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Many	
  hazards	
  to	
  health	
  have	
  climate	
  drivers	
  
	
  •  PrecipitaBon:	
  	
  

– Water-­‐borne	
  disease	
  such	
  as	
  cholera,	
  	
  
–  Vector-­‐borne	
  diseases	
  e.g.	
  malaria,	
  dengue,	
  LF,	
  schisto...	
  

•  Temperature:	
  	
  
–  heatstress,	
  extremes,	
  accidents	
  
–  vector-­‐borne	
  diseases,	
  	
  
–  communicable	
  diseases	
  (behaviour)	
  

•  Humidity	
  
–  Vector-­‐borne	
  disease	
  
–  Virus	
  transmission	
  

•  Wind	
  
– Meningitus	
  
–  malaria	
  (vector	
  tracking)	
  
–  transport	
  of	
  pathogens	
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The	
  conBnium	
  hypothesis	
  	
  

How	
  large?	
  
•  compuBng	
  

power	
  
•  Domain	
  of	
  

simulaBon?	
  
•  Length	
  of	
  

problem	
  (5	
  days	
  
forecast	
  of	
  100	
  
year	
  climate	
  
projecBon?)	
  



Progression	
  in	
  resoluBon	
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CMIP5/AR5	
  was	
  not	
  a	
  great	
  increase	
  relaBve	
  
to	
  AR4,	
  due	
  to	
  increase	
  in	
  ensemble	
  sizes	
  



What	
  is	
  the	
  issue	
  concerning	
  finite	
  grid	
  scales?	
  

Many	
  processes	
  are	
  subgrid-­‐scale!	
  
They	
  must	
  therefore	
  be	
  represented	
  by	
  
parametrizaBons	
  –	
  simple	
  models	
  that	
  
represent	
  the	
  effect	
  of	
  the	
  small	
  scales	
  in	
  
terms	
  of	
  the	
  grid-­‐resolved	
  variables.	
  	
  



Key	
  physical	
  processes	
  to	
  be	
  parametrized	
  in	
  NWP	
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Again,	
  in	
  such	
  models	
  the	
  effects	
  of	
  subgrid-­‐scale	
  and	
  non-­‐local	
  turbulent	
  
transports	
  need	
  to	
  be	
  represented	
  





•  Why	
  are	
  we	
  worried	
  about	
  parametrizaBons?	
  
– Not	
  always	
  derivable	
  from	
  theory	
  	
  
– May	
  contain	
  ad-­‐hoc	
  assumpBons,	
  parBcularly	
  to	
  close	
  
the	
  equaBon	
  set.	
  

– May	
  contain	
  parameters	
  that	
  are	
  difficult	
  to	
  measure	
  
from	
  observaBons	
  or	
  derive	
  from	
  theory.	
  

•  Result:	
  model	
  uncertainty	
  	
  
•  Example:	
  in	
  CMIP3/AR4	
  cloud	
  parametrizaBon	
  
schemes	
  were	
  the	
  larges	
  cause	
  of	
  differences	
  in	
  
climate	
  sensiBvity	
  between	
  the	
  models.	
  	
  This	
  has	
  
not	
  changed	
  in	
  CMIP5/AR5.	
  



This	
  leads	
  to	
  uncertainty	
  in	
  forecasts	
  due	
  to	
  an	
  
imperfect	
  model	
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This	
  leads	
  to	
  uncertainty	
  in	
  forecasts	
  due	
  to	
  an	
  
imperfect	
  model	
  

forecast	
  



But	
  uncertainty	
  is	
  also	
  a	
  result	
  of	
  inaccurate	
  
iniBal	
  condiBons	
  

	�
:�����
	���
	�
	�	�	
�
����	�	���

K1�4

������
	���
	�
	�	�	
�

����	�	���

E&�����+��
B++���F

∆�
K1�L∆�4

QuesBon:	
  how	
  can	
  we	
  account	
  for	
  this	
  uncertainty?	
  



