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Summary

As an emergent infectious disease outbreak unfolds, public health response is reliant on informa-
tion on key epidemiological quantities, such as transmission potential and serial interval. Increas-
ingly, transmission models fit to incidence data are used to estimate these parameters and guide
policy. Some widely-used modeling practices lead to potentially large errors in parameter estimates
and, consequently, errors in model-based forecasts. Even more worryingly, in many such situations,
confidence in parameter estimates and forecasts is itself far over-estimated, leading to the potential
for large errors that mask their own presence. Fortunately, straightforward and computationally
inexpensive alternatives exist that avoid these problems. Here, we first use a simulation study to
demonstrate potential pitfalls of the standard practice of fitting deterministic models to cumulative
incidence data. Second, we demonstrate an alternative based on stochastic models fit to raw data
from the 2014 West African Ebola virus disease outbreak. We show not only that bias is thereby
reduced, but that uncertainty in estimates and forecasts is better quantified and that, critically, lack
of model fit is more readily diagnosed.

Introduction

The success of model-based policy in the instances of bovine spongiform encephelopathy (Anderson et al.,
1996) and foot-and-mouth disease (Ferguson et al., 2001; Keeling et al., 2001) has increased expectations
that forecasts based on scientifically informed models of disease transmission are a necessary tool for
response to outbreaks of emerging infectious diseases. Increasingly, the expectation is that reliable fore-
casts will be available in real time. Recent examples in which model-based forecasts were produced within
weeks of the index case include severe acute respiratory syndrome (SARS; Lipsitch et al., 2003; Riley
et al., 2003), pandemic H1N1 influenza (Fraser et al., 2009), cholera in Haiti and Zimbabwe (Tuite et al.,
2011), Middle East respiratory syndrome (MERS; Breban et al., 2013), and lately, Ebola virus disease
(EBVD) in west Africa (Fisman et al., 2014). In the early stages of an emerging pathogen outbreak,
key unknowns include its transmission potential, the likely magnitude and timing of the epidemic peak,
total outbreak size, and the durations of the incubation and infectious phases. Many of these quantities
can be estimated using clinical and household transmission data, which are, by definition, rare in the
early stages of such an outbreak. Much interest therefore centers on estimates of these quantities from

1

ar
X

iv
:1

41
2.

09
68

v1
  [

q-
bi

o.
PE

] 
 2

 D
ec

 2
01

4



incidence reports that accumulate as the outbreak gathers pace. Such estimates are obtained by fitting
mathematical models of disease transmission to incidence data.

As is always the case in the practice of confronting models with data, decisions must be made as to the
structure of fitted models and the data to which they will be fit. Concerning the first, in view of the
urgency of policy demands and paucity of information, the simplest models are, quite reasonably, typically
the first to be employed. With even the simplest models, such as the classical susceptible-infected-
recovered (SIR) model, the choice of data to which the model is fit can have significant implications for
science and policy. Here, we explored these issues using a combination of inference on simulated data
and on actual data from the ongoing EBVD outbreak. We find that some of the standard choices of
model and data can lead to potentially serious errors. Moreover, regardless of the model choice, it is
important to bear in mind that all model-based conclusions hinge on the ability of the model to fit the
data. We demonstrate a straightforward alternative that allows model misspecification to be diagnosed
and forecast uncertainty to be properly quantified.

Deterministic models fit to cumulative incidence curves: a recipe
for error and overconfidence

An inexpensive and therefore common option is to formulate deterministic transmission models and
fit these to data using least squares or related methods. These approaches seek parameters for which
model trajectories pass as close to the data as possible. Because in such approaches the model itself is
deterministic, all discrepancies between model prediction and data are effectively ascribed to measurement
error. As for the data to be fit, it has been tempting to fit model trajectories to cumulative case counts.
The incompatibility of this choice with the assumptions of the statistical error model has been pointed
out previously (Grad et al., 2012; Ma et al., 2014; Towers et al., 2014). In particular, the validity of the
statistical estimation procedure hinges on the independence of sequential measurement errors, which is
clearly violated when the data are accumulated through time. To explore the impact of this violation on
inferences and projections, we performed a simulation study in which we generated data using a stochastic
model, then fit the corresponding deterministic model to both raw and cumulative incidence curves. We
generated 200 sets of simulated data for three different levels of measurement noise. For each data set, we
estimated model parameters, including transmission potential (as quantified by the basic reproduction
number, R0), reporting probability, and observation error. Full details of the data generation and fitting
procedures are given below, under Methods. The resulting parameter estimates are shown in Fig. 1.

