
Recent development in random planar maps:

exercises for lecture I

Jérémie Bouttier and Linxiao Chen

25 August 2014

Abstract

The purpose of this exercise session is to enumerate rooted planar triangulations with
a simple boundary, by solving Tutte's equation. The results will be useful for lecture IV.
For some questions, a computer algebra system (Mathematica, Maple, Sage...) might be
helpful.

1 Preliminaries

A planar triangulation is a planar map whose all faces have degree 3. We may actually dis-
tinguish di�erent classes of triangulations, depending on their possible �singularities�: general
triangulations may have loops and multiple edges, and we refer to them as type I triangulations,
type II triangulations may have multiple edges but no loops, �nally type III triangulations have
neither loops nor multiple edges.

Question 1 (Optional). Show that a triangulation is of type II if and only if it is 2-connected,
and of type III if and only if it is 3-connected. (Recall that a map or a graph is said k-connected
if it remains connected whenever one removes at most (k − 1) of its vertices. Note that being
1-connected is the same as being connected, and this is the case for any map by de�nition.)

Solution : Note �rst that any triangulation containing a loop is not 2-connected, since removing
the endpoint of the loop disconnects the map (there are necessarily vertices in both regions
delimited by the loop since the map is a triangulation). Conversely, a separating vertex is
necessarily incident twice to a same triangle, and then clearly one side of the triangle must be a
loop. This shows that a triangulation is of type II if and only if it is 2-connected. The reasoning
for type III is similar: in a triangulation, pairs of separating vertices are always connected by
multiple edges, and vice-versa. Note that these equivalences fail as soon as we allow faces of
degree other than 3. 4

More generally, a planar triangulation with a simple boundary is a rooted planar map such
that every non-root face has degree 3, and such that the root face (whose degree k is arbitrary)
is simple (i.e. is incident to k distinct vertices, in other words there are no �pinch points�). Type
I, II and III triangulations with a simple boundary are de�ned as above (no loops for type II,
neither loops nor multiple edges for type III). The main purpose of this exercise is to enumerate
planar triangulations of type II, by solving Tutte's equation.
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Figure 1: Possible outcomes when removing the root edge of a type II planar triangulation with
a simple boundary: we may either obtain (a) another triangulation with a simple boundary or
(b) a pair of triangulations with simple boundaries sharing a common vertex.

2 Tutte's equation

For n,m nonnegative integers, we denote by Fn,m the number of type II planar triangulations
with a simple boundary of length m + 2 and n internal vertices. It is convenient to view the
link map (map reduced to a single edge, two vertices and one face) as such a triangulation with
n = m = 0, hence by convention we set F0,0 = 1.

Question 2 (Optional). For n ≥ 3, let Tn be the number of rooted type II planar triangulations
(without boundary). Explain why

Tn = Fn−2,0 = Fn−3,1.

Would these equalities hold in type I or III?

Solution : The equality Tn = Fn−3,1 is immediate by treating the root face as a boundary (this
equality would however fail in type I as the root face might be non simple).

The equality Tn = Fn−2,0 is obtained by �splitting� the root edge of a rooted triangulation
into a pair of edges delimiting a 2-gon. (This would again fail in type I as the 2-gon has a non
simple boundary when the root edge is a loop, and also in type III since multiple edges are
forbidden.) 4

2.1 Derivation

We introduce the generating functions

F ≡ F (t, z) =
∑
n≥0

∑
m≥0

Fn,mt
nzm, F0 ≡ F0(t) =

∑
n≥0

Fn,0t
n.