We	
  run	
  ensembles	
  of	
  forecasts...	
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Differences	
  due	
  to	
  
iniBal	
  condiBon	
  
uncertainty	
  AND	
  
model	
  uncertainty	
  



Example:	
  3	
  day	
  forecasts	
  of	
  the	
  2000	
  storms	
  in	
  USA	
  
from	
  Buizza	
  and	
  Chessa,	
  2002,	
  MWR	
  

1538 VOLUME 130M O N T H L Y W E A T H E R R E V I E W

FIG. 5. (a) MSLP verification valid at 1200 UTC 25 Jan. Other panels: 72-h forecasts started 23 Jan: (b) OHR TL319, (c) EPS control,
(d) 72-h ensemble mean, (e) EPS member 36 (smallest rmse), (f ) EPS member 34 (second lowest rmse), (g) EPS member 25 (lowest IE),
(h) EPS member 50 (second lowest IE), and (i) EPS member 11 (third lowest IE). Contour interval is 5 hPa. In the forecast titles, rms is
the forecast rmse, ie the intensity error, and pe the position error; for the TL319, no is the number of EPS perturbed-members with rmse
smaller than the TL319; for the EPS control, nc is the number of EPS perturbed-members better than the control; for the EPS members, irms
is the ranking position with respect to the 50 perturbed forecasts in terms of rmse, and ipie is the ranking position in terms of IE.
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9	
  member	
  regional	
  model	
  rainfall	
  seasonal	
  forecasts	
  for	
  East	
  Africa	
  (Diro	
  et	
  al.	
  2012)	
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The	
  standard	
  deviaBon	
  between	
  the	
  forecasts	
  is	
  
referred	
  to	
  as	
  the	
  inter-­‐ensemble	
  “spread”	
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In	
  general,	
  for	
  any	
  given	
  forecast	
  lead	
  Bme,	
  we	
  want	
  the	
  spread	
  
to	
  be	
  comparable	
  to	
  the	
  RMS	
  forecast	
  error	
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“Over-­‐confident”	
  forecasBng	
  system	
  –	
  observaBons	
  
oien	
  lie	
  outside	
  the	
  ensemble	
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“Under-­‐confident”	
  system	
  –	
  perturbaBons	
  are	
  
too	
  strong	
  and	
  overesBmate	
  the	
  system	
  error	
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QUESTION:	
  forecast	
  states	
  70%	
  chance	
  of	
  rain	
  –	
  
and	
  it	
  rains	
  –	
  is	
  this	
  a	
  good	
  forecast?	
  

no	
  rain	
  

rain	
  



Uncertainty	
  in	
  climate	
  modelling	
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Emissions	
  scenarios	
  in	
  CMIP5	
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RCP2p6	
  is	
  not	
  all	
  good	
  news...	
  

•  RCP2p6	
  and	
  8p5	
  are	
  surprisingly	
  similar	
  due	
  
to	
  high	
  use	
  of	
  biofuels	
  needed	
  to	
  respect	
  2p6	
  
Wm-­‐2	
  



HYDE	
  output	
  example	
  (using	
  CLM)	
  

RCP8p5	
  RCP2p6	
  

RCP2p6	
  actually	
  has	
  one	
  of	
  the	
  greatest	
  conversaBon	
  to	
  cropland	
  rates	
  in	
  Africa	
  	
  due	
  
to	
  high	
  use	
  of	
  biofuels.	
  	
  



Leads	
  to	
  emissions	
  scenarios	
  for	
  major	
  
greenhouse	
  gases	
  Summary for Policymakers  IPCC Fifth Assessment Synthesis Report 

Subject to final copy-edit and layout  9 

 
Figure SPM.5: (a) Emissions of CO2 alone in the Representative Concentration Pathways (lines) and the associated 
scenario categories used in WGIII (coloured areas show 5-95% range). The WGIII scenario categories summarize the 
wide range of emission scenarios published in the scientific literature and are defined on the basis of CO2-eq 
concentration levels (in ppm) in 2100. The time series of other greenhouse gas emissions are shown in Box 2.2, Figure 
1. (b) Global mean surface temperature increase at the time global CO2 emissions reach a given net cumulative total, 
plotted as a function of that total, from various lines of evidence. Coloured plume shows the spread of past and future 
projections from a hierarchy of climate-carbon cycle models driven by historical emissions and the four RCPs over all 
times out to 2100, and fades with the decreasing number of available models. Ellipses show total anthropogenic 
warming in 2100 versus cumulative CO2 emissions from 1870 to 2100 from a simple climate model (median climate 
response) under the scenario categories used in WGIII. The width of the ellipses in terms of temperature is caused by 
the impact of different scenarios for non-CO2 climate drivers. The filled black ellipse shows observed emissions to 2005 
and observed temperatures in the decade 2000-2009 with associated uncertainties. {Box 2.2, Figure 1, Figure 2.3} 
 

