II Workshop on Perspectives in Nonperturbative QCD 12-13 May, 2014 - São Paulo

Exotic States in Charmonium Spectroscopy Raphael M. Albuquerque

What we learned about hadronic structure with them?

Murray Gell-Mann

George Zweig

Introduction

Constituent Quark Models (CQM)

- The strongly interacting particles (hadrons) have in their internal structure the so-called fundamental particles: quarks.
- The hadrons are formed either from three quarks (baryons):

neutron

Murray Gell-Mann

George Zweig

or quark-antiquark pairs (mesons):

proton

pion

• Only color-singlet states are observed in nature.

Can we go beyond these structures?

Where we could find evidences for these new hadronic structures in nature?

Where we could find evidences for these new hadronic structures in nature?

II Workshop on Perspectives in Nonperturbative QCD EXOTIC STATES IN CHARMONIUM SPECTROSCOPY

MeV 4800				CC)
4600					1 11 11 12 1005
PHYSICA	Me	esons in a relat	ivized quark model with chr	omodynamics	I JULY 1985
		St Department of Phys (Received 12 Decer	ephen Godfrey and Nathan Isgur ics, University of Toronto, Toronto, MS nber 1983; revised manuscript received	5 <i>S 1A7 Canada</i> I 10 May 1985)	
	We show the chromodynam confinement print account sive analysis of the content of	hat mesons—from nics. The key ingre- potential motivated relativistic effects. of strong, electroma	the π to the Υ —can be described in edient of the model is a universal one by QCD, but it is crucial to the succe The spectroscopic results of the mode gnetic, and weak meson couplings.	a unified quark model with e-gluon-exchange-plus-linear- ess of the description to take el are supported by an exten-	
3200					
3000		• ¥	(1S)		
	0++	1	1++		10/3

II Workshop on Perspectives in Nonperturbative QCD EXOTIC STATES IN CHARMONIUM SPECTROSCOPY

II Workshop on Perspectives in Nonperturbative QCD EXOTIC STATES IN CHARMONIUM SPECTROSCOPY

Exotic States

Strong evidences for the existence of Four-quark States! 13/36

Y(4140)

 In 2009, CDF collaboration announces the first observation of this possible exotic state.

Y(4140)

- In 2009, CDF collaboration announced the first observation of this possible exotic state.
- Afterwards, Belle collab. searched for this state in two photons collision and found no evidence of the Y(4140) signal.

Y(4140)

- In 2009, CDF collaboration announced the first observation of this possible exotic state.
- Afterwards, Belle collab. searched for this state in two photons collision and found no evidence of the Y(4140) signal.
- In 2012, LHCb collab. announced new searches for the Y(4140) state which disfavored the experimental data obtained by CDF. The Y(4140) could no longer exists.

CMS and D0 support the CDF data and consequently the existence of the Y(4140) signal.

----- X(4330)

4.5

PHSP

4.2

4.3

M(J/ψK⁺K⁻) (GeV)

4.4

Exotic States

Y(4140)

- In 2009, CDF collaboration announced the first observation of this possible exotic state.
- Afterwards, Belle collab. searched for this state in two photons collision and found no evidence of the Y(4140) signal.
- In 2012, LHCb collab. announced new searches for the Y(4140) state which disfavored the experimental data obtained by CDF. The Y(4140) could no longer exists.
- However, new 2013 experimental findings from CMS and D0 support the CDF data and consequently the existence of the Y(4140) signal.
- Future experimental data can clarify this intriguing discrepancy between the LHCb and CMS data.

Among the possible exotic structures which one could better explain the experimental data?

Admixture of **Charmonium** and **Four-quark** states

Y(3940)

Y(4140)

X(4260)

Events / 20 MeV/c²

 $\frac{4.6}{m_{J/\psi\omega}} \frac{4.8}{(\text{GeV/c}^2)}$

4.6 4.8 5 $m(\pi^{+}\pi^{-}J/\psi)$ (GeV/c²)

PRD 80 (2009) Matheus, Navarra, Nielsen, Zanetti **PRD 89 (2014)** Albuquerque, Dias, Nielsen, Zanetti **PLB 678 (2009)** Albuquerque, Bracco, Nielsen **PRD 86 (2012)** Albuquerque, Dias, Nielsen, Zanetti

Four-quark neutral states

could provide explanations for ...

