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The neural code

Motivation

The processing path

How to reconstruct the external world - in particular how to

understand what I am talking about - from a sequence of
identical electrical pulses propagating information in

your cortex?

External world → Sensory Sistems →
Processing Stages ( Thalamic Nuclei )→

Cortex → Motor System etc.

Example: Visual System

Reconstruct scenes in REAL TIME

Problems: ....∞.....
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The neural code

Motivation

Idiosyncrasies of the brain/visual system - only 2!

1 Our Brain: is driven to find

ORDER in CHAOS.

Could this be the defining property of our brain!?
William James claimed that the sense of sameness is the very
keel and backbone of our thinking. In that case the
computational goal of V1 may turn out to be closer to that of
the cerebral cortex as a whole than has been generally
recognized[Barlow:2010].

2 Visual System: the external world is STABLE,
whereas the retinal image changes CONTINUALLY.

Let us make an experiment - to find out how the cortex
interacts with the visual sensor!!
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Motivation

Visual Reconstruction: difficulties

1 How to reconstruct a 3D scene from 2D informations?

This is an ill posed problem →
We need to use inferences.

2 Even as signals are decoded (largely unconsciously) in real time, we use
inference based on experience acquired in the past!

Notice: Our visual system is obsessed with

continuity - extract edges, overcome occlusion

problems etc.
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2D information

2D information should include:

1 Information about surfaces and their depth (Marr D2.5 )

2 Location and boundaries of the main objects in the scene -
albedos, light sources

3 Grouping of objects etc

4 ......Examples ....[Mumford:2007]
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The neural code

Motivation

Extracting Discontinuities: Columns and Ocular
Dominance

Retinotopic representations preserve neighbourhoods →
allow us to maintain continuity.
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Simplifications are essential - WHICH ONES???

Problems with depth, occlusion and continuity are terrifying
obstacles to overcome in 3D scene reconstruction.
Let us simplify our life!!

Compare the treatment of the Ising-model in the presence of a
magnetic field in one and two dimensions!!

→
Let us investigate reconstruction in one

dimension.



The neural code

Motivation

Simplifications are essential - WHICH ONES???

Problems with depth, occlusion and continuity are terrifying
obstacles to overcome in 3D scene reconstruction.
Let us simplify our life!!

Compare the treatment of the Ising-model in the presence of a
magnetic field in one and two dimensions!!

→
Let us investigate reconstruction in one

dimension.



The neural code

Motivation

Simplifications are essential - WHICH ONES???

Problems with depth, occlusion and continuity are terrifying
obstacles to overcome in 3D scene reconstruction.
Let us simplify our life!!

Compare the treatment of the Ising-model in the presence of a
magnetic field in one and two dimensions!!

→
Let us investigate reconstruction in one

dimension.



The neural code

Motivation

Simplifications are essential - WHICH ONES???

Problems with depth, occlusion and continuity are terrifying
obstacles to overcome in 3D scene reconstruction.
Let us simplify our life!!

Compare the treatment of the Ising-model in the presence of a
magnetic field in one and two dimensions!!

→
Let us investigate reconstruction in one

dimension.



The neural code

Motivation

Simplifications are essential - WHICH ONES???

Problems with depth, occlusion and continuity are terrifying
obstacles to overcome in 3D scene reconstruction.
Let us simplify our life!!

Compare the treatment of the Ising-model in the presence of a
magnetic field in one and two dimensions!!

→
Let us investigate reconstruction in one

dimension.



The neural code

Motivation

Find the free fall analogy

1 Which properties are important and which ones we can
neglect?

2 Once importance is decided, how can it be validated?
How can we measure it?

Assume: Positions of edges are the main features

of the scene.
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Designing experiments: are discontinuities truly that

important?

1 Generate stimuli s0(t) with discontinuities only.

Measure the system’s response R0(t) to s0(t).
Measure the information I0, which R0(t) conveys about s0(t).

2 Measure the response to a more complete stimulus s1(t),
but which maintains all the discontinuities. (Filling in the space).

Measure the information I1, which R1(t) conveys about s1(t).

3 Compare the informations I0 and I1.

4 Add noise to investigate the stability of the response.
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GO TO ONE DIMENSION: THE FLY
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The fly et al.

Coding Precision

   Coding Precision 

Mason,Oshinsky e Hoy, 
Nature,410,686–690,2001.
  

Ormia ochracea Rose e 
Heilingenberg,
Nature,318,178-
180,1985.

  

Eptesicus fuscus
Simmons, Ferragamo 
e
Sanderson,
J Comp Physiol,
189,693-702,2003.
  

Temporal Precison:  
  

Eptesicus fuscus: 10ns 
Ormia ochracea: 50ns

Eigenmannia:
 100ns

  

Eigenmannia
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The fly’s visual system
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Recording from H1

D

 

[Borst & Haag,2004]

CA B
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Experiments

Spikes from H1

Pulso
~100 μV
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Experiments

Raster plot for a typical experiment

Show repeatedly the same stimulus for t = 1 : 5000 and different stimuli from t = 5001 : 10000.