QuesBon:	
  Are	
  these	
  4	
  scenarios	
  all	
  equally	
  likely?	
  	
  Which	
  one	
  is	
  the	
  most	
  likely?	
  	
  



Uncertainty	
  in	
  climate	
  modelling	
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intensity, energy use and regional differentiated
development. However the new RCPs mean that
comparison of the 2013 IPCC results will be difficult
with the IPCC 2001 and 2007 outputs, which used
the SRES. These scenarios are just the start of the
cascade of uncertainty shown in Figure 1.

In the most recent IPCC assessment, released in
2007, the greenhouse gas scenarios were then input
into about 20 general circulation models (GCMs). Each
of the models has their own independent design and
parameterisations of key processes. For example, how
to model the positive and negative feedbacks from
clouds. Clouds are one of the largest uncertainties in
climate models as they increase the global reflection of
solar radiation up to 30%, reducing the amount of
sunlight absorbed by the Earth But this cooling is offset
somewhat by the greenhouse effect of clouds, which
reduces the net loss of heat from the Earth. The inde-
pendence of each model is important, as some confi-
dence may be derived from multiple runs on different
models providing similar future climate predictions.
While the differences between the models can help us
to learn about their individual limitations and advan-

tages. Within the IPCC, due to political expediency,
each model and its output is assumed to be equally
valid. This is despite the fact that some are known to
perform better than others when tested against reality
provided by the historic and palaeoclimate records.
This difference will be exacerbated in the 2013 IPCC
assessment as some models have greater spatial reso-
lution while others do not. Moreover, as discussed by
Palmer (2012), we understand uncertainty within a
single model but the notion of quantifying uncertainty
from many models currently lacks any real theoretical
background or basis.

The outputs from these GCMs are then used to drive
more detailed regional climate models to project
more local environmental variations. Down-scaling is
a huge problem recognised in the modelling commu-
nity (IPCC 2007b). This is because precipitation is
spatially and temporally highly variable but essential
to model if human impacts are to be predicted
(Oreskes et al. 2010). Ultimately the cascade of uncer-
tainty leads to a huge range of potential future events
at a regional level that are in some cases contradic-
tory. For example, detailed hydrological modelling of
the Mekong River Basin using climate model input
from just a single GCM (the Met Office HadCM3) led
to projected future changes in annual river discharge
ranging from a decrease of 5.4% to an increase of
4.5% (Kingston et al. 2011). Changes in predicted
monthly discharge are even more dramatic, ranging
from -16% to +55%. Advising policymakers becomes
extremely hard when the uncertainties do not even
allow one to tell if the river catchment system in the
future will have more or less water. But there may be
key communication lessons that we could learn from
the way other scientists communicate risk, for
example, with earthquake risk the public and policy-
makers have become used to the idea of probability
when it comes to timing and magnitude.

The projected regional climate changes are then
used as a basis for so-called impact models that
attempt to estimate the effect on the quality of human
life (Barker 2008). The scale of impact of climate
change is, however, driven more by the relative resil-
ience of the society affected than the magnitude of
change. The most advanced of these socioeconomic
models determine the monetary costs arising both in
market and non-market sectors. But these models fail
to adequately account for many aspects of human
suffering possibly caused by climate change, as they
evaluate the impact of climate change on human
welfare purely in monetary terms (Stern 2007).
Whereas money can be lent, exchanged, traded or
even gain interest, an individual’s welfare and life
cannot. Moreover, despite continued arguments
between economists, future losses are discounted at a
fairly arbitrary rate (Stern 2007).

