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Many	  hazards	  to	  health	  have	  climate	  drivers	  
	  •  PrecipitaBon:	  	  

– Water-‐borne	  disease	  such	  as	  cholera,	  	  
–  Vector-‐borne	  diseases	  e.g.	  malaria,	  dengue,	  LF,	  schisto...	  

•  Temperature:	  	  
–  heatstress,	  extremes,	  accidents	  
–  vector-‐borne	  diseases,	  	  
–  communicable	  diseases	  (behaviour)	  

•  Humidity	  
–  Vector-‐borne	  disease	  
–  Virus	  transmission	  

•  Wind	  
– Meningitus	  
–  malaria	  (vector	  tracking)	  
–  transport	  of	  pathogens	  
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The	  conBnium	  hypothesis	  	  

How	  large?	  
•  compuBng	  

power	  
•  Domain	  of	  

simulaBon?	  
•  Length	  of	  

problem	  (5	  days	  
forecast	  of	  100	  
year	  climate	  
projecBon?)	  



Progression	  in	  resoluBon	  
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CMIP5/AR5	  was	  not	  a	  great	  increase	  relaBve	  
to	  AR4,	  due	  to	  increase	  in	  ensemble	  sizes	  



What	  is	  the	  issue	  concerning	  finite	  grid	  scales?	  

Many	  processes	  are	  subgrid-‐scale!	  
They	  must	  therefore	  be	  represented	  by	  
parametrizaBons	  –	  simple	  models	  that	  
represent	  the	  effect	  of	  the	  small	  scales	  in	  
terms	  of	  the	  grid-‐resolved	  variables.	  	  



Key	  physical	  processes	  to	  be	  parametrized	  in	  NWP	  
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Again,	  in	  such	  models	  the	  effects	  of	  subgrid-‐scale	  and	  non-‐local	  turbulent	  
transports	  need	  to	  be	  represented	  





•  Why	  are	  we	  worried	  about	  parametrizaBons?	  
– Not	  always	  derivable	  from	  theory	  	  
– May	  contain	  ad-‐hoc	  assumpBons,	  parBcularly	  to	  close	  
the	  equaBon	  set.	  

– May	  contain	  parameters	  that	  are	  difficult	  to	  measure	  
from	  observaBons	  or	  derive	  from	  theory.	  

•  Result:	  model	  uncertainty	  	  
•  Example:	  in	  CMIP3/AR4	  cloud	  parametrizaBon	  
schemes	  were	  the	  larges	  cause	  of	  differences	  in	  
climate	  sensiBvity	  between	  the	  models.	  	  This	  has	  
not	  changed	  in	  CMIP5/AR5.	  



This	  leads	  to	  uncertainty	  in	  forecasts	  due	  to	  an	  
imperfect	  model	  
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This	  leads	  to	  uncertainty	  in	  forecasts	  due	  to	  an	  
imperfect	  model	  

forecast	  



But	  uncertainty	  is	  also	  a	  result	  of	  inaccurate	  
iniBal	  condiBons	  
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QuesBon:	  how	  can	  we	  account	  for	  this	  uncertainty?	  



We	  run	  ensembles	  of	  forecasts...	  
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Differences	  due	  to	  
iniBal	  condiBon	  
uncertainty	  AND	  
model	  uncertainty	  



Example:	  3	  day	  forecasts	  of	  the	  2000	  storms	  in	  USA	  
from	  Buizza	  and	  Chessa,	  2002,	  MWR	  

1538 VOLUME 130M O N T H L Y W E A T H E R R E V I E W

FIG. 5. (a) MSLP verification valid at 1200 UTC 25 Jan. Other panels: 72-h forecasts started 23 Jan: (b) OHR TL319, (c) EPS control,
(d) 72-h ensemble mean, (e) EPS member 36 (smallest rmse), (f ) EPS member 34 (second lowest rmse), (g) EPS member 25 (lowest IE),
(h) EPS member 50 (second lowest IE), and (i) EPS member 11 (third lowest IE). Contour interval is 5 hPa. In the forecast titles, rms is
the forecast rmse, ie the intensity error, and pe the position error; for the TL319, no is the number of EPS perturbed-members with rmse
smaller than the TL319; for the EPS control, nc is the number of EPS perturbed-members better than the control; for the EPS members, irms
is the ranking position with respect to the 50 perturbed forecasts in terms of rmse, and ipie is the ranking position in terms of IE.



