Heavy Quark Phenomenology: A Quark Model Perspective

Jorge Segovia

Argonne National Laboratory

David R. Entem and Francisco Fernandez Universidad de Salamanca

Universidade Estadual Paulista "Julio de Mesquita Filho" – Instituto de Fisica Teorica – May 12-13, 2014, São Paulo, Brazil

Summary (I)

Study of heavy meson properties within a constituent quark model

- Model parameters constrained by the light quark phenomenology.
- A reasonable description of the studied:
 - Heavy meson spectra.
 - Electromagnetic, strong and weak decays and reactions.

Some relevant results

- The X(4360) as a 4^3S_1 $c\bar{c}$ meson
 - $\psi(4415)$ as a 3D state agrees with last measurements of leptonic and total widths.
 - The reactions $e^+e^- \rightarrow D^0D^-\pi^+$ and $e^+e^- \rightarrow D^0D^{*-}\pi^+$:
 - We are not able to reproduce experimental data with only $\psi(4415)$ as an intermediate state.
 - Inclusion of the X(4360) resonance produces a remarkable agreement with experimental data.
 - The decay $X(4360) \rightarrow \pi \pi \psi(2S)$:
 - Calculated within the framework of the QCD multipole expansion.
 - Presence of hybrids near cc̄ states produces an enhancement of their hadronic transition widths.

伺き くきき くきき

3

Summary (II)

• Running of the 3P_0 strength, γ

- γ as a function of the reduced mass of the quark-antiquark pair of the decaying meson.
- The dependence of γ has been taken as logarithmically in the reduced mass.
- Our results are in a global agreement with the experimental data.
- The $D_{s1}(2536)$ as a $j_q^P = \frac{3}{2}^+ c\bar{s}$ meson
 - Particular choice for the coupling between the cs states and a tetraquark structure.
 - It simultaneously reproduces the narrow width and the S/D-ratio.
- The semileptonic $B(B_s)$ decays into $D^{**}(D_s^{**})$ mesons
 - Allow to test meson models as far as they include weak and strong processes.
 - B semileptonic decays into D^{*}₀(2400), D₁(2420) and D^{*}₂(2460) in good agreement.
 - $\mathcal{B}(B_s^0 \to D_{s1}(2536)^- \mu^+ \nu_\mu) \times \mathcal{B}(D_{s1}(2536)^- \to D^{*-} \bar{K}^0)$ in agreement.
- Nonleptonic *B* decays into $D^{(*)}D_{sJ}$ final states
 - Ratios compatible with the experiment. The $D_{s0}^{*}(2317)$ mass is lowered by 1-loop OGE.
 - Correct ratios are predicted for the $D_{s1}(2536)$ as a $j_q^P = \frac{3}{2}^+ c\bar{s}$ meson.
 - D_{s1}(2460) has a sizable non-qq̄ component whose contribution has not been calculated.

4 **A** N A **B** N A **B** N

= nar