Above we have considered mean state changes
such as river discharge. The single biggest problem
with impact models, however, is their inability to

Figure 1 Estimations of climate change impact and societal
response based on models containing increasing

uncertainty. Solid lines are modelled outputs while white
dotted lines are inputs to the next layer of models

Source: Adapted and expanded from Hillerbrand and Ghil
(2008)
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Climate scientists face a serious public image problem because the next round of climate models
they are working on are destined to produce a wider rather than a smaller range of uncertainty. To
the public and policymakers, it will look as if the scientific understanding of climate change is
becoming less rather than more clear, particularly as there will be a deliberate attempt by lobbyists
and parts of the media to portray the science in this way. There is a need to communicate the
fundamental strengths and weaknesses of climate modelling as an essential tool to allow us to
understand the consequences of our actions and to develop appropriate policy. We need to
demonstrate that with greater knowledge comes greater uncertainty but also greater transparency
and confidence in our knowledge. New communications strategies that do not solely rely on the
‘weight of evidence’ argument but instead aim to win hearts and minds are required. New policy
approaches combining win–win solutions are required if issues of climate change mitigation and
adaptation are to be tackled.

KEY WORDS: climate change policy, climate models, uncertainty

T he next Intergovernmental Panel on Climate
Change (IPCC) major assessment of climate
science is due to be released in 2013, and will

include climate models containing a significant
increase in our understanding of complex climate
processes. However, these models will have a wider
rather than smaller range of scientific uncertainty. Sci-
entists need to face up to this, and develop a plan of
how to explain uncertainty to avoid climate deniers
suggesting that the science is fundamentally wrong.
Above all, the public and policymakers need be con-
vinced that climate models have reached their current
limit and must stop waiting for further certainty or
persuasion, but should start developing appropriate
mitigation and adaption policies around the world.

But for the public and policymakers to move
beyond questioning the underlying physics they need
to have a greater appreciation of why these numerical
models have reached a limit. First, models are not
reality. It may sound strange to have to state this but it
is a fundamental point which is regularly ignored.
Second, there are intrinsic problems with modelling
natural systems (Cartwright 1983). This is because it is
impossible to truly verify or validate the numerical

models as they are never closed systems and results
are never unique (Oreskes et al. 1994). This is particu-
lar true of climate models because despite being
based on fundamental physical equations they still
require many parameters that are incompletely known
(Oreskes et al. 2010).

One of these variables is the accumulation of
greenhouse gases and aerosols in the atmosphere by
the end of the century, which is an essential input to
the models. These projections are based on eco-
nomic models, which attempt to predict global fossil
fuel use over 100 years given extremely broad
assumptions about how integrated and green the
global economy will become (IPCC 2000; van
Vuuren et al. 2011). The original IPCC reports used
simplistic assumption of greenhouse gas emissions
over the next 100 years. From 2000 onwards the
climate models used the Special Report on Emission
Scenarios (SRES; IPCC 2000). The next generation of
climate model results to be published in the 2013
IPCC Science Report will use the new representative
concentration pathways (RCPs) which consider a
much wider variable input to the social-economic
models, including population, land use, energy
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  Key	
  et	
  al.	
  BAMS	
  to	
  appear	
  2015:	
  hop://dx.doi.org/10.1175/BAMS-­‐D-­‐13-­‐00255.1	
  

!
!

!
Figure! 2! –! Global! surface! temperature! anomaly! (1961G1990! base! period)! for! the!
1850!control,! individual!ensemble!members,!and!observations! (HadCRUT4;!Morice!
et!al.!2012).!
!
!

However,	
  model	
  error	
  and	
  iniBal	
  condiBon	
  
“sampling”	
  error	
  are	
  oien	
  confused.	
  

Large	
  ensemble	
  climate	
  change	
  experiments	
  
30	
  ensemble	
  members	
  –	
  historical	
  and	
  RCP8p5	
  
Single	
  climate	
  model	
  	
  



!