Question 3. Derive Tutte's equation

F (t, z) = 1 + t
F (t, z)− F0(t)

z
+ zF (t, z)2. (1)

Solution : Starting with a type II planar triangulation with a simple boundary of length
m+ 2 and n internal vertices, we remove the root edge and consider the possible outcomes. For
m = n = 0 the map is the link map hence nothing remains. Otherwise, the face on the left of
the root edge is necessarily a triangle distinct from the root face, and we are in one of the two
possible situations illustrated on Figure 1:
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(a) when the third vertex of the triangle is an internal vertex, we end up with a triangulation
with a simple boundary of length m+ 3 and n− 1 internal vertices,

(b) when the third vertex of the triangle is a boundary vertex, we end up with a pair of
triangulations with simple boundaries sharing a common vertex: their outer lengths sum
up to m+ 3 and they have n internal vertices in total.

This decomposition is clearly bijective (each resulting map can be canonically rooted), hence we
end up with the relation

Fn,m = δn,0δm,0 + Fn−1,m+1 +
m−1∑
k=0

n∑
`=0

F`,kFn−`,m−1−k.

Multiplying this equation by tnzm and summing over n,m ≥ 0 we end up with the desired
equation. 4

2.2 Solution I

We �rst derive a closed form expression for the number of triangulations without a boundary.
We set P (F, F0, t, z) = F − 1− t(F − F0)/z − zF 2 so that Tutte's equation amounts to

P (F (t, z), F0(t), t, z) = 0. (2)

Question 4. Show that there is a unique power series U ≡ U(t) = 1 + o(t) such that

∂P

∂F
(F (t, tU(t)), F0(t), t, tU(t)) = 0. (3)

Show that it also satis�es
∂P

∂z
(F (t, tU(t)), F0(t), t, tU(t)) = 0. (4)

Solution : We have ∂P
∂F = 1− t/z − 2zF 2 hence U must satisfy

U = 1 + 2tU2F (t, tU(t)).

This equation clearly determines, order by order, a unique power series U(t) = 1 + o(t): observe
that the coe�cient of tn in U(t) is uniquely determined in terms of coe�cients of lower order
and the (yet unknown, but well-de�ned) coe�cients of F .

Now, by di�erentiating (2) with respect to z, we �nd

∂P

∂F
(F (t, z), F0(t), t, z)

∂F

∂z
(t, z) +

∂P

∂z
(F (t, z), F0(t), t, z) = 0.

Substituting z = tU(t) we obtain (4). 4

Question 5. By elimination, derive the algebraic equation satis�ed by U . Express F0 in terms
of U . (In a more educated language, this is a rational parametrization of the spectral curve.)

3



Solution : We may for instance eliminate F (t, tU(t)) using (3), then F0(t) using (4). We �nd
that U satis�es

U = 1 + 2tU3

and then F0(t) is given by

F0 =
U(3− U)

2
.

Interestingly, U can be interpreted as the generating function of plane ternary trees with an
extra weight 2 per node. This suggests a possible correspondence between such trees and type
II planar triangulations, which was indeed given by Schae�er [2, Théorème 2.14]. 4

We now recall the Lagrange inversion formula, see e.g. [1, Section A.6]: if φ ≡ φ(y) is a
power series whose constant coe�cient is nonzero, then there is a unique power series u ≡ u(t)
satisfying u = tφ(u), and its coe�cients read explicitly

[tn]u(t) =
1
n

[yn−1]φ(y)n, n ≥ 1.

(Here [tn]u(t) denotes the coe�cient of tn in u(t), etc.) Furthermore, for an arbitrary function
H, we have

[tn]H(u(t)) =
1
n

[yn−1] (H ′(y)φ(y)n) , n ≥ 1.

Question 6. Apply the Lagrange inversion formula to compute [tn]U(t) and [tn]F0(t). (Hint:
take u(t) = U(t)− 1.)

Solution : Taking u = U − 1, we �nd that u = tφ(u) with φ(u) = 2(u+ 1)3. By the Lagrange
inversion formula we �nd that, for n ≥ 1,

[tn]U(t) = [tn]u(t) =
2n

n
[yn−1](y + 1)3n =

2n(3n)!
n!(2n+ 1)!

.