��'H
��������	���
��
	�	�	�

����	�	���

$#
��
�����	�"
��
������	��

+�����
"��'	�"
��������	���

��������	���
��
�����

����	��

9�
������	��	��
���	��

3�
�������	�
����	��

<�
����	
�����
��������

9	  member	  regional	  model	  rainfall	  seasonal	  forecasts	  for	  East	  Africa	  (Diro	  et	  al.	  2012)	  
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The	  standard	  deviaBon	  between	  the	  forecasts	  is	  
referred	  to	  as	  the	  inter-‐ensemble	  “spread”	  
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In	  general,	  for	  any	  given	  forecast	  lead	  Bme,	  we	  want	  the	  spread	  
to	  be	  comparable	  to	  the	  RMS	  forecast	  error	  
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“Over-‐confident”	  forecasBng	  system	  –	  observaBons	  
oien	  lie	  outside	  the	  ensemble	  
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“Under-‐confident”	  system	  –	  perturbaBons	  are	  
too	  strong	  and	  overesBmate	  the	  system	  error	  
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QUESTION:	  forecast	  states	  70%	  chance	  of	  rain	  –	  
and	  it	  rains	  –	  is	  this	  a	  good	  forecast?	  

no	  rain	  

rain	  



Uncertainty	  in	  climate	  modelling	  
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Emissions	  scenarios	  in	  CMIP5	  
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RCP2p6	  is	  not	  all	  good	  news...	  

•  RCP2p6	  and	  8p5	  are	  surprisingly	  similar	  due	  
to	  high	  use	  of	  biofuels	  needed	  to	  respect	  2p6	  
Wm-‐2	  



HYDE	  output	  example	  (using	  CLM)	  

RCP8p5	  RCP2p6	  

RCP2p6	  actually	  has	  one	  of	  the	  greatest	  conversaBon	  to	  cropland	  rates	  in	  Africa	  	  due	  
to	  high	  use	  of	  biofuels.	  	  



Leads	  to	  emissions	  scenarios	  for	  major	  
greenhouse	  gases	  Summary for Policymakers  IPCC Fifth Assessment Synthesis Report 

Subject to final copy-edit and layout  9 

 
Figure SPM.5: (a) Emissions of CO2 alone in the Representative Concentration Pathways (lines) and the associated 
scenario categories used in WGIII (coloured areas show 5-95% range). The WGIII scenario categories summarize the 
wide range of emission scenarios published in the scientific literature and are defined on the basis of CO2-eq 
concentration levels (in ppm) in 2100. The time series of other greenhouse gas emissions are shown in Box 2.2, Figure 
1. (b) Global mean surface temperature increase at the time global CO2 emissions reach a given net cumulative total, 
plotted as a function of that total, from various lines of evidence. Coloured plume shows the spread of past and future 
projections from a hierarchy of climate-carbon cycle models driven by historical emissions and the four RCPs over all 
times out to 2100, and fades with the decreasing number of available models. Ellipses show total anthropogenic 
warming in 2100 versus cumulative CO2 emissions from 1870 to 2100 from a simple climate model (median climate 
response) under the scenario categories used in WGIII. The width of the ellipses in terms of temperature is caused by 
the impact of different scenarios for non-CO2 climate drivers. The filled black ellipse shows observed emissions to 2005 
and observed temperatures in the decade 2000-2009 with associated uncertainties. {Box 2.2, Figure 1, Figure 2.3} 
 

QuesBon:	  Are	  these	  4	  scenarios	  all	  equally	  likely?	  	  Which	  one	  is	  the	  most	  likely?	  	  



Uncertainty	  in	  climate	  modelling	  
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intensity, energy use and regional differentiated
development. However the new RCPs mean that
comparison of the 2013 IPCC results will be difficult
with the IPCC 2001 and 2007 outputs, which used
the SRES. These scenarios are just the start of the
cascade of uncertainty shown in Figure 1.

In the most recent IPCC assessment, released in
2007, the greenhouse gas scenarios were then input
into about 20 general circulation models (GCMs). Each
of the models has their own independent design and
parameterisations of key processes. For example, how
to model the positive and negative feedbacks from
clouds. Clouds are one of the largest uncertainties in
climate models as they increase the global reflection of
solar radiation up to 30%, reducing the amount of
sunlight absorbed by the Earth But this cooling is offset
somewhat by the greenhouse effect of clouds, which
reduces the net loss of heat from the Earth. The inde-
pendence of each model is important, as some confi-
dence may be derived from multiple runs on different
models providing similar future climate predictions.
While the differences between the models can help us
to learn about their individual limitations and advan-

tages. Within the IPCC, due to political expediency,
each model and its output is assumed to be equally
valid. This is despite the fact that some are known to
perform better than others when tested against reality
provided by the historic and palaeoclimate records.
This difference will be exacerbated in the 2013 IPCC
assessment as some models have greater spatial reso-
lution while others do not. Moreover, as discussed by
Palmer (2012), we understand uncertainty within a
single model but the notion of quantifying uncertainty
from many models currently lacks any real theoretical
background or basis.