!
Figure!5:! Global!Maps! of!NearGfuture! (2013G2046)!Boreal!Winter! (DJF)! Surface!Air!
Temperature!Trends!for!each!of!the!30!individual!CESMGLE!members!and!the!CESMG
LE!ensemble!mean!(denoted!“EM”).!

	
  hop://dx.doi.org/10.1175/BAMS-­‐
D-­‐13-­‐00255.1	
  

First	
  16	
  members:	
  	
  2013-­‐2046	
  temperature	
  trend	
  



!
Figure!6:!Global!Maps!of!Standard!Deviation!in!34Gyear!DJF!Surface!Air!Temperature!
trends! for! the! (top)! PreGindustrial! (1850),! (middle)! Historical! (1979G2012),! and!
(bottom)!NearGfuture! (2013G2046)!periods.!For!the!historical!and!nearPfuture!periods,!
trends!are!shown!for!both!the!30Pmember!CESMPLE!ensemble!and!the!38Pmember!CMIP5!
ensemble! (Taylor!et!al.!2012).! Stippling!on! the!historical!and!nearPfuture!CESMPLE! trend!
maps! indicates! standard!deviations! that! are! statistically! different! than! the!CESMPLE!preP
industrial! period.! Stippling! on! the! historical! and! nearPfuture! CMIP5! maps! indicates!
standard!deviations!that!are!statistically!different!than!the!CESMPLE!for!the!corresponding!
period.!Stippling!is!based!on!an!fPtest!and!a!95%!confidence!interval.!!For!CMIP5,!we!used!a!
single! (the! first)!ensemble!member!of! the! following!models:!ACCESS1P0,!ACCESS1P3,!bccP
csm1P1Pm,! bccPcsm1P1,! BNUPESM,! CanESM2,! CCSM4,! CESM1PBGC,! CESM1PCAM5,! CESM1P
WACCM,!CMCCPCM,!CMCCPCMS,!CNRMPCM5,!CSIROPMk3P6P0,!ECPEARTH,!FGOALSPg2,!FIOP
ESM,! GFDLPCM3,! GFDLPESM2G,! GFDLPESM2M,!GISSPE2PH,! GISSPE2PHPCC,! GISSPE2PR,! GISSP
E2PRPCC,!HadGEM2PAO,!HadGEM2PCC,!HadGEM2PES,! inmcm4,! IPSLPCM5APLR,! IPSLPCM5AP
MR,! IPSLPCM5BPLR,! MIROC5,! MIROCPESM,!MIROCPESMPCHEM,!MPIPESMPLR,! MRIPCGCM3,!
NorESM1PM,!and!NorESM1PME.!

Inter-­‐ensemble	
  temperature	
  “spread”	
  –	
  what	
  is	
  
the	
  difference	
  between	
  the	
  lei	
  and	
  right?	
  	
  



!
Figure!6:!Global!Maps!of!Standard!Deviation!in!34Gyear!DJF!Surface!Air!Temperature!
trends! for! the! (top)! PreGindustrial! (1850),! (middle)! Historical! (1979G2012),! and!
(bottom)!NearGfuture! (2013G2046)!periods.!For!the!historical!and!nearPfuture!periods,!
trends!are!shown!for!both!the!30Pmember!CESMPLE!ensemble!and!the!38Pmember!CMIP5!
ensemble! (Taylor!et!al.!2012).! Stippling!on! the!historical!and!nearPfuture!CESMPLE! trend!
maps! indicates! standard!deviations! that! are! statistically! different! than! the!CESMPLE!preP
industrial! period.! Stippling! on! the! historical! and! nearPfuture! CMIP5! maps! indicates!
standard!deviations!that!are!statistically!different!than!the!CESMPLE!for!the!corresponding!
period.!Stippling!is!based!on!an!fPtest!and!a!95%!confidence!interval.!!For!CMIP5,!we!used!a!
single! (the! first)!ensemble!member!of! the! following!models:!ACCESS1P0,!ACCESS1P3,!bccP
csm1P1Pm,! bccPcsm1P1,! BNUPESM,! CanESM2,! CCSM4,! CESM1PBGC,! CESM1PCAM5,! CESM1P
WACCM,!CMCCPCM,!CMCCPCMS,!CNRMPCM5,!CSIROPMk3P6P0,!ECPEARTH,!FGOALSPg2,!FIOP
ESM,! GFDLPCM3,! GFDLPESM2G,! GFDLPESM2M,!GISSPE2PH,! GISSPE2PHPCC,! GISSPE2PR,! GISSP
E2PRPCC,!HadGEM2PAO,!HadGEM2PCC,!HadGEM2PES,! inmcm4,! IPSLPCM5APLR,! IPSLPCM5AP
MR,! IPSLPCM5BPLR,! MIROC5,! MIROCPESM,!MIROCPESMPCHEM,!MPIPESMPLR,! MRIPCGCM3,!
NorESM1PM,!and!NorESM1PME.!

