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ABSTRACT: We present a susceptibles-exposed-infectives (SEI) model
to analyze the effects of seasonality on epidemics, mainly of rabies,
in a wide range of wildlife species. Model parameters are cast as
simple allometric functions of host body size. Via nonlinear analysis,
we investigate the dynamical behavior of the disease for different
levels of seasonality in the transmission rate and for different values
of the pathogen basic reproduction number (R,) over a broad range
of body sizes. While the unforced SEI model exhibits long-term
epizootic cycles only for large values of R, the seasonal model exhibits
multiyear periodicity for small values of R,. The oscillation period
predicted by the seasonal model is consistent with those observed in
the field for different host species. These conclusions are not affected
by alternative assumptions for the shape of seasonality or for the
parameters that exhibit seasonal variations. However, the introduc-
tion of host immunity (which occurs for rabies in some species and
is typical of many other wildlife diseases) significantly modifies the
epidemic dynamics; in this case, multiyear cycling requires a large
level of seasonal forcing. Our analysis suggests that the explicit in-
clusion of periodic forcing in models of wildlife disease may be crucial
to correctly describe the epidemics of wildlife that live in strongly
seasonal environments.
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Seasonal forcing can have a dramatic impact on the dy-
namics of ecological and epidemiological nonlinear sys-
tems (Olsen et al. 1988; Hanski et al. 1993; Keeling et al.
2001). Realistic models of disease dynamics must un-
doubtedly account for the influence of seasonally varying
exogenous factors (Olsen and Schaffer 1990; Greenman et
al. 2004; Koelle et al. 2005b; Altizer et al. 2006). In fact,
seasonal variations in host birth rate, social aggregation,
and resource availability are central ecological features in
all temperate and in many tropical habitats (Aron and
Schwartz 1984; Altizer et al. 2006). Usually, wildlife birth
rates peak in spring (e.g., see Bingham and Purchase 2002),
while intraspecific competition increases in winter, when
resources become scarce. Epidemiological parameters may
also exhibit a seasonal trend; in particular, contact and
transmission rates are inherently linked to animal mobility
and social behavior. For example, the transmission of ra-
bies among African black-backed jackals (Canis mesome-
las) is facilitated by the dry season, when they increase
their home range because of the scarcity of water
(McKenzie 1993). Among European red foxes (Vulpes vul-
pes), the transmission coefficient of rabies increases with
their mobility during the mating season and decreases
when parents become more sedentary while they raise their
offspring (Pastoret and Brochier 1999).

The effect of seasonality on host-parasite dynamics has
received increasing attention in the past 20 years, especially
in human diseases (Hethcote and York 1984; Bolker and
Grenfell 1993; Grenfell et al. 1995; Kamo and Sasaki 2002;
Greenman et al. 2004). Several studies have shown that
seasonality in transmission rates can enormously compli-
cate the population dynamics of host-parasite interaction
and produce a variety of model behaviors. Technically, this
corresponds to a sequence of model bifurcations that cycles
with multiyear periods or even chaos for high levels of
seasonal variation (Schwartz and Smith 1983; Aron and
Schwartz 1984; Schwartz 1985; Keeling and Grenfell 1997;
Keeling et al. 2001; Rohani et al. 2002; Greenman et al.
2004). This has recently led to new questions regarding



the adaptive dynamics of pathogens in a seasonal envi-
ronment (Kamo and Sasaki 2005; Koelle et al. 20054) and
the maintenance of pathogen diversity (McKenzie et al.
2001).

The importance of seasonality in population ecology has
long been recognized (Nisbet and Gurney 1982), but the
role of seasonal fluctuations in wildlife diseases has at-
tracted less attention than in human diseases, probably
because of the general lack of extensive historical records
of wildlife disease. As notable exceptions, Ruxton (1996)
analyzed a susceptible, exposed but not infectious yet, in-
fective, and recovered (SEIR) model of bovine tuberculosis
in a badger host population capable of Malthusian growth
and showed that seasonality in model parameters is unable
to sustain epidemic cycles, and Briggs and Godfray (1996)
studied the interaction between an insect and its pathogen
in a seasonal environment when host dynamics are char-
acterized by discrete generations.

On the other hand, the population dynamics of a free-
living host are generally affected by intraspecific compe-
tition for resources or space. Although Ireland et al. (2004)
have recently analyzed the complex dynamics of a sea-
sonally forced susceptibles-infectives-recovered (SIR)
model of a self-regulating population, a systematic analysis
of a seasonally forced susceptibles-exposed-infectives (SEI)
model of a self-regulating wildlife host has not been pre-
sented yet. The SIR framework does not account for the
time delay between the onset of infection and the actual
infectivity of the host. This delay is particularly important
for understanding the dynamics of disease in wildlife, as
pointed out by Anderson et al. (1981) in their seminal SEI
model of rabies. In fact, if the latent period (the average
time spent in the infected but not infectious class) is suf-
ficiently long, the population dynamics of the nonseasonal
host can be characterized by sustained oscillations (Swart
1989; Pugliese 1991). The interplay between the intrinsic
tendency of these nonlinear epidemiological systems to
oscillate with seasonal fluctuations of host fertility or trans-
mission rate can elicit complex dynamical patterns (Kee-
ling et al. 2001). This was anticipated by Kuznetsov and
Piccardi (1994), who derived the general bifurcation di-
agram of a seasonally forced SEIR model of human dis-
eases in a constant population.