The outputs from these GCMs are then used to drive
more detailed regional climate models to project
more local environmental variations. Down-scaling is
a huge problem recognised in the modelling commu-
nity (IPCC 2007b). This is because precipitation is
spatially and temporally highly variable but essential
to model if human impacts are to be predicted
(Oreskes et al. 2010). Ultimately the cascade of uncer-
tainty leads to a huge range of potential future events
at a regional level that are in some cases contradic-
tory. For example, detailed hydrological modelling of
the Mekong River Basin using climate model input
from just a single GCM (the Met Office HadCM3) led
to projected future changes in annual river discharge
ranging from a decrease of 5.4% to an increase of
4.5% (Kingston et al. 2011). Changes in predicted
monthly discharge are even more dramatic, ranging
from -16% to +55%. Advising policymakers becomes
extremely hard when the uncertainties do not even
allow one to tell if the river catchment system in the
future will have more or less water. But there may be
key communication lessons that we could learn from
the way other scientists communicate risk, for
example, with earthquake risk the public and policy-
makers have become used to the idea of probability
when it comes to timing and magnitude.

The projected regional climate changes are then
used as a basis for so-called impact models that
attempt to estimate the effect on the quality of human
life (Barker 2008). The scale of impact of climate
change is, however, driven more by the relative resil-
ience of the society affected than the magnitude of
change. The most advanced of these socioeconomic
models determine the monetary costs arising both in
market and non-market sectors. But these models fail
to adequately account for many aspects of human
suffering possibly caused by climate change, as they
evaluate the impact of climate change on human
welfare purely in monetary terms (Stern 2007).
Whereas money can be lent, exchanged, traded or
even gain interest, an individual’s welfare and life
cannot. Moreover, despite continued arguments
between economists, future losses are discounted at a
fairly arbitrary rate (Stern 2007).

Above we have considered mean state changes
such as river discharge. The single biggest problem
with impact models, however, is their inability to

Figure 1 Estimations of climate change impact and societal
response based on models containing increasing

uncertainty. Solid lines are modelled outputs while white
dotted lines are inputs to the next layer of models

Source: Adapted and expanded from Hillerbrand and Ghil
(2008)
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Climate scientists face a serious public image problem because the next round of climate models
they are working on are destined to produce a wider rather than a smaller range of uncertainty. To
the public and policymakers, it will look as if the scientific understanding of climate change is
becoming less rather than more clear, particularly as there will be a deliberate attempt by lobbyists
and parts of the media to portray the science in this way. There is a need to communicate the
fundamental strengths and weaknesses of climate modelling as an essential tool to allow us to
understand the consequences of our actions and to develop appropriate policy. We need to
demonstrate that with greater knowledge comes greater uncertainty but also greater transparency
and confidence in our knowledge. New communications strategies that do not solely rely on the
‘weight of evidence’ argument but instead aim to win hearts and minds are required. New policy
approaches combining win–win solutions are required if issues of climate change mitigation and
adaptation are to be tackled.

KEY WORDS: climate change policy, climate models, uncertainty

T he next Intergovernmental Panel on Climate
Change (IPCC) major assessment of climate
science is due to be released in 2013, and will

include climate models containing a significant
increase in our understanding of complex climate
processes. However, these models will have a wider
rather than smaller range of scientific uncertainty. Sci-
entists need to face up to this, and develop a plan of
how to explain uncertainty to avoid climate deniers
suggesting that the science is fundamentally wrong.
Above all, the public and policymakers need be con-
vinced that climate models have reached their current
limit and must stop waiting for further certainty or
persuasion, but should start developing appropriate
mitigation and adaption policies around the world.

But for the public and policymakers to move
beyond questioning the underlying physics they need
to have a greater appreciation of why these numerical
models have reached a limit. First, models are not
reality. It may sound strange to have to state this but it
is a fundamental point which is regularly ignored.
Second, there are intrinsic problems with modelling
natural systems (Cartwright 1983). This is because it is
impossible to truly verify or validate the numerical

models as they are never closed systems and results
are never unique (Oreskes et al. 1994). This is particu-
lar true of climate models because despite being
based on fundamental physical equations they still
require many parameters that are incompletely known
(Oreskes et al. 2010).