- the new states observed in the charmonium spectra
- the dominant decays into $J/\psi + (\pi, \rho, \omega, ...)$
- in some cases, the absence of open-charm decay channels
- charmonia decays with a strong isospin violation, e.g.

$$\frac{\mathcal{B}\left[X(3872) \to J/\psi \ \pi^+\pi^-\pi^0\right]}{\mathcal{B}\left[X(3872) \to J/\psi \ \pi^+\pi^-\right]} \sim 1$$

However, evidence of an exotic particle can be established unambiguously by detection of the so-called

Four-quark charged states

Exotic States

$$Z(4430)^+$$

Threshold effects in the D_1D^* **channel** J.L. Rosner, PRD 76, 114002 (2007)

Four-quark radial excitation with $J^{PC} = 1^{+-}$

L. Maiani, A.D. Polosa & V. Riquer, arXiv:0708.3997

Radial excitation of $\Lambda_c - \Sigma_c^0$ **bound state** C-F. Qiao, J.Phys. G 35, 075008 (2008)

 $D_1 D^*$ molecular state in QCD sum rules Lee, Mihara, Navarra & Nielsen, PLB 661 (2008)

Tetraquark states with $J^P = 0^-$ or 1^- Bracco, Lee, Nielsen & Silva, PLB 671 (2009)

No conclusive evidence for a particle in the signal seen by Belle Collaboration.

PRL 100, 142001 (2008)

PRD 80, 031104 (2009)

arXiv: 1404.1903

<u>гнср</u>

CERN-PH-EP-2014-061 LHCb-PAPER-2014-014 7 April 2014

Observation of the resonant character of the $Z(4430)^{-}$ state

The LHCb collaboration †

unambiguous observation of an exotic particle

- first independent confirmation of the $Z(4430)^-$ resonance.
- significance $> 15\sigma$.

•
$$J^P = 1^+$$

• the minimal quark content of such a particle is $c\bar{c}d\bar{u}$.

Once established the existence of new states in charmonium spectroscopy, how can we study them?

Nuclear Physics B147 (1979) 385-447 © North-Holland Publishing Company

QCD AND RESONANCE PHYSICS. THEORETICAL FOUNDATIONS

M.A. SHIFMAN, A.I. VAINSHTEIN * and V.I. ZAKHAROV Institute of Theoretical and Experimental Physics, Moscow, 117259, USSR

Received 24 July 1978

- more than 4000 citations!
- among the all-time top cited papers in HEP.

• Correlation Functions

$$\Pi_{\mu\nu}(q) = i \int d^4x \ e^{iq \cdot x} \langle 0|T[j_{\mu}(x)j_{\nu}^{\dagger}(0)]|0\rangle$$

- Principle of duality quark-hadron
 - The fundamental assumption in the sum rule is that the correlation function can be evaluated in two ways:
 - OPE side: quark and gluon fields, Wilson OPE, condensates, ...
 - Phenomenological side: complete set of intermediate states, hadronic fields
 - Thus, the hadronic parameters are obtained comparing both descriptions of the correlation function.

• Optimal tuning of QCDSR parameters

- A reliable sum rule implies that we can establish a region in the Borel parameter, such that we have:
- Good OPE convergence
- Pole dominance over the continuum contributions
- Good Borel stability

X(4260) state

X(4260)

- seen in the ISR process with E_{cm} $\sqrt{s} \sim 10.6~{
 m GeV}$
- decay channel: $e^+ e^- \longrightarrow \gamma_{ISR} Y(4260) \longrightarrow \gamma_{ISR} J/\psi \pi^+ \pi^-$
- $\bullet~{\rm Significance}~>10\sigma$.
- PDG:

 $M = 4263 \pm 9 \text{ MeV}$ $\Gamma = 95 \pm 14 \text{ MeV}$ $J^{PC} = (1^{--})$

• $J/\psi \pi \pi$ decay mode is unusual for a conventional charmonium.

also confirmed by

CLEO Collab, PRD 74 (2006)

Belle Collab, PRL 99 (2007) 31/36

X(4260)

- Tetraquark: Maiani et al, PRD 72. Albuquerque et al , NPA 815
- *** Molecules:**

D₁**D**, **D**₀**D*** - Ding, PRD 79 (2009)

 $\chi_{c1} \omega$: Yuan, Wang, Mo, PLB 634 (2006)

 $\chi_{c1} \rho$: Liu, Zeng & Li, PRD 72 (2005)

