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Spatial Spread of Infectious Diseases

The distribution of populations across
space and the patterns of interaction
among groups influence how diseases
spread in space and time.



Spatial Spread of Infectious Diseases

........

Y, T L

P e =t
DEATH'S DISPENSARY,

OFIN O TEE FME GEATE, BY FEEMISIGY OF THE FAEISH

John Snow
(1854) tried to
understand the
origin of the

cho
epic

era
emic by

ana

yzing the

distribution of
cases In
London.



Spatial Spread of Infectious Diseases

Mapping the cases helped localize the
disease and identifying the pattern of water
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Spatial Spread of Infectious Diseases

Spatial spread of influenza for the 1918-1919 pandemic

Worldwide
Diffusion of
Influenza
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Spatial Spread of Infectious Diseases

Age distribution of influenza deaths for the
1918-1919 pandemic
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Spatial Spread of Infectious Diseases

Three pandemic waves: weekly combined influenza and
pneumonia mortality, United Kingdom, 1918-1919
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Spatial Spread of Infectious Diseases

Well-mixed population: each individual Is
equally exposed

Structured population: members of one
group are more likely to come into contact
with each other than with members of other
“distant” groups.



Spatial Spread of Infectious Diseases

Spatial structure:

o ... affects the speed of the Initial
epidemic spread

e ... IS necessary when local
Interactions or local environment are
iImportant

e ... Is Important for disease
persistence.



Spatial Spread of Infectious Diseases

Spatial heterogeneity can:

o .. lead to repeated reintroductions

e .. prevent extinction of the disease
e .. enhance persistence at a regional
level.

“Rescue” effects can appear If epidemics
In different locations do not occur
simultaneously (asynchrony).



Spatial Spread of Infectious Diseases

Spatial patterns in disease dynamics
can be generated by:

e Asynchrony
e Age distribution of populations
e Seasonally varying transmission rates.



Spatial Spread of Infectious Diseases

a) Initial population composition and mobility structure

Town A Town B
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Spatial Spread of Infectious Diseases

b) Composition of the towns as a consequence of the mobility
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Populationbased approaches

* Metapopulation or patch models




Populationbased approaches

* Metapopulation or patch models

e Spatially continuous models

Landscapes



MetapopulatiorModels

Population Is distributed into N spatially
discrete groups linked to one another In

some specified way.




MetapopulatiorModels

Individuals in a group are assumed well-
mixed




MetapopulatiorModels

Coupling terms represent how infection
Spreads among groups



MetapopulatiorModels

Spatial scale Is represented through
the choice of groups

llerarchical transmission can be
Introduced




MetapopulatiorModels

Spatial scale Is represented through
the choice of groups

llerarchical transmission can be
Introduced




MetapopulatiorModels

City — Town - Village




MetapopulatiorModels

Main urban area /‘




MetapopulatiorModels

Sister towns




MetapopulatiorModels

For each subpopulation | the SIR model can
be formulated as:

dS

—'=pN.—-AS —u
dt i 'V |S MS
dl.

' =AS -vl —ul.

where A. includes the transmission within
population | and the coupling to other
subpopulations.



MetapopulatiorModels

The force of infection A can be expressed

as:
| i ]
j N; &~
- p; measures the relative strength of

transmission from population | to
population I.



MetapopulatiorModels

Plants or sessile hosts: spatial transmission
IS wind- or vector-borne

A ::Bizpijlj

Here 0; Is a decreasing function of the
distance between subpopulations j and |I.



MetapopulatiorModels

Plants or sessile hosts: spatial transmission
IS wind- or vector-borne.

Rcl) for infectious individuals in population | as
the expected number of secondary cases
generated in all subpopulations:

Transmission
R(i):Z'BJ"OJi[ fromi to |
A




MetapopulatiorModels

Plants or sessile hosts: spatial transmission
IS wind- or vector-borne.

. ﬁ.p.i
R = i~
2y
Dividing population j into two, k and |, implies
that —
Pii = P+ P
So R(') does not change.




MetapopulatiorModels

Plants or sessile hosts: spatial transmission
IS wind- or vector-borne.

| _ B, P;
AR

However, adding more subpopulations
(more hosts) increases R,

More pathogens can be intercepted by
additional hosts.



MetapopulatiorModels

Individuals migrate: the SIR-type
model can be expressed as:

%_?:Vi -GSl —4S +ij8j —ijiS

d. _
E‘:Biali _yili _luili +;mj|j _Zj:mjili

where Imy; is the migration rate from J to |



MetapopulatiorModels

Individuals migrate:

Itis frequently assumed that M;=Mm; however
this is not always true.

When G =4 and y =y L,
andN; =N, fori #

then Independent
Ro — 'BN of the coupling

y+ U strength




MetapopulatiorModels

Commuters: live in population | but travel
occasionally to population |

Sj , Iij , Nij represent the number of
susceptibles, infected and total hosts

currently in population | that live in
population |.



MetapopulatiorModels

Commuters: live in population | but travel
occasionally to population |

dNI =Vi _Z, i Z ~HN

N,- _
" Vi +l1i N =1 Ny =24 N




MetapopulatiorModels

Commuters: live in population | but travel
occasionally to population |

ds, 2
%:Vﬂ _IBSIZ N _Z|J|S| ZJ i - .S,
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MetapopulatiorModels

Commuters: live in population | but travel
occasionally to population |

dy oo 20l
dt ﬁSI Z N ylu Z |Ij I Z] ji /J“ I
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MetapopulatiorModels
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MetapopulatiorModels

Commuters: live in population | but travel
occasionally to population |

This gives a total of 3n? equations for N
populations.