One of these variables is the accumulation of
greenhouse gases and aerosols in the atmosphere by
the end of the century, which is an essential input to
the models. These projections are based on eco-
nomic models, which attempt to predict global fossil
fuel use over 100 years given extremely broad
assumptions about how integrated and green the
global economy will become (IPCC 2000; van
Vuuren et al. 2011). The original IPCC reports used
simplistic assumption of greenhouse gas emissions
over the next 100 years. From 2000 onwards the
climate models used the Special Report on Emission
Scenarios (SRES; IPCC 2000). The next generation of
climate model results to be published in the 2013
IPCC Science Report will use the new representative
concentration pathways (RCPs) which consider a
much wider variable input to the social-economic
models, including population, land use, energy
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ISIMIP	  –	  PNAS	  special	  issues	  2014	  
invesBgated	  mulBsectoral	  impacts	  of	  climate	  change	  

using	  one	  member	  of	  5	  climate	  models	  	  	  
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	  Key	  et	  al.	  BAMS	  to	  appear	  2015:	  hop://dx.doi.org/10.1175/BAMS-‐D-‐13-‐00255.1	  

!
!

!
Figure! 2! –! Global! surface! temperature! anomaly! (1961G1990! base! period)! for! the!
1850!control,! individual!ensemble!members,!and!observations! (HadCRUT4;!Morice!
et!al.!2012).!
!
!

However,	  model	  error	  and	  iniBal	  condiBon	  
“sampling”	  error	  are	  oien	  confused.	  

Large	  ensemble	  climate	  change	  experiments	  
30	  ensemble	  members	  –	  historical	  and	  RCP8p5	  
Single	  climate	  model	  	  



!

!
Figure!5:! Global!Maps! of!NearGfuture! (2013G2046)!Boreal!Winter! (DJF)! Surface!Air!
Temperature!Trends!for!each!of!the!30!individual!CESMGLE!members!and!the!CESMG
LE!ensemble!mean!(denoted!“EM”).!

	  hop://dx.doi.org/10.1175/BAMS-‐
D-‐13-‐00255.1	  

First	  16	  members:	  	  2013-‐2046	  temperature	  trend	  



!
Figure!6:!Global!Maps!of!Standard!Deviation!in!34Gyear!DJF!Surface!Air!Temperature!
trends! for! the! (top)! PreGindustrial! (1850),! (middle)! Historical! (1979G2012),! and!
(bottom)!NearGfuture! (2013G2046)!periods.!For!the!historical!and!nearPfuture!periods,!
trends!are!shown!for!both!the!30Pmember!CESMPLE!ensemble!and!the!38Pmember!CMIP5!
ensemble! (Taylor!et!al.!2012).! Stippling!on! the!historical!and!nearPfuture!CESMPLE! trend!
maps! indicates! standard!deviations! that! are! statistically! different! than! the!CESMPLE!preP
industrial! period.! Stippling! on! the! historical! and! nearPfuture! CMIP5! maps! indicates!
standard!deviations!that!are!statistically!different!than!the!CESMPLE!for!the!corresponding!
period.!Stippling!is!based!on!an!fPtest!and!a!95%!confidence!interval.!!For!CMIP5,!we!used!a!
single! (the! first)!ensemble!member!of! the! following!models:!ACCESS1P0,!ACCESS1P3,!bccP
csm1P1Pm,! bccPcsm1P1,! BNUPESM,! CanESM2,! CCSM4,! CESM1PBGC,! CESM1PCAM5,! CESM1P
WACCM,!CMCCPCM,!CMCCPCMS,!CNRMPCM5,!CSIROPMk3P6P0,!ECPEARTH,!FGOALSPg2,!FIOP
ESM,! GFDLPCM3,! GFDLPESM2G,! GFDLPESM2M,!GISSPE2PH,! GISSPE2PHPCC,! GISSPE2PR,! GISSP
E2PRPCC,!HadGEM2PAO,!HadGEM2PCC,!HadGEM2PES,! inmcm4,! IPSLPCM5APLR,! IPSLPCM5AP
MR,! IPSLPCM5BPLR,! MIROC5,! MIROCPESM,!MIROCPESMPCHEM,!MPIPESMPLR,! MRIPCGCM3,!
NorESM1PM,!and!NorESM1PME.!