Plot the occurrence of a spike as a dot, aligning the repetitions one on the top of the next...
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Experiments

Show spiking-onset and delay after zero-crossings =

edges/discontinuities
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Experiments

Raster from left and right H1 with contralateral simulation
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How to encode and decode the stimulus?

Reconstructing the stimulus from spike trains
Suppose we want to reconstruct the stimulus from the response of
a single H1 neuron. We represent this response as a spike train

ρ(t) =
∑Ns

i=1 δ(t− ti),

which is a sum of delta functions at the spike times ti. Ns is the
total number of spikes generated by the neuron during the
experiment.
The simplest reconstruction extracts the stimulus estimate via a
linear transformation

se(t) =

∫ ∞
−∞

k1(τ)ρ(t− τ)dτ (1)

- with the kernel k1(t) to be determined.



The neural code

How to encode and decode the stimulus?

In practice on the computer
Everything is discrete → bin the time. Select a reconstruction size of e.g. n = 64 bins and chop ρ(t) into

vectors of length n. Ki,j will be a matrix of size n · n and Se(t) a row of length n.
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How to encode and decode the stimulus?

Complete Volterra Series

The complete series would be like:

se(t) =

∫ ∞
−∞

k1(τ)ρ(t− τ)dτ+ (2)

∫ ∞
−∞

k2(τ1, τ2)ρ(t− τ1)ρ(t− τ2)dτ1dτ2 + . . . (3)

- with the kernels k1(t), k2(t) to be determined.
There is no convergence proof for this expansion, but heuristically
we may say that it should be a valid approximation, if the average

number of spikes per correlation time τc is small.
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How to encode and decode the stimulus?

Determining the kernels

The kernels are determined, minimizing the χ2:

χ(2)(k1, k2) = 〈
∫
dt[s(t)− se(t)]2〉. (4)

The brackets stand for an ensemble average with respect to the
distribution of all possible stimuli. In a long experiment we average

over Nw ∼ 105 time windows of size Tw. Typically Tw ∼ 100
milliseconds.
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How to encode and decode the stimulus?

Since the functional equ.(4) is quadratic, the equations minimizing
χ(2)(k1, k2) are linear.
They involve correlation functions like:

〈s(t)ρ(t′)〉, 〈ρ(t)ρ(t′)〉,
〈s(t)ρ(t1)ρ(t2)〉,

〈ρ(t1)ρ(t2)ρ(t3)ρ(t4)〉
etc.

For a window of size Tw = 128, the matrices are of size
∼ (1282 · 22)× (1282 · 22) ∼ 1010!
Enter a gaussian-like approximation:

R(4)(1, 2, 3, 4) =
A[R(1, 2)R(3, 4) +R(1, 3)R(2, 4) +R(1, 4)R(2, 3))]−B
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How to encode and decode the stimulus?

Is this useful?

1 The constants A and B are found to be independent of
window-size Tw.

2 The 2-point function R(t1, t2) is real, positive and symmetric
in t1, t2, → complete set of eigenfunctions ∼ fµ(t):
Expand everything in terms of fµ(t):∫

dt1dt2fµ(t1)R(t1, t2)fν(t2) = δµν . (5)

Avoid large matrix inversions.

3

Rµναβ = A(δµνδαβ + 2δµαδνβ)− 2B nαnβnµnν , (6)

where nµ =
∫
dtfµ(t)〈ρ(t)〉.

4 Set up a k12 ? ρ1 ? ρ2 ∼ 1%-effect perturbation theory.



The neural code

How to encode and decode the stimulus?

Is this useful?

1 The constants A and B are found to be independent of
window-size Tw.

2 The 2-point function R(t1, t2) is real, positive and symmetric
in t1, t2, → complete set of eigenfunctions ∼ fµ(t):
Expand everything in terms of fµ(t):∫

dt1dt2fµ(t1)R(t1, t2)fν(t2) = δµν . (5)

Avoid large matrix inversions.

3

Rµναβ = A(δµνδαβ + 2δµαδνβ)− 2B nαnβnµnν , (6)

where nµ =
∫
dtfµ(t)〈ρ(t)〉.

4 Set up a k12 ? ρ1 ? ρ2 ∼ 1%-effect perturbation theory.



The neural code

How to encode and decode the stimulus?

Is this useful?

1 The constants A and B are found to be independent of
window-size Tw.

2 The 2-point function R(t1, t2) is real, positive and symmetric
in t1, t2, → complete set of eigenfunctions ∼ fµ(t):
Expand everything in terms of fµ(t):∫

dt1dt2fµ(t1)R(t1, t2)fν(t2) = δµν . (5)

Avoid large matrix inversions.

3

Rµναβ = A(δµνδαβ + 2δµαδνβ)− 2B nαnβnµnν , (6)

where nµ =
∫
dtfµ(t)〈ρ(t)〉.

4 Set up a k12 ? ρ1 ? ρ2 ∼ 1%-effect perturbation theory.



The neural code

How to encode and decode the stimulus?