- $J/\psi f_0$: Oset et al, PRD 80. Albuquerque *et al, PRD 84 (2011)*
- **Hybrids:** Zhu, PLB 625 (2005)
- * ψ(4S): Llanes-Estrada, PRD 72 (2005)
- Charmonium-Tetraquark: Albuquerque et al, PRD 86 (2012)

R.M. Albuquerque, J.M. Dias, M. Nielsen & C.M. Zanetti, PRD 88, 076001 (2013)

$$\underbrace{ \begin{array}{c} \mathbf{X} & \mathbf{q} & \mathbf{\Pi} & \mathbf{q} & \mathbf{X} \\ & \mathbf{\Pi} & \mathbf{q} & \mathbf{X} \end{array} }_{\left(J^{PC} = 1^{--}\right)} \end{array} \qquad \Pi_{\mu\nu}(q) = i \int d^4x \ e^{iq \cdot x} \langle 0 | \ T[j^X_{\mu}(x)j^{X\dagger}_{\nu}(0)]$$

$$j_{\mu}^{X} = \sin \theta \, j_{\mu}^{4} + a \cos \theta \, j_{\mu}^{\psi}$$

$$j_{\mu}^{4} = \frac{\epsilon_{abc} \epsilon_{dec}}{\sqrt{2}} \left[\left(\boldsymbol{q}_{a}^{T} C \gamma_{5} \boldsymbol{c}_{b} \right) \left(\bar{\boldsymbol{q}}_{d} \gamma_{\mu} \gamma_{5} C \bar{\boldsymbol{c}}_{e}^{T} \right) + \left(\boldsymbol{q}_{a}^{T} C \gamma_{5} \gamma_{\mu} \boldsymbol{c}_{b} \right) \left(\bar{\boldsymbol{q}}_{d} \gamma_{5} C \bar{\boldsymbol{c}}_{e}^{T} \right) \right]$$
$$j_{\mu}^{\psi} = \bar{\boldsymbol{c}}_{a} \gamma_{\mu} \boldsymbol{c}_{a}$$

$$\Pi_{\mu\nu}^{PH} = \frac{\lambda_X^2}{M_X^2 - q^2} \left(g_{\mu\nu} - \frac{q_\mu q_\nu}{q^2} \right) + \dots \right) \left(\Pi_{\mu\nu}^{OPE} = -g_{\mu\nu} \int_{4m_c^2}^{\infty} ds \; \frac{\rho^{OPE}(s)}{s - q^2} \right)$$

Results

 $|0\rangle$

R.M. Albuquerque, J.M. Dias, M. Nielsen & C.M. Zanetti, PRD 88, 076001 (2013)

Parameters	Values	
\overline{m}_{c}	(1.23 – 1.47) GeV	
$\langle \bar{q}q \rangle$	$-(0.23 \pm 0.03)^3 \text{ GeV}^3$	
$\langle g_s^2 G^2 \rangle$	(0.88 ± 0.25) GeV ⁴	
$\langle g_s^3 G^3 \rangle$	(0.58 ± 0.18) GeV ⁶	
$m_0^2 \equiv \langle \bar{q}Gq \rangle / \langle \bar{q}q \rangle$	$(0.8 \pm 0.1) \text{ GeV}^2$	
$\rho \equiv \langle \bar{q}q\bar{q}q \rangle / \langle \bar{q}q \rangle^2$	(0.5 - 2.0)	

TABLE I. QCD input parameters.

One calculates the sum rule at leading order in α_S in the operators and considers the contributions from the condensates up to dimension eight in the OPE

R.M. Albuquerque, J.M. Dias, M. Nielsen & C.M. Zanetti, PRD 88, 076001 (2013)

$$M_X = (4.26 \pm 0.13) \text{ GeV}$$

$$\lambda_X = (2.00 \pm 0.23) \times 10^{-2} \text{ GeV}^5$$

$$\theta = (53.0 \pm 0.5)^0$$

$$\sqrt{t_c} = (4.70 \pm 0.10) \text{ GeV}$$

the mass value is in a good agreement with the experimental data. **Optimal SR conditions satisfied.**

