slope of EMC effect and quasi-elastic scattering plateaus has resulted in a renaissance of the EMC effect

Many convinced SRC => EMC effect: [Klaus Rith arXiv:1402.5000 [hep-ex]] "It is rather unlikely that this correlation is purely accidental and one can therefore rather safely assume that a large fraction of the strength of the EMC effect in the valence quark region is due to short-range nucleon-nucleon correlations"

table of contents

Nuclear Wave Functions

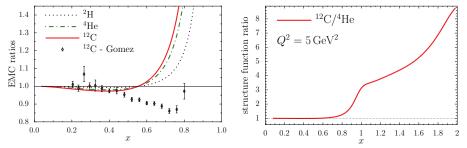
Modern GFMC or VMC nuclear WFs have large high momentum tails


- indicates wave function has large SRC component; ${\sim}20\%$ for ${}^{12}C$
- Lightcone momentum distribution of nucleons in nucleus is given by

$$f_N(y_A) = \int \frac{d^3 \vec{p}}{(2\pi)^3} \,\delta\left(y_A - \frac{p^+}{P^+}\right) \,\rho(p)$$

	² H	³ H	³ He	⁴ He	⁷ Li	⁹ Be	$^{11}\mathbf{B}$	^{12}C
proton (%)								
neutron (%)	4.3	9.2	5.7	12.9	10.3	11.8	14.6	19.5

EMC effect and Short-Range Correlations


- Ratio of Variational Monte-Carlo (VMC) lightcone wave function exhibits distinct plateau which agrees with experiment
- Using VMC lightcone wave functions and convolution model with empirical nucleon PDFs to obtain nuclear structure functions and hence EMC effect
 - plateau still prominant in DIS regime
 - nucleon SRCs alone from VMC wave functions cannot explain EMC effect

Demonstrates that SRC plateau need not be related to the EMC effect

• correlation may just be accidental

SRCs and Medium Modification

Explanations of EMC effect using SRCs also invoke medium modification

• since about 20% of nucleons are involved in SRCs, need medium modifications 5 times larger than in mean-field models

For polarized EMC effect only 2–3% of nucleons are involved in SRCs

- for large polarized EMC effect need medium modification from SRCs about 20 times larger than in mean-field models
- Observation of large polarized EMC effect would imply SRCs less likely to be mechanism responsible for EMC effect

Conclusion

- Highlight the importance of understanding the EMC effect as a critical step towards a QCD based description of nuclei
- Measurements of the flavour dependence of the EMC effect and the polarized EMC effect will provide critical new insights
 - will help differentiate between the various models
- EMC effect and NuTeV anomaly are interpreted as evidence for medium modification of the bound nucleon wavefunction
 - predictions will be tested using PV DIS
- Using state-of-the-art nuclear wave functions demonstarted that SRCs do not necessary led to an explanation for the EMC effect
 - correlation between slope of EMC effect and quasi-elastic plateau may just be coincidental
- Exciting new experiments will expose novel aspects of the EMC effect:
 - PV DIS, pion induced Drell-Yan, tagged DIS, SIDIS, DVCS, DVMP
- Slowly building a QCD based understanding of nuclear structure