Inter-‐ensemble	  temperature	  “spread”	  –	  what	  is	  
the	  difference	  between	  the	  lei	  and	  right?	  	  



!
Figure!6:!Global!Maps!of!Standard!Deviation!in!34Gyear!DJF!Surface!Air!Temperature!
trends! for! the! (top)! PreGindustrial! (1850),! (middle)! Historical! (1979G2012),! and!
(bottom)!NearGfuture! (2013G2046)!periods.!For!the!historical!and!nearPfuture!periods,!
trends!are!shown!for!both!the!30Pmember!CESMPLE!ensemble!and!the!38Pmember!CMIP5!
ensemble! (Taylor!et!al.!2012).! Stippling!on! the!historical!and!nearPfuture!CESMPLE! trend!
maps! indicates! standard!deviations! that! are! statistically! different! than! the!CESMPLE!preP
industrial! period.! Stippling! on! the! historical! and! nearPfuture! CMIP5! maps! indicates!
standard!deviations!that!are!statistically!different!than!the!CESMPLE!for!the!corresponding!
period.!Stippling!is!based!on!an!fPtest!and!a!95%!confidence!interval.!!For!CMIP5,!we!used!a!
single! (the! first)!ensemble!member!of! the! following!models:!ACCESS1P0,!ACCESS1P3,!bccP
csm1P1Pm,! bccPcsm1P1,! BNUPESM,! CanESM2,! CCSM4,! CESM1PBGC,! CESM1PCAM5,! CESM1P
WACCM,!CMCCPCM,!CMCCPCMS,!CNRMPCM5,!CSIROPMk3P6P0,!ECPEARTH,!FGOALSPg2,!FIOP
ESM,! GFDLPCM3,! GFDLPESM2G,! GFDLPESM2M,!GISSPE2PH,! GISSPE2PHPCC,! GISSPE2PR,! GISSP
E2PRPCC,!HadGEM2PAO,!HadGEM2PCC,!HadGEM2PES,! inmcm4,! IPSLPCM5APLR,! IPSLPCM5AP
MR,! IPSLPCM5BPLR,! MIROC5,! MIROCPESM,!MIROCPESMPCHEM,!MPIPESMPLR,! MRIPCGCM3,!
NorESM1PM,!and!NorESM1PME.!

Lei:	  30	  members	  single	  model	  =	  sampling	  uncertainty	  
Right:	  38	  CMIP5	  models,	  one	  member	  per	  model	  

Are	  the	  differences	  on	  the	  right	  due	  to	  model	  uncertainty	  or	  iniBal	  
condiBon	  sampling?	  And	  why	  is	  this	  important?	  



Small	  ensembles	  may	  lead	  to	  overesBmate	  of	  
uncertainty	  due	  to	  model	  error,	  but...	  

...are	  models	  “geneBcally”	  diverse	  enough?	  
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Climate model genealogy: Generation CMIP5 and how we got there

Reto Knutti,1 David Masson,2 and Andrew Gettelman1,3

Received 12 February 2013; accepted 12 February 2013; published 26 March 2013.

[1] A new ensemble of climate models is becoming
available and provides the basis for climate change
projections. Here, we show a first analysis indicating that the
models in the new ensemble agree better with observations
than those in older ones and that the poorest models have
been eliminated. Most models are strongly tied to their
predecessors, and some also exchange ideas and code with
other models, thus supporting an earlier hypothesis that the
models in the new ensemble are neither independent of
each other nor independent of the earlier generation. On the
basis of one atmosphere model, we show how statistical
methods can identify similarities between model versions
and complement process understanding in characterizing
how and why a model has changed. We argue that the
interdependence of models complicates the interpretation
of multimodel ensembles but largely goes unnoticed.
Citation: Knutti, R., D. Masson, and A. Gettelman (2013), Climate
model genealogy: Generation CMIP5 and how we got there,
Geophys. Res. Lett., 40, 1194–1199, doi:10.1002/grl.50256.