Recognizing that quantification of uncertainty is prerequisite to reliable forecasting, we computed param-
eter estimate confidence intervals, and investigated their accuracy. Fig. 1A shows little evidence for bias
in estimates of R0 whether raw or cumulative incidence data are used. This result is likely non-generic:
in general, violation of the independent-error assumption will result in some degree of additional bias.
Fig. 1B is the corresponding plot of estimated overdispersion of measurement noise. Using the raw inci-
dence data, one recovers the true observation variability. When fitted to cumulative data, however, the
estimates display extreme bias: far less measurement noise is needed to explain the relatively smooth
cumulative incidence. The data are apparently in good agreement with the model. To quantify the
uncertainty in the parameter estimates, we examined the confidence intervals. The nominal 99% profile-
likelihood confidence interval widths for R0 are shown in Fig. 1C. When the model is fit to the simulated
data, increasing levels of measurement error lead to increased variance in the estimates of R0. However,
the confidence interval widths are far smaller when the cumulative data are used, superficially suggesting
a higher degree of precision. This apparent precision is an illusion however, as Fig. 1D shows. This

2



Figure 1: Results from simulation study fitting deterministic models to stochastically simulated data.
200 simulated data sets of length 39 wk were generated by the stochastic model described in the Methods
section at each of three levels of the measurement error overdispersion parameter, k. The deterministic
model was fit to both raw (blue) and accumulated (red) incidence data. (A) Estimates of R0. True value
used in generating the data is shown by the dashed line. (B) Estimates of k. (C) Widths of nominal 99%
profile likelihood confidence intervals (CI) for R0. (D) Actual coverage of the CI, i.e., probability that
the true value of R0 lay within the CI. Ideally, actual coverage would agree with nominal coverage (99%,
dashed line).
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figure plots the achieved coverage (probability that the true parameter value lies within the estimated
confidence interval) as a function of the magnitude of measurement error and the choice of data fitted.
Given that the nominal confidence level here is 99%, it is disturbing that the true coverage achieved is
closer to 25% when cumulative data are used.

When a deterministic model is fit to cumulative incidence data, the net result is a potentially substantially
over-optimistic estimate of precision, for three reasons. First, failure to account for the non-independence
of successive measurement errors leads to an under-estimate of parameter uncertainty (Fig. 1C). Second,
as seen in Fig. 1B, the variance of measurement noise will be substantially under-estimated. Finally,
because the model ignores environmental and demographic stochasticity, treating the unfolding outbreak
as a deterministic process, forecast uncertainty will grow unrealistically slowly with the forecast horizon.
We elaborate on the last point in the Discussion.

Stochastic models fit to raw incidence data: feasible and trans-
parent

Though stochastic models are a bit more complex (Keeling & Rohani, 2008), their inclusion of demo-
graphic and/or environmental stochastic processes allows for, on the one hand, better fits to the trends
and variability in outbreak data and, on the other, improved ability to diagnose lack of model fit (He
et al., 2010). We formulated a stochastic version of the SEIR model as a partially observed Markov pro-
cess and fit it to actual data from the ongoing West African EBVD outbreak. We estimated parameters
by maximum likelihood, using sequential Monte Carlo to compute the likelihood and iterated filtering
to maximize it over unknown parameters. See below, under Methods, for details. To tease apart the
consequences of failing to account for stochasticity from those of improperly fitting to cumulative data,
we fit the stochastic model both to actual incidence and to cumulative incidence data. In the latter case,
we made the standard, erroneous, assumption of independence of successive measurement errors.

