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Many hazards to health have climate drivers
Precipitation:
— Water-borne disease such as cholera,
— Vector-borne diseases e.g. malaria, dengue, LF, schisto...
* Temperature:

— heatstress, extremes, accidents

— vector-borne diseases,

— communicable diseases (behaviour)
 Humidity

— Vector-borne disease

— Virus transmission

Wind

— Meningitus

— malaria (vector tracking)
— transport of pathogens
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Predicting the Future

» Days — Medium range weather forecasts

Sensitivity to model error and atmospheric initial
conditions

» Weeks — months — Ensemble seasonal forecasting

Sensitivity to model error and ocean/land surface
Initial conditions

» Years to decades — Ensemble of climate models

Sensitivity to model errors, ocean initial conditions
and boundary forcing error



Climate and numerical weather prediction models are constructed
using 5 fundamental set of equations

climate model equation set

m equations of motion

equations of state

#

m thermodynamic equation
m mass balance equation

=

water balance equation

It is important to realize that for a continuous medium consisting
of an ideal gas, (or mixture of ideal gases) these equations are
derived from first principles and are certain.
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The continium hypothesis
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increase relative

CMIP5/AR5 was not a great

to AR4, due to increase in ensemble sizes
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What is the issue concerning finite grid scales?

Many processes are subgrid-scale!

They must therefore be represented by
parametrizations — simple models that
represent the effect of the small scales in
terms of the grid-resolved variables.



Key physical processes to be parametrized in NWP
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Climate models also must describe slower
components of the climate system

Changes in the Atmosphere: Changes in the
Composition, Circulation Hydrological Cycle

» Seaice Srangesn
» Land cover and l > T ot
vegetation wencrerws 7/
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Atmosphere- y 3 - | Interaction

» Land hydrological | w. — Zsmee D,
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cycle i
» Carbon cycles
» Biogeochemistry
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Seasonal forecast and climate models also
require representation of the ocean

Contnental shelf

Deep-sea Hoor

Again, in such models the effects of subgrid-scale and non-local turbulent
transports need to be represented
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Towards Comprehensive Earth System Models
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* Why are we worried about parametrizations?

— Not always derivable from theory
— May contain ad-hoc assumptions, particularly to close
the equation set.

— May contain parameters that are difficult to measure
from observations or derive from theory.

e Result: model uncertainty
* Example: in CMIP3/AR4 cloud parametrization
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schemes were the larges cause of differences in
climate sensitivity between the models. This has
not changed in CMIP5/ARS.



This leads to uncertainty in forecasts due to an
imperfect model
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This leads to uncertainty in forecasts due to an
imperfect model

X(t+At)
At ’Q uncertainty due to

\Qperfect model

forecast
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But uncertainty is also a result of inaccurate
initial conditions

X(t+At)

uncertainty in initial
\' conditions ’Q

O

Question: how can we account for this uncertainty?



We run ensembles of forecasts...

Differences due to
initial condition
uncertainty AND
model uncertainty

Clusters of

Many ("'50) solutions
perturbed
initial conditions
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Example: 3 day forecasts of the 2000 storms in USA
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from Buizza and Chessa, 2002, MWR
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How?
» Perturbations to initial » Perturbations to model

conditions physics
P SV or breeding to determine P 1. parametrization choice
fastest growing perturbations » 2. stochastic physics

P 3. Multi model ensemble
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NINO3 SST anomaly plume
ECMWEF forecast from 1 Dec 2014

Monthly mean anomalies relative to NCEP OI2 1951-2010 climatology
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The standard deviation between the forecasts is
referred to as the inter-ensemble “spread”

)\
O/
O perturbed
Initial conditions
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In general, for any given forecast lead time, we want the spread
to be comparable to the RMS forecast error

O perturbed

Initial conditions Observed state
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“Over-confident” forecasting system — observations
often lie outside the ensemble

)
O/
O perturbed
Initial conditions

QObserved state
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“Under-confident” system — perturbations are
too strong and overestimate the system error

rved state

)
O/
O perturbed
Initial conditions
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QUESTION: forecast states 70% chance of rain —
and it rains — is this a good forecast?

PDF(0)

realit

>no rain

PDF(t)

rain

Forecast time



Uncertainty in climate modelling

multiple forcing scenarios

v

multiple climate models

v

multiple integrations from different initial
conditions
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RCP2p6 is not all good news...
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HYDE output example (using CLM)

RCP2p6 actually has one of the greatest conversation to cropland rates in Africa due
to high use of biofuels.
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Leads to emissions scenarios for major
greenhouse gases
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Question: Are these 4 scenarios all equally likely? Which one is the most likely?



Uncertainty in climate modelling

multiple forcing scenarios

v

multiple climate models

v

multiple integrations from different initial
conditions
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The Geographical Journal, 2013, doi: 10.1111/j.1475-4959.2012.00494.x

Commentary

Cascading uncertainty in climate change models
and its implications for policy
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ISIMIP — PNAS special issues 2014
investigated multisectoral impacts of climate change
using one member of 5 climate models
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Q Ensembles techniques less well developed

Q@ Season/decadal - Initial condition error:
= Atmosphere (relatively) unimportant > seasonal
* Perturbations to Sea Surface Temperature are key

" However, the way to do this effectively is unknown:
* Surface wind perturbations in ocean analysis system

* Direct perturbations to SST to account for observation error (but not to
maximize growth)

* Lagged start dates

QO Seasonal to climate - Model error:

= Multiple models used (IPCC, EUROSIP)
= Stochastic Physics schemes

* Perturbations to physics tuning parameters (not IPCC AR4)
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However, model error and initial condition
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http://dx.doi.org/10.1175/BAMS-
D-13-00255.1



Inter-ensemble temperature “spread” — what is
the difference between the left and right?
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Left: 30 members single model = sampling uncertainty

Right: 38 CMIP5 models, one member per model
CESM-LE 2013-2046 CMIP5 2013-2046

Standard deviation in 34-year DJF
surface air temperature trends (K/34 years)

DN | I | | [ T
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Are the differences on the right due to model uncertainty or initial
condition sampling? And why is this important?
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Small ensembles may lead to overestimate of
uncertainty due to model error, but...
...are models “genetically” diverse enough?

Reading &1 975
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Climate model genealogy: Generation CMIPS and how we got there

Reto Knutti,' David Masson,”? and Andrew Gettelman'



Temperature projections to 2100

Global average surface temperature change
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The source of uncertainty depends how far ahead
ou look...

Fraction of uncertainty explained by
different sources as a function of lead time

Internal variability Hawkins and Sutton 2009
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ake home messages

» Forecast and climate models are based on
fundamental physics equations, which are solved
numerically on a set of grid boxes

» Processes that occur on smaller scales can not be
explicitly modelled, and thus are parametrized — an
uncertain process.

» Climate models and weather prediction models share
the same “core” features, but climate models must
add slower evolving components
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And Uncertainty...

* Due to:
— Natural variability, initial conditions
— Model uncertainty
— Forcing (emissions) uncertainties
* Large ensembles are required in an attempt to

understand sources of uncertainty in
predictions and projections
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