Lei:	
  30	
  members	
  single	
  model	
  =	
  sampling	
  uncertainty	
  
Right:	
  38	
  CMIP5	
  models,	
  one	
  member	
  per	
  model	
  

Are	
  the	
  differences	
  on	
  the	
  right	
  due	
  to	
  model	
  uncertainty	
  or	
  iniBal	
  
condiBon	
  sampling?	
  And	
  why	
  is	
  this	
  important?	
  



Small	
  ensembles	
  may	
  lead	
  to	
  overesBmate	
  of	
  
uncertainty	
  due	
  to	
  model	
  error,	
  but...	
  

...are	
  models	
  “geneBcally”	
  diverse	
  enough?	
  
)�
�	�"

��	����	��

	�������	
��

5��

B�� (

- �

B�� (
��9<1H4

9?A@

9??9

B����9

B����C

B����3
6
<

B����@

������

�-#7B����C

�	��������
�

����������

3888
B�� (
��3<)C

388>
B�� (
��<9)9

����
������ �!"

194

134

* *


194
�������	��
������
134
�
�	
�	��
�������

Climate model genealogy: Generation CMIP5 and how we got there

Reto Knutti,1 David Masson,2 and Andrew Gettelman1,3

Received 12 February 2013; accepted 12 February 2013; published 26 March 2013.

[1] A new ensemble of climate models is becoming
available and provides the basis for climate change
projections. Here, we show a first analysis indicating that the
models in the new ensemble agree better with observations
than those in older ones and that the poorest models have
been eliminated. Most models are strongly tied to their
predecessors, and some also exchange ideas and code with
other models, thus supporting an earlier hypothesis that the
models in the new ensemble are neither independent of
each other nor independent of the earlier generation. On the
basis of one atmosphere model, we show how statistical
methods can identify similarities between model versions
and complement process understanding in characterizing
how and why a model has changed. We argue that the
interdependence of models complicates the interpretation
of multimodel ensembles but largely goes unnoticed.
Citation: Knutti, R., D. Masson, and A. Gettelman (2013), Climate
model genealogy: Generation CMIP5 and how we got there,
Geophys. Res. Lett., 40, 1194–1199, doi:10.1002/grl.50256.

1. Introduction

[2] Global climate models are ubiquitous and irreplace-
able tools for projections of future climate change. They
evolve and improve, but few people really understand
exactly how and why. Model developers have scientific
reasons for why they focus on improving on one process
or component and not others, but the internal decision
making processes for model development are rarely docu-
mented publicly. As a result, although new models are
presented in detail in the literature and compared with obser-
vations, they remain massive and complex black boxes to
many users, with many questions remaining unanswered.
For example, why were certain parameterizations changed
but not others? Which of those changes had the largest
impact? Is the model “better” in terms of agreement with
observations, or just “better” in terms of a more comprehen-
sive description of the processes? Which variables and data
sets were used to evaluate a given model?
[3] Because formal methods to quantify uncertainties in

projections are complex and direct observational constraints
often absent [Knutti et al., 2010; Tebaldi and Knutti, 2007;