Fig. 2 shows likelihood profiles over R0 for country-level data from Guinea, Liberia, and Sierra Leone.
We also wanted to explore potential biases associated with spatial aggregation of the data. Hence, we
fit our models to regional data, encompassing all reported cases from the three West African countries
just mentioned. The profile likelihoods show clearly that the additional parameters of the stochastic
model do not erase the identifiability of R0. As was the case with the deterministic model fits, little
bias in point estimates of R0 is evident when models are fit to raw vs. cumulative data. Secondly, and
also in line with the lessons of Fig. 1C, estimated confidence intervals are narrower when the cumulative
reports are used. The “true” parameters are, of course, unknown, but, as in the earlier example, this
higher precision is probably illusory. The somewhat, but not dramatically, larger confidence intervals
that come with adherence to the independent errors assumption (i.e., with the use of raw incidence data)
lead to a quite substantial increase in forecast uncertainty, as we shall see. Finally, the ease with which
the stochastic model was fit and likelihood profiles computed testifies to the fact that, in the case of
outbreaks of emerging infectious diseases, it is not particularly difficult or time-consuming to work with
stochastic models.

We took advantage of the stochastic model formulation to diagnose the fidelity of model to the data. To
do so, we simulated 10 realizations of the fitted model; the results are plotted in Fig. 3. While the overall
trends appear similar, the model simulations display greater variability at high frequencies than do the
data. To quantify this impression, we computed the correlation between cases at weeks t and t− 1 (i.e.,
the autocorrelation function at lag 1 wk, ACF(1)) for both model simulations and data. For Guinea,
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Figure 2: Likelihood profiles for R0 based on the stochastic model using raw and cumulative incidence
data. Each point represents the maximized log likelihood at each fixed value of R0 relative to overall
maximum. The maximum point of each profile is the maximum-likelihood estimate (MLE) of R0; the
curvature is proportional to estimated precision. While the (improper) use of cumulative data produces
relatively small errors in the MLE, it does produce the illusion of high precision. The procedure for
maximizing the likelihood is described under Methods, below.
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Figure 3: Model diagnostics. The time series plots show the data (blue) superimposed on 10 typical
simulations from the fitted model (grey). While the overall trend is captured by the model, the simulations
display more high-frequency (week-to-week) variability than does the data. The insets confirm this,
showing the autocorrelation function at lag 1 week (ACF(1)) in the data (blue) superimposed on the
distribution of ACF(1) in 500 simulations (grey). For Guinea, Liberia, and the aggregated regional data
(“West Africa”), the ACF(1) of the data lies in the extreme right tail of the distribution, as quantified
by the one-sided P -values shown.

Liberia, and the region as a whole (“West Africa”), the observed ACF(1) lies in the extreme right tail of
the model-simulated distribution, confirming our suspicion. For Sierra Leone, the disagreement between
fitted model and data is not as poor, at least as measured by this criterion. A similar picture emerges
from an analysis of the correlation structure of model residuals (see Methods). Further, the estimated
reporting probabilities of 0.01 in Guinea and 0.024 in Liberia (corresponding to, respectively, 96 and 41
unrecorded infections per notified case) are at odds with current field estimates of these quantities (Bellan
et al., 2014). Taken together, these diagnostics caution against the interpretation of the outbreaks in
Guinea and Liberia as simple instances of SEIR dynamcs and call for a degree of skepticism in inferences
and forecasts based on this model. On the other hand, the Sierra Leone epidemic does appear to better
conform to the SEIR assumptions, at least when the data are aggregated to the country level, and has
plausible parameter estimates.

Fig. 4 suggests why the present Ebola outbreak might not be adequately described by the well-mixed
dynamics of the SEIR model. The erratically fluctuating mosaic of localized hotspots suggests spatial
heterogeneity in transmission, at odds with the model’s assumption of mass action. As an aside, this
heterogeneity hints at control measures beyond the purview of the SEIR model. While the latter might
provide more or less sound guidance with respect to eventual overall magnitude of the outbreak and
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associated demands for hospital beds, treatment centers, future vaccine coverage, etc., the former points
to the potential efficacy of movement restrictions and spatial coordination of control measures.