More generally we have, for k ≥ 1, the nice expression

[tn]Uk =
k 2n(3n+ k − 1)!

n!(2n+ k)!

(note that this expression remains correct for n = 0). Using now F0 = U(3 − U)/2 we obtain,
after simpli�cation, the number of rooted type II planar triangulations with n+ 2 vertices:

Tn+2 = [tn]F0(t) =
2n+1(3n)!
n!(2n+ 2)!

.
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2.3 Solution II

With a bit more work it is possible to derive a bivariate closed form expression for Fn,m.

Question 7. Replace t and F0(t) by their expressions in terms of U in Tutte's equation, to
obtain an algebraic equation relating F , U and z. What do you observe about its discriminant
with respect to F? Show that

F =
1− U + 2zU3 − (1− U + 2zU2)

√
1− 4zU2

4z2U3
. (5)
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Solution : We �nd a quadratic equation for F whose coe�cients are polynomials in U and z.
We observe that its discriminant has the nice factorization

∆ = 4(1− U + 2zU2)2(1− 4zU2)

which is no miracle, see e.g. [3]. Solving the quadratic equation in the usual way, we obtain the
desired expression (5) (the correct sign is determined by the requirement that the expansion of
F in powers of z contains only nonnegative powers). 4

Question 8. Deduce a closed form expression for [zm]F (t, z) in terms of U . (Hint:
√

1− 4x =
1−2xC(x) where C(x) is the generating function of Catalan numbers, C(x) =

∑
k≥0

(2k)!
k!(k+1)!x

k.)

Solution : Using the hint we get that

F = UC(zU2)− U − 1
2U

C(zU2)− 1
z

which immediately yields

[zm]F (t, z) =
(2m)!

m!(m+ 1)!
U2m+1 − (2m+ 2)!

(m+ 1)!(m+ 2)!
U2m+2 − U2m+1

2
.

4

Question 9. By the Lagrange inversion formula, obtain a closed form expression for Fn,m =
[tnzm]F (z, t).

Solution : Using the above expression for [tn]Uk we obtain, after simpli�cation, the nice ex-
pression

[tnzm]F (t, z) =
2n+1(2m+ 1)!(3n+ 2m)!

(m!)2n!(2n+ 2m+ 2)!
.

4

3 Asymptotics

Question 10. Show that the radius of convergence of F0(t) and, more generally, [zm]F (t, z) for
any m, is

tc =
2
27
.

Solution : It is easily seen from the algebraic equation for U , or from the explicit expression of
its coe�cients, that its radius of convergence is tc = 2/27. Note that U(tc) = 3/2. As [zm]F (t, z)
is a polynomial in U , it has the same radius of convergence. 4

Question 11. Compute [zm]F (tc, z). (This is the partition function of the �free distribution�
on rooted triangulations of the (m+ 2)-gon, useful when studying local limits.)
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Solution : From the expression of [zm]F (t, z) in terms of U , and the value U(tc) = 3/2, we
readily get

[zm]F (tc, z) =
(2m)!

m!(m+ 2)!

(
3
2

)2m+2

.

4

Question 12. Show that, for any �xed m ≥ 0, we have as n→∞

Fn,m ∼ Cmt
−n
c n−5/2

and compute Cm as well as its asymptotic behaviour as m→∞.

Solution : This easily follows from the Stirling formula, with the explicit value

Cm =
√

3(2m+ 1)!
4
√
π(m!)2

(
3
2

)2m

∼ C9m
√
m.

4

References

[1] P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press, 2009.

[2] G. Schae�er, Conjugaison d'arbres et cartes combinatoires aléatoires, PhD thesis, Université
Bordeaux I (1998).

[3] M. Bousquet-Mélou and A. Jehanne, Polynomial equations with one catalytic variable, al-

gebraic series and map enumeration, Journal of Combinatorial Theory, Series B 96 (2006)
623�672

6