MetapopulatiorModels

Commuter aproximations: simplify the
model.

Keeling and Rohani take 2 populations of
equal size and epidemiological
characteristics and assume that commuter

movements are very rapid.
_ Coupling
In this case: / parameter

A=B(@A-p), +0))



MetapopulatiorModels

Commuter aproximations:

If g Is the proportion of time that individuals
spend in the other population, then

_ J _ ji
g
M+l




MetapopulatiorModels

Commuter aproximations:

The coupling parameter O can be defined

i P =2q(1-0q)
because when either the susceptibles of
one population or the infected of the other
move (not both), there Is a transfer of
pathogen.

S PI1s maximized when ¢=0.5



MetapopulatiorModels

Rapid commuter movements of individuals
from their home subpopulation to another
subpopulation and back are important in the
spread of human diseases.

Hence, models need to include both the
current location and the home location of
Individuals. When movements are of short
duration this can be aproximated by simple
coupling.

Here R, Is independent of the coupling



MetapopulatiorModels

Coupling and Synchrony

The correlation between the disease dynamics
In two subpopulation is generally a sigmoidal
function of the interaction between them

Stochastic models for 2 populations
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MetapopulatiorModels

Coupling and Synchrony

The scalings between the interaction strengths
are aprox.

m I

|
~ ~ 2— 1—— ~
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MetapopulatiorModels

Extinction and Rescue Effects

Smaller populations will have fewer
Infected individuals and thus be more prone
to stochastic effects.

Extinction risk decreases exponentially as
population size increases.



MetapopulatiorModels

Extinction and Rescue Effects

In a metapopulation subdivided in many small
Isolated populations with no interaction or
coupling, the disease in each subpopulation
will be driven extinct, leading to a swifter
global eradication than if coupling Is strong
and the metapopulation is well mixed.



MetapopulatiorModels

Extinction and Rescue Effects

Suppose N is population size and rate of
extinction is proportional to exp(-&N).

Then:

Timetoextinction=—-=ke



MetapopulatiorModels

Extinction and Rescue Effects

Suppose N is divided into n small
noninteracting subpopulations size, then
for all populations to become disease-free:

Timeto extinction= —+ —t.
_eN
ne " (n-lDe " e "

<ke " (1+log(n))



MetapopulatiorModels

Extinction and Rescue Effects

When subpopulations interact, the infection
can be reintroduced into a disease-free
subpopulation.

Long-term persistence can be observed
because infections is constantly reinvading.

> > Rescue events



MetapopulatiorModels

Extinction and Rescue Effects

Rescue events are maximized when:
High rate of infection <X Strong coupling

Asynchrony <X Weak coupling

Persistence can be maximized at
Intermediate levels of coupling



MetapopulatiorModels

When interaction between the subpopulations
IS Included, the level of local and global
extinctions Is an emergent property of the
dynamics and cannot be easily predicted
from the disease parameters

It Is necessary to understand how population
structure, disease dynamics, population size,
Infectious import rate, and coupling interact
to determine disease persistence.



MetapopulatiorModels

Vaccination  « Reduces prevalence of
infection

e Increases risk of extinction

 Reduces the effective
Interaction strength

> Less synchrony in the disease dynamics

S More effective rescue events



MetapopulatiorModels

Vaccination

Pulsed vaccination campaigns act to
synchronize epidemics in coupled populations
and may lead to an increase Iin global
extinction rates.

—— Timing of vaccination pulses?

» Frequent pulses limit the buildup of susceptibles

» Infrequent pulses have a greater synchronizing
action



MetapopulatiorModels

Vaccination
Two coupled populations with SIR-type infection.
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Lattice- or Grid-basedVodels

The spatial location of the hosts Is
considered important, but the population
cannot be partitioned into discrete
subpopulations

Individuals within a grid site are grouped
Into a subpopulation



Lattice- or Grid-basedVodels

Two-dimension square lattice

Higher dimensional lattices
can be used to replicate more
complex social structure.

Hexagonal grids have also
been used.



Lattice- or Grid-basedVodels

Commuter-like interactions

d_S_ - (1_Zj10ji)|i+szijlj ~
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Lattice- or Grid-basedVodels

Coupled lattice models show a wave-like
spread of infections across a
homogeneous landscape.

However, the do not capture the expected
Individual level behavior

The grid size must be chosen with extreme
care



Lattice- or Grid-basedVodels

Cellular Automata

A cell can have only a finite, usually small,
number of population states.

Each cell is usually either empty or occupied
by a susceptible, infectious or recovered
Individual. Interactions occur only with 4 or 8
neighboring lattice sites

Almost all cellular automata disease models
are stochastic.



Lattice- or Grid-basedVodels

Cellular Automata

Cellular automata disease models are
abtract models that do not incorporate
realistic human behavior.

They are abstract tools that can be used for
understanding the spatial dynamics of
transmission but are not predictive models



Lattice- or Grid-basedVodels

Power Law
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Lattice- or Grid-basedVodels
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