Discussion

To summarize, we have here shown that the frequently adopted approach of fitting deterministic models
to cumulative incidence data can lead to biased estimation of some parameters and a dramatic under-
estimation of the uncertainty associated with model parameters. Unsurprisingly, forecasts based on such
approaches are similarly plagued by difficult-to-diagnose over-confidence as well as bias. We illustrate
this using the SEIR model—in its deterministic and stochastic incarnations—fit to data from the current
Sierra Leone EBVD outbreak. Emphatically, we do not here assert that the SEIR model adequately
captures those features of the Sierra Leone epidemic needed to make accurate forecasts. Indeed, we have
side-stepped important issues of identifiability of key parameters such as route-specific transmissibility
and effective infectious period. Rather, we have erred on the side of parsimony to better focus on the
issues we raise above in the context of quantities of immediate and obvious public health importance,
particularly the basic reproduction number and trajectory of the ongoing outbreak. Fig. 5 shows projected
incidence of EBVD in Sierra Leone under both the deterministic model fit to cumulative incidence data
(in red) and the stochastic model fit to raw incidence data (in blue). The shaded ribbons indicate
forecast uncertainty. In the deterministic case, the latter is due to the combined effects of estimation
error and measurement noise. As we showed above, the first contribution is unrealistically low because
serial autocorrelation among measurement errors have not been properly accounted for. The second
contribution is also under-estimated because of the smoothing effect of data accumulation. Finally,
because the model ignores all process noise, it unrealistically lacks dynamic growth of forecast uncertainty.
By contrast, the stochastic model fitted to the raw incidence data show much greater levels of uncertainty.
Because measurement errors have been properly accounted for, confidence intervals more accurately reflect
true uncertainty in model parameters. Because the model accounts for process noise, uncertainty expands
with the forecast horizon. Finally, we recall once again that, because the process noise terms can to some
degree compensate for model misspecification, it was possible to diagnose the latter, thus obtaining some
additional qualitative appreciation of the uncertainty due to this factor.

The increasingly high expectations placed on models as tools for public policy put an ever higher premium
on the reliability of model predictions. The relentless tradeoff between timeliness and reliability has with
technological advance shifted steadily in favor of more complex and realistic models. Because stochastic
models with greater realism, flexibility, and transparency can be routinely and straightforwardly fit
to outbreak data, there is less and less scope for older, less reliable, and more opaque methods. In
particular, the practices of fitting deterministic models and fitting models to cumulative case report data
are prejudicial to accuracy and can no longer be justified on pragmatic grounds. We propose the following
principles to guide modeling responses to current and future infectious disease outbreaks:

1. Models should be fit to raw, disaggregated data whenever possible and never to temporally accu-
mulated data.

2. When model assumptions, such as independence of errors, must be violated, careful checks for the
effects of such violations should be performed.

3. Forecasts based on deterministic models, being by nature incapable of accurately communicating
uncertainty should be avoided.
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Figure 4: Four consecutive days of Ebola incidence in the republics of Liberia and Sierra Leone. In the
outbreaks early stages, the spatio-temporal dynamics are highly erratic, contrary to the predictions of
the well-mixed model.
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Figure 5: Forecast uncertainty for the Sierra Leone EBVD outbreak as a function of the model used
and the data to which the model was fit. The red ribbon shows the median and 95% envelope of model
simulations for the deterministic SEIR model fit to cumulative case reports; the blue ribbon shows the
corresponding forecast envelope for the stochastic model fit to raw incidence data. The data used in
model fitting are shown using black triangles; out-of-fit data are shown by black circles.
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4. Stochastic models should be preferred to deterministic models in most circumstances because they
afford improved accounting for real variability and increased opportunity for quantifying uncertainty
and diagnosing model misspecification.

In closing, we worry that screening for lack of model fit is not a standard part of modeling protocol. At
best, this represents a missed opportunity, as discrepancies between the data and off-the-shelf models may
suggest effective control measures. At worst, this can lead to severely biased estimates and, worryingly,
overly confident conclusions. Fortunately, effective techniques exist by which such errors can be diagnosed
and avoided, even in circumstances demanding great expedition.

Methods

Data

Weekly case reports in Guinea, Liberia, and Sierra Leone were digitized from the WHO situation report
dated from 1 October 2014 1 (Fig. 3). To compare our predictions to those of previous reports (Gomes
et al., 2014), we also aggregated those data to form a regional epidemic curve for “West Africa”. In
Guinea, this outbreak was taken to have started in the week ending 5 January 2014 and in Sierra Leone
in that ending 8 June 2014. In Liberia, the outbreak was notified to WHO on 31 March 20142, but few
cases were reported until June; therefore, the week ending 1 June was deemed the start of the Liberian
outbreak for simulation purposes. The data in Fig. 4 was downloaded from the repository maintained by
C. M. Rivers3 and ultimately derived from reports by the health ministries of the republics of Guinea,
Sierra Leone, and Liberia.