1. Introduction

[2] Global climate models are ubiquitous and irreplace-
able tools for projections of future climate change. They
evolve and improve, but few people really understand
exactly how and why. Model developers have scientific
reasons for why they focus on improving on one process
or component and not others, but the internal decision
making processes for model development are rarely docu-
mented publicly. As a result, although new models are
presented in detail in the literature and compared with obser-
vations, they remain massive and complex black boxes to
many users, with many questions remaining unanswered.
For example, why were certain parameterizations changed
but not others? Which of those changes had the largest
impact? Is the model “better” in terms of agreement with
observations, or just “better” in terms of a more comprehen-
sive description of the processes? Which variables and data
sets were used to evaluate a given model?
[3] Because formal methods to quantify uncertainties in

projections are complex and direct observational constraints
often absent [Knutti et al., 2010; Tebaldi and Knutti, 2007;

Weigel et al., 2010], the spread of an ensemble of models
is often used as a first-order estimate of projection uncer-
tainty [Meehl et al., 2007]. This assumes that the models
are approximately a representative sample of our uncertainty
in how to best describe the climate system given limited
observations, imperfect understanding, and finite computa-
tional resources [Knutti, 2008; Yokohata et al., 2012]. It also
assumes that there are not too many similarities that would
bias the results. Of course, all models are similar because
they describe the same system, but their biases, omissions
of processes, simplifications, parameterizations of processes,
and numerical approximations are also similar. In other
words, they are often similarly biased with regard to reality,
in some but not all cases for the same reasons (e.g., high
mountains are not resolved in all models). This does not
invalidate the use of the ensemble as a first-order estimate
of uncertainty but complicates the interpretation.
[4] Masson and Knutti [2011, MK11 hereafter] produced

a “family tree” of the Coupled Model Intercomparison
Project Phase 2/3 climate models, which documents the
similarities between models in an ensemble. For simplicity,
we define model similarity as similarity in the model simu-
lated fields because it is unclear how to define similarity of
a model code or the underlying process assumptions. The
term “model independence” is not used in a sense of statisti-
cal independence but loosely to express that the similarity
between models sharing code is far greater than between
those that do not. Models from the same centers were shown
in MK11 to often be very similar in their present day clima-
tology, and models in different centers sharing the same at-
mospheric model (even in different versions) were also
closely related. MK11 argued that such similarities result
from the fact that models evolve from their ancestors by
modification and by exchange of ideas and code with other
groups. Successful pieces are kept, improved, and shared,
and less successful parts are replaced. Here, we present an
analysis of the newest generation of models to supports this
hypothesis.

2. Results

[5] We used data from the most recent World Climate
Research Programme Coupled Model Intercomparison
Project Phase 5 (CMIP5) [Taylor et al., 2012], along with
data from the earlier CMIP3 and CMIP2 intercomparisons.
Model similarity is defined as in MK11 (details in the
Supporting Information of MK11) by a Kullback-Leibler
divergence, a distance metric that considers the spatial
field of monthly values in a control simulation without
external forcing. It takes into account the seasonal cycle,
the interannual variations, and the spatial correlation. The
method and data from CMIP2/3 and observations are identi-
cal to those used by MK11. The only difference is that for
Figures 1 and 3, the metric now also includes differences

All Supporting Information may be found in the online version of this
article.
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Figure SPM.6: Global average surface temperature change (a) and global mean sea-level rise10 (b) from 2006 to 2100 
as determined by multi-model simulations. All changes are relative to 1986–2005. Time series of projections and a 
measure of uncertainty (shading) are shown for scenarios RCP2.6 (blue) and RCP8.5 (red). The mean and associated 
uncertainties averaged over 2081-2100 are given for all RCP scenarios as coloured vertical bars at the right hand side of 
each panel. The number of Coupled Model Intercomparison Project Phase 5 (CMIP5) models used to calculate the 
multi-model mean is indicated. {2.2, Figure 2.1} 

                                                             
10 Based on current understanding (from observations, physical understanding and modelling), only the collapse of 
marine-based sectors of the Antarctic ice sheet, if initiated, could cause global mean sea level to rise substantially above 
the likely range during the 21st century. There is medium confidence that this additional contribution would not exceed 
several tenths of a meter of sea-level rise during the 21st century. 

to	  2030	  –	  scenario	  is	  
unimportant	  	  

at	  2100	  –	  scenario	  
uncertainty	  dominates	  
sampling/model	  
uncertainty	  



The	  source	  of	  uncertainty	  depends	  how	  far	  ahead	  
you	  look...	  
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Note:	  small	  ensembles	  in	  CMIP5	  may	  leading	  overesBmaBon	  of	  model	  component	  of	  
uncertainty	  	  	  
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And	  Uncertainty...	  

•  Due	  to:	  
– Natural	  variability,	  iniBal	  condiBons	  
– Model	  uncertainty	  
– Forcing	  (emissions)	  uncertainBes	  

•  Large	  ensembles	  are	  required	  in	  an	  aoempt	  to	  
understand	  sources	  of	  uncertainty	  in	  
predicBons	  and	  projecBons	  