Results

R.M. Albuquerque, J.M. Dias, M. Nielsen & C.M. Zanetti, PRD 88, 076001 (2013)

$$\Gamma_{\mu\nu}(p,p',q) = \int d^4x \, d^4y \, e^{ip' \cdot x} \, e^{iq \cdot y} \langle 0 | T[j^{\psi}_{\mu}(x)j^S(y)j^{\chi}_{\nu}^{\dagger}(0)] | 0 \rangle$$

$$j^{\sigma} = \frac{1}{\sqrt{2}} (\bar{u}_a u_a + \bar{d}_a d_a)$$

$$j^{f_0} = \bar{s}_a s_a$$

 $\begin{aligned} \langle 0|j_{\mu}^{\psi}|J/\psi(p')\rangle &= m_{\psi}f_{\psi}\epsilon_{\mu}(p'),\\ \langle 0|j^{\sigma}|\sigma(q)\rangle &= A_{\sigma},\\ \langle Y(p)|j_{\nu}^{Y}|0\rangle &= \lambda_{Y}\epsilon_{\nu}^{*}(p), \end{aligned}$

$$\left(\Pi_{\mu\nu}^{PH} = -q_{\mu}p_{\nu}' \frac{\lambda_{X} m_{\psi}f_{\psi}A_{S} g_{X\psi S}(q^{2})}{(p^{2} - M_{X}^{2})(p'^{2} - m_{\psi}^{2})(q^{2} - m_{S}^{2})} + \dots \right) \left(\Pi_{\mu\nu}^{OPE} = q_{\mu}p_{\nu}' \int_{4m_{c}^{2}}^{\infty} ds \frac{\rho^{OPE}(s)}{s - q^{2}} \right)$$

Results

Results

X(4260) as a Mixed Charmonium-Tetraquark state

R.M. Albuquerque, J.M. Dias, M. Nielsen & C.M. Zanetti, PRD 88, 076001 (2013)

• Assuming that $\pi^+\pi^-$ and K^+K^- in the final states come from intermediate resonances, namely $\sigma(500)$ and $f_0(980)$, we can estimate the coupling constants associated with the processes:

• The decay for the process $X(4260) \rightarrow J/\psi \sigma \rightarrow J/\psi \pi \pi$ can be evaluated in the narrow width approximation

$$\frac{d\Gamma}{ds} \left(X \to J/\psi \pi \pi \right) = \frac{|\mathcal{M}|^2}{8\pi M_X^2} \cdot \frac{(M_X^2 - m_\psi^2 + s)}{2M_X^2} \cdot \frac{\Gamma_\sigma(s)m_\sigma}{2\pi M_X} \cdot \frac{\sqrt{\lambda(M_X^2, m_\psi^2, s)}}{(s - m_\sigma^2)^2 + m_\sigma^2 \Gamma_\sigma(s)^2}$$

• where $\lambda(a, b, c) = a^2 + b^2 + c^2 - 2ab - 2ac - 2bc$, is the s-dependent width of an off-shell meson:

$$\Gamma_{\sigma}(s) = \frac{m_{\sigma}^2 \Gamma_{0\sigma}}{s} \sqrt{\frac{\lambda(s, m_{\pi}^2, m_{\pi}^2)}{\lambda(m_{\sigma}^2, m_{\pi}^2, m_{\pi}^2)}}$$

- and $\Gamma_{0\sigma}$ is the experimental value for the decay of meson into two pions.
- The invariant amplitude squared is given by

$$|\mathcal{M}|^2 = \frac{1}{3}g_{X\psi\sigma}^2 \left[M_X^2 m_{\psi}^2 + \frac{1}{2}(M_X^2 + m_{\psi}^2 - s)^2 \right]$$

• Hence, we obtain the value for the decay width

$$\Gamma_{\sigma}(X \to J/\psi \pi \pi) = (1.0 \pm 0.4) \text{ MeV}$$

38/36

Results

R.M. Albuquerque, J.M. Dias, M. Nielsen & C.M. Zanetti, PRD 88, 076001 (2013)

Channel	Intermediate Process	Decay Width (MeV)	
$X \to J/\psi \ \pi^+\pi^-$	$\sigma \to \pi^+ \pi^-$ $f_0 \to \pi^+ \pi^-$	$\begin{array}{c} 1.0\pm0.4\\ 3.1\pm0.2\end{array}$	36% 64%
$X \to J/\psi \ K^+ K^-$	$f_0 \to K^+ K^-$	1.3 ± 0.4	$ car{c} angle \oplus cqar{c}ar{q} angle$

- Our estimation for the total width is $\Gamma_{total} \simeq (5.4 \pm 1.0)$ MeV, which is much smaller than the experimental data: ~108 MeV.
- Possibly the main decay channel of the X(4260) should be into D mesons, mostly due to the presence of charmonium in its internal structure. These channels would increase the value estimated for Γ_{total} .
- The dominance of the tetraquark state could be an explanation to the preferable hidden-charm decay modes for this particle.