Model formulation

The models used were variants on the basic SEIR model model, using the method of stages to allow for
a more realistic (Gamma) distribution of the incubation period (Lloyd, 2001; Wearing et al., 2005). The
equations of the deterministic variant are:

dS

dt
= −R0γSI

N
dE1

dt
=
R0γSI

N
−mαE1

dEi

dt
= mα(Ei−1 − Ei), i = 2, . . . ,m

dI

dt
= mαEm − γI

dR

dt
= γI

1http://www.who.int/csr/disease/ebola/situation-reports/en/
2http://www.afro.who.int/en/clusters-a-programmes/dpc/epidemic-a-pandemic-alert-and-response/

outbreak-news/4072-ebola-virus-disease-liberia.html
3https://github.com/cmrivers/ebola
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Here, R0 represents the basic reproduction number; 1/α, the average incubation period; m, the shape pa-
rameter for the incubation period distribution; 1/γ, the average infectious period; and N , the population
size, assumed constant (Table S1).

S E1,,m I R

R0γSI
N αE γI

Ct = ∆E→I(t−∆t, t)

Rt ∼ NB(ρCt, 1/k)

Figure 6: Schematic diagram of the transmission models used. NB = negative binomial distribution.
∆E→I(t−∆t, t) = number of transitions from latent to infectious class (E to I) occurring between times
t−∆t and t.

The stochastic variant was implemented as a continuous-time Markov process approximated via a multi-
nomial modification of the τ -leap algorithm (He et al., 2010) with a fixed time step ∆t = 10−2 wk.

To complete the model specification, we model the observation process. Between times t−∆t and t, where
∆t represents the reporting period, we write Ct = ∆NE→I(t − ∆t, t) for the complete number of new
infections during that time period. When we are fitting to cumulative case counts, we change the definition
accordingly to Ct = ∆NE→I(0, t). When using either type of data, we modeled the corresponding case
report, Rt, as a negative binomial: Rt ∼ NB(ρCt, 1/k) (i.e., E(Rt) = ρCt, V(Rt) = ρCt + kρ2C2

t ), where
ρ is the reporting probability and k the reporting overdispersion.

Descriptions of the methods used in the simulation study and in the model-based inferences drawn from
actual data are given in the Appendix.
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Appendix A. Simulation study

To demonstrate the differences between fitting to raw incidence vs. cumulative incidence data, we per-
formed a simulation study in which we fit the deterministic model variant to both types of data at three
different levels of observation overdispersion: k ∈ {0, 0.2, 0.5}. For each overdispersion treatment, 200
simulated 39-week time series were generated from the stochastic model variant. The basic reproduction
number was set to R0 = 1.4; the incubation and infectious periods were fixed as in Table S1; the assumed
population size was taken to be that of the Republic of Guinea. We assumed a reporting probability of
ρ = 0.2 and that, at outbreak initiation, 10 individuals were infected. This set of parameter values yields
a sample mean simulation visually comparable to the WHO data from Guinea, which display initally
slow growth in the number of cases and later acceleration.

For each simulated data set, we estimated the basic reproduction number, R0, the reporting probabil-
ity, ρ, the negative binomial overdispersion parameter, k, and the initial conditions. All other model
parameters were fixed at their true values. Parameter estimation was accomplished using the trajectory
matching algorithm (traj.match) from the R package pomp (King et al., 2010). To maximize the chance
of locating the global optimum, the trajectory matching runs were initialized on a latin hypersquare
(Sobol’) design of 104 points. We used the best fits from this initial run as starting points for additional
rounds of optimization to obtain profile likelihoods over R0, ρ, and k. From these likelihood profiles, we
obtained maximum likelihood point estimates and likelihood-ratio confidence intervals. The full process
of obtaining likelihood profiles on model parameters by trajectory matching took approximately 1 cpu hr
per simulation.