Weigel et al., 2010], the spread of an ensemble of models
is often used as a first-order estimate of projection uncer-
tainty [Meehl et al., 2007]. This assumes that the models
are approximately a representative sample of our uncertainty
in how to best describe the climate system given limited
observations, imperfect understanding, and finite computa-
tional resources [Knutti, 2008; Yokohata et al., 2012]. It also
assumes that there are not too many similarities that would
bias the results. Of course, all models are similar because
they describe the same system, but their biases, omissions
of processes, simplifications, parameterizations of processes,
and numerical approximations are also similar. In other
words, they are often similarly biased with regard to reality,
in some but not all cases for the same reasons (e.g., high
mountains are not resolved in all models). This does not
invalidate the use of the ensemble as a first-order estimate
of uncertainty but complicates the interpretation.
[4] Masson and Knutti [2011, MK11 hereafter] produced

a “family tree” of the Coupled Model Intercomparison
Project Phase 2/3 climate models, which documents the
similarities between models in an ensemble. For simplicity,
we define model similarity as similarity in the model simu-
lated fields because it is unclear how to define similarity of
a model code or the underlying process assumptions. The
term “model independence” is not used in a sense of statisti-
cal independence but loosely to express that the similarity
between models sharing code is far greater than between
those that do not. Models from the same centers were shown
in MK11 to often be very similar in their present day clima-
tology, and models in different centers sharing the same at-
mospheric model (even in different versions) were also
closely related. MK11 argued that such similarities result
from the fact that models evolve from their ancestors by
modification and by exchange of ideas and code with other
groups. Successful pieces are kept, improved, and shared,
and less successful parts are replaced. Here, we present an
analysis of the newest generation of models to supports this
hypothesis.

2. Results

[5] We used data from the most recent World Climate
Research Programme Coupled Model Intercomparison
Project Phase 5 (CMIP5) [Taylor et al., 2012], along with
data from the earlier CMIP3 and CMIP2 intercomparisons.
Model similarity is defined as in MK11 (details in the
Supporting Information of MK11) by a Kullback-Leibler
divergence, a distance metric that considers the spatial
field of monthly values in a control simulation without
external forcing. It takes into account the seasonal cycle,
the interannual variations, and the spatial correlation. The
method and data from CMIP2/3 and observations are identi-
cal to those used by MK11. The only difference is that for
Figures 1 and 3, the metric now also includes differences

All Supporting Information may be found in the online version of this
article.
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see	
  also	
  in	
  GRL	
  (2013):	
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Figure SPM.6: Global average surface temperature change (a) and global mean sea-level rise10 (b) from 2006 to 2100 
as determined by multi-model simulations. All changes are relative to 1986–2005. Time series of projections and a 
measure of uncertainty (shading) are shown for scenarios RCP2.6 (blue) and RCP8.5 (red). The mean and associated 
uncertainties averaged over 2081-2100 are given for all RCP scenarios as coloured vertical bars at the right hand side of 
each panel. The number of Coupled Model Intercomparison Project Phase 5 (CMIP5) models used to calculate the 
multi-model mean is indicated. {2.2, Figure 2.1} 

                                                             
10 Based on current understanding (from observations, physical understanding and modelling), only the collapse of 
marine-based sectors of the Antarctic ice sheet, if initiated, could cause global mean sea level to rise substantially above 
the likely range during the 21st century. There is medium confidence that this additional contribution would not exceed 
several tenths of a meter of sea-level rise during the 21st century. 

to	
  2030	
  –	
  scenario	
  is	
  
unimportant	
  	
  

at	
  2100	
  –	
  scenario	
  
uncertainty	
  dominates	
  
sampling/model	
  
uncertainty	
  



The	
  source	
  of	
  uncertainty	
  depends	
  how	
  far	
  ahead	
  
you	
  look...	
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Note:	
  small	
  ensembles	
  in	
  CMIP5	
  may	
  leading	
  overesBmaBon	
  of	
  model	
  component	
  of	
  
uncertainty	
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And	
  Uncertainty...	
  

•  Due	
  to:	
  
– Natural	
  variability,	
  iniBal	
  condiBons	
  
– Model	
  uncertainty	
  
– Forcing	
  (emissions)	
  uncertainBes	
  

•  Large	
  ensembles	
  are	
  required	
  in	
  an	
  aoempt	
  to	
  
understand	
  sources	
  of	
  uncertainty	
  in	
  
predicBons	
  and	
  projecBons	
  