Results

Y(3940) state

R.M. Albuquerque, J.M. Dias, M. Nielsen & C.M. Zanetti, PRD 89, 076007 (2014)

$$\left(J^{PC} = 0^{++}\right)$$

$$j^{\mathbf{Y}} = \sin\theta \ j^{\mathbf{D}^*\mathbf{D}^*} + a\cos\theta \ j^{\mathbf{\chi_{c0}}}$$

$$j^{\boldsymbol{D^*}\boldsymbol{D^*}} = (\bar{\boldsymbol{q}}_a \ \gamma_\mu \ \boldsymbol{c}_a) \left(\bar{\boldsymbol{c}}_b \ \gamma^\mu \ \boldsymbol{q}_b\right)$$
$$j^{\boldsymbol{\chi_{c0}}} = \bar{\boldsymbol{c}}_a \boldsymbol{c}_a$$

$$\Pi^{PHEN}(q) = \frac{\lambda_Y^2}{M_Y^2 - q^2} + \int_0^\infty ds \frac{\rho^{\text{cont}}(s)}{s - q^2} \left(\Pi^{\text{OPE}}(q^2) = \int_{4m_c^2}^\infty ds \frac{\rho^{\text{OPE}}(s)}{s - q^2} \right)$$

Results

R.M. Albuquerque, J.M. Dias, M. Nielsen & C.M. Zanetti, PRD 89, 076007 (2014)

$$M_Y = (3.95 \pm 0.11) \text{ GeV}$$

 $\lambda_Y = (2.1 \pm 0.6) \text{ GeV}^5$
 $\theta = (76.0 \pm 5.0)^0$
 $\sqrt{t_c} = (4.40 \pm 0.10) \text{ GeV}$

the mass value is in a good agreement with the experimental data. **Optimal SR conditions satisfied.**

R.M. Albuquerque, J.M. Dias, M. Nielsen & C.M. Zanetti, PRD 89, 076007 (2014)

$$g_{Y\psi\omega} = g_{Y\psi\omega}(-M_{\omega}^2) = (0.58 \pm 0.14) \text{ GeV}^{-1}$$

Results

R.M. Albuquerque, J.M. Dias, M. Nielsen & C.M. Zanetti, PRD 89, 076007 (2014)

 $Y(3940) \rightarrow \gamma\gamma$

 $g_{Y\gamma\gamma} = (0.025 \pm 0.010) \text{ GeV}^{-1}$

Results

R.M. Albuquerque, J.M. Dias, M. Nielsen & C.M. Zanetti, PRD 89, 076007 (2014)

Channel	Decay Width
$Y(3940) \rightarrow J/\psi\omega$	$(1.7 \pm 0.6) \text{ MeV}$
$Y(3940) \rightarrow \gamma \gamma$	$(1.6 \pm 1.3) \text{ KeV}$

• Our estimation for the width is $\Gamma_{J/\psi\omega} = (1.7 \pm 0.6)$ MeV, which is smaller than the experimental width (~30 MeV), but is consistent with the lower limit for this channel $\Gamma > 1$ MeV. Branz, Gutsche & Lyubovitskij, PRD 80 (2009)

Branz, Gutsche & Lyubovitskij, PRD 80 (2009) Branz, Molina & Oset, PRD 83 (2011)

• The product of the two partial widths

$$\Gamma_{\gamma\gamma} \times \Gamma_{J/\psi\omega} \sim \mathcal{O}(10^3) \text{ KeV}^2$$

in accordance with one predicted by Belle and BaBar Collaborations. PRL 104, 092001 (2010) PRD 86, 072002 (2012)

Charmonium Exotic States

- The LHCb observation in the $\psi' \pi^-$ invariant mass has proved unambiguously that the minimal quark content of the charged Z(4430) state is $c\bar{c}d\bar{u}$. Therefore, it is a four-quark state.
- From a QCD sum rule calculation, we shall retain an admixture of charmonium and four-quark states as a possible hadronic structure to describe these exotic states observed recently.
- Using such a exotic structure we could explain the expected mass and decay widths obtained in the experiments.
 - ***** X(4260) as a J/ψ tetraquark state, with $J^{PC} = 1^{--}$.
 - Y(3940) as a $\chi_{c0} D^* \overline{D}^*$ molecule, with $J^{PC} = 0^{++}$.
- Future QCDSR estimations of the decay channels into D mesons can improve the results for the total widths.

THANK YOU!