A second simulation study was performed, in which the deterministic variant of the model was fit to
cumulative incidence data by least squares. This common procedure assumes that the measurement
error are independent and identically normally distributed. Results of this exercise are shown in Fig. S1
in a form comparable to that of Fig. 1. As in the results shown in the main text, confidence interval
widths are erroneously under-estimated with the result that achieved coverage is far smaller than its
nominal value.
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Figure S1: Results from simulation study fitting the deterministic model to cumulative incidence data
using the method of least squares. The model was fit to both raw (blue) and accumulated (red) simulated
incidence data. The same 200 simulated data sets of length 39 wk used in Fig. 1 were used here. (A)
Estimates of R0. True value used in generating the data is shown by the dashed line. (B) Estimates
of reporting probability, ρ. The dashed line shows the value used to generate the data. (C) Widths
of nominal 99% profile likelihood confidence intervals (CI) for R0. (D) Actual coverage of the CI, i.e.,
probability that the true value of R0 lay within the CI. Ideally, actual coverage would agree with nominal
coverage (99%, dashed line).
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Appendix B. Model-based inference

Trajectory matching

Model parameters were initially estimated using trajectory matching. As in the simulation study, we
fitted R0, ρ, k and the initial conditions. All other model parameters were fixed at the known values
given in Table S1. The trajectory matching runs were initialized on a Sobol design of 105 points. We
used the best fits from this initial run to then estimate good starting points in deriving profiles over R0,
ρ and k. The profile over ρ is relatively flat for ρ ∈ (0, 1), as it trades off with the initial conditions.

Symbol Meaning Value Citation
R0 Basic reproduction number Estimated
1/α Average incubation period 11.4 da WHO Ebola Response

Team (2014)
m Incubation period shape pa-

rameter
3 WHO Ebola Response

Team (2014)
1/γ Average infectious period 7 da WHO Ebola Response

Team (2014)
ρ Reporting probability Estimated
k Reporting overdispersion Estimated
N Population size Guinea: 10.6M

Liberia: 4.1M
Sierra Leone: 6.2M

Table S1: Model parameters, with their interpretations, and their assumed values (parameters estimated
from incidence data are so indicated) together with the source of evidence for the assumption.

Iterated filtering

Model parameters were estimated using the Iterated Filtering algorithm (IF) (Ionides et al., 2011, 2006),
implemented as mif in the R package pomp (King et al., 2010). For each country, 500 points were
generated using a Sobol design and used as starting values for the IF runs (algorithmic parameters: 60
iterations, 2 × 103 particles, hyperbolic cooling with cooling fraction of 0.1, random walk standard de-
viation, 0.02 for all parameters). For the parameters estimated in each IF run, the log-likelihood was
computed as the log of the mean likelihoods of 10 replicate filters, each with 5× 103 particles. Approx-
imate confidence intervals were then computed using the profile log-likelihood (Raue et al., 2009). The
parameter being profiled was fixed at different values on a predefined grid, and the likelihood maximized
over the remaining parameters. To assess Monte-Carlo error in estimation, 20 IF runs were performed
from each starting point; the profile log-likelihood was computed as the maximum log-likelihood over
these 20 replicates. Computing each of the profile likelihoods in Fig. 2 using iterated filtering took
approximately 400 cpu hr of computation, accomplished in roughly 4 hr on a 100 cpu computing cluster.
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Parameter Guinea Liberia Sierra Leone West Africa
R0 1.22 (1.15–1.29) 1.95 (1.66–2.17) 1.33 (1.21–1.45) 1.48 (1.42–1.54)
ρ 0.01 (0.01–0.07) 0.02 (0.01–0.26) 0.17 (0.11–0.51) 0.004 (0.001–0.015)
k 0.39 0.22 0.07 0.19

Table S2: Parameter estimates. MLE point estimates with nominal 95% confidence intervals are shown.

Additional diagnostics

Fig. S2 shows a comparison of various summary statistics (“probes”) computed both on the data and on
model simulations.
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Figure S2: Additional summary statistics, or probes, computed on both stochastic model simulations
and the data. Probes include standard deviation (SD), 90th percentile, the autocorrelation at lags 1, 2,
and 3 wk (ACF), and the exponential growth rate as obtained by log-linear regression (TREND).
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