Is this useful?

1 The constants A and B are found to be independent of
window-size Tw.

2 The 2-point function R(t1, t2) is real, positive and symmetric
in t1, t2, → complete set of eigenfunctions ∼ fµ(t):
Expand everything in terms of fµ(t):∫

dt1dt2fµ(t1)R(t1, t2)fν(t2) = δµν . (5)

Avoid large matrix inversions.

3

Rµναβ = A(δµνδαβ + 2δµαδνβ)− 2B nαnβnµnν , (6)

where nµ =
∫
dtfµ(t)〈ρ(t)〉.

4 Set up a k12 ? ρ1 ? ρ2 ∼ 1%-effect perturbation theory.



The neural code

How to encode and decode the stimulus?

Stimulus Reconstruction via Volterra Series
- viewed thru a Gaussian kernel
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How to encode and decode the stimulus?

What are the shortcomings?

Encode: S(t) → ρ(t)
Dimensional Reduction → Relevant features ?

Decode: ρ(t) → S(t)
Reconstruction in real time
Updating correlation functions !!!!!!
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How to encode and decode the stimulus?

Entropy Reduction and Coding Efficiency

2000 bits/s

100 bits/s

200 bits/s

Stimulus-Entropy-Rate ∼ 1500 bits/sec
Spike-Entropy-Rate ∼ 100 bits/sec
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Guess what is important

Do we want to turn left or right ?



The neural code

How to encode and decode the stimulus?

Guess what is important

Do we want to turn left or right ?

Both stimuli have same variance !

We expect utterly different H1 responses for the complete and
the boxed stimulus!! Remember the nice reconstructions!
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How to encode and decode the stimulus?

Boxed and Complete Stimulus Rasters
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Same Mutual (Shannon) Information and Entropies
Global quantities - time ordering is lost

Mutual Information I(ρ) ≡ Mutual Information I(ρB)



The neural code

How to encode and decode the stimulus?

Same Mutual (Shannon) Information and Entropies
Global quantities - time ordering is lost

Mutual Information I(ρ) ≡ Mutual Information I(ρB)



The neural code

How to encode and decode the stimulus?

Interval and Word Distributions of ρ(t) and ρBoxed(t)
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How to encode and decode the stimulus?

Embed spikes into a D-dimensional euclidean space

Different stimuli with same zero-crossing and same statistics (No boxed stuff - it is not natural!)

A spike-time sequence with D spikes is uniquely represented as a point ~r in a D-dimensional euclidean space: we

don’t loose the timing-structure!

a: Euclidean distances between ~ro and ~rf : 〈| ~ro− ~rf |〉 vs. D. The averages 〈.〉 are over all ZC’s.

b: Cosine between ~ro and ~rf : 〈cos( ~ro, ~rf )〉 vs. D. c: Mean of aligned spike-times after ZC’s for ρo and ρf .

Mean distance/cosines for various stimuli

Mean/variance of spike-times

For complete elucidation of the neural code, we would need an
order of magnitude more data.
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How to encode and decode the stimulus?

Reconstructing Spiking Onset

How to reconstruct the stimulus in REAL TIME?
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How to encode and decode the stimulus?

Conclude that I1 ∼ I0

The majority of the information
which the system extracts from the scene is contained in
the discontinuities!

CONCLUSION: Zero-crossings(∗) are of paramount
importance, they are almost everything the fly encodes.
The total mutual information is ∼ equal to information
necessary to encode zero-crossings.



The neural code

How to encode and decode the stimulus?

Conclude that I1 ∼ I0

The majority of the information
which the system extracts from the scene is contained in
the discontinuities!

CONCLUSION: Zero-crossings(∗) are of paramount
importance, they are almost everything the fly encodes.
The total mutual information is ∼ equal to information
necessary to encode zero-crossings.



The neural code

How to encode and decode the stimulus?

Conclude that I1 ∼ I0

The majority of the information
which the system extracts from the scene is contained in
the discontinuities!

CONCLUSION: Zero-crossings(∗) are of paramount
importance, they are almost everything the fly encodes.
The total mutual information is ∼ equal to information
necessary to encode zero-crossings.



The neural code

How can we read other stimulus properties?

1 Motivation

2 The fly et al.

3 Experiments

4 How to encode and decode the stimulus?

5 How can we read other stimulus properties?



The neural code

How can we read other stimulus properties?

Rate and Slopes - Intervals code for the piecewise linear

stimulus

Rate First Intervals vs. Slope.

Knowing one interval, we can estimate the stimulus in

REAL TIME!
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How can we read other stimulus properties?

Conclusions red=true, green=hope !

1 It is possible to know the meaning of each spike/spike-sequence!

2 It is possible to decode the sequence in real time!

3 Fast sensory modules are simple and robust.

4 There are no fast, simple and robust all-purpose modules in the

brain.

5 The bottom-up approach can be succesful.

6 The brain is indeed complex, but

understandable.
7 There are many problems to be attacked and questions to be

asked - by the audience!
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