The aim of this article is to thoroughly investigate the
dynamics of seasonally forced SEI(R) models of lethal dis-
eases in wildlife. We use an SEI model of rabies as a ref-
erence example because rabies is one of the most signif-
icant zoonoses worldwide and can affect a wide range of
host species. Rabies dynamics can be well described by
SEI models: the disease has a considerable latent period
(usually longer than the infectious one) and assures low
survival probability to the full-blown infected (absence of
recovery class). On the other hand, in some species (such
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as raccoons and skunks), individuals exposed to rabies can
develop natural immunity without developing the full-
blown disease (i.e., without becoming infected). Moreover,
the key features of its dynamics can be captured in a quite
general mathematical framework that applies to other in-
fectious diseases. As a consequence, the rabies SEI model
provides important general insights into the dynamical
properties of a wide range of zoonoses.

Rabies is a generalist and can infect hosts ranging in
mass from a few grams (e.g., mice) to several hundreds
of kilograms (e.g., bears). Thus, we perform the epide-
miological analysis casting host demographic rates as al-
lometric functions of host body size. In fact, larger hosts
are expected to have longer life expectancies, smaller re-
productive rates, slower dynamics, and sparser population
densities compared with those of smaller host species (Pe-
ters 1983). Moreover, Bolzoni et al. (2008) showed that
oscillations arising in the autonomous (i.e., nonseasonal)
SEI model of a rabid host scale allometrically with body
size. In particular, this work showed that hosts with larger
body size exhibit longer periods of oscillation. Because
fluctuations in the fertility and/or mortality of the host as
well as in the transmission rate typically have a 1-year
period, the interplay of seasonal forcing with the intrinsic
oscillation frequency due to host-pathogen interaction
may be different for hosts with different body sizes. Spe-
cifically, we assess here whether the introduction of sea-
sonality can explain the observed patterns of multiyear
periodicity in rabies epidemics. Also, we extend this anal-
ysis to diseases other than rabies by investigating the dy-
namics of a diseased host that is able to develop some
level of immune response. Although this may be unlikely
for rabies, it does often occur in other viral wildlife diseases
such as distemper, brucellosis, and hog cholera.

This article is organized as follows: in the next section,
we introduce the allometrically scaled SEI epidemic model
originally developed by Anderson et al. (1981) and thor-
oughly described by Bolzoni et al. (2008). Then, we in-
troduce seasonality, and using bifurcation analysis, we in-
vestigate the effect of different levels of seasonality in the
transmission coefficient on the population dynamics of
the infected host for species characterized by a wide range
of body sizes. To verify the robustness of the results, we
also derive the bifurcation diagrams when host birth rate
(instead of transmission coefficient) exhibits seasonal fluc-
tuations, and we investigate the effect of different shapes
of seasonal forcing functions. We then modify the model
to include an immune class and analyze the population
dynamics under this new assumption.

The Seasonal SEI Model

The first SEI model of rabies was derived in the seminal
article by Anderson et al. (1981) to describe the spread of
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this infectious disease in European foxes and assess the
efficacy of culling and vaccination for disease control and
eradication. Some years later, Coyne et al. (1989) presented
a modified version of the epidemiological model so as to
account also for the development of acquired immunity
in raccoons. In this work, we will use mainly the original
version of Anderson et al.’s (1981) model (referred to as
model [1]), which does not include an immune class,
namely,

ds
E =»S— (n+yN)S— BS], (1a)
dE
E =BSI— (6 + u+ yN)E (1b)
dl
o 0E— (a+ p+yN)L (1¢)

Here ¢ is time (years); S, E, and I are the densities (no.
individuals km™?) of susceptible, infected but not infec-
tious (exposed), and infective individuals in the popula-
tion, respectively; N is the total population density, that
is, N= S+ E+ L », u, and 7 are the ecological param-
eters of the intrinsic birth rate, the intrinsic death rate,
and the intraspecific competition coefficient, respectively;
o and « are the epidemiological parameters of the latency
rate (1/o being the mean latency period) and disease-
induced mortality, respectively; and 3 is the transmission
coefficient. We refer to existing literature for a compre-
hensive stability analysis of the unforced SEI model (Swart
1989; Pugliese 1991; Gao et al. 1995).

Direct measurements of the transmission coefficient are
difficult to obtain without extensive field data. In contrast,
estimates of basic host demography and epidemiology are
available for many species. Several comparative studies
show that they scale with species weight as simple allo-
metric relationships. Therefore, the aims of our analyses
are to characterize the epidemiological regimes of rabies
for a broad range of transmission coefficients and to pre-
dict threshold values of 3 for species encompassing a wide
range of body sizes.

According to Silva and Downing (1995) and Cable et
al. (2007) and following De Leo and Dobson (1996), we
cast the demographic and epidemiological parameters of
the model as allometric functions of mean host body size

w (kg):

v = 1.ow *%, (2a)

p o= 04w, (2b)

K =2"F _ 162w, 20)
v

o = 20w %, (2d)

a = 100w *%, (2e)

where K is carrying capacity (no. individuals km™?) and
the rates, as described previously, are given per year. Even
though this model is quite simple, it is able to capture the
main features of the population dynamics of rabies. A
detailed analysis of the dynamics of the nonseasonal al-
lometric SEI model of a lethal disease has been presented
by Bolzoni et al. (2008). Our previous work shows that
the threshold value of the transmission coefficient for the
disease to establish in the population scales allometrically
with host body size (exponent = 0.45), as well as the
threshold value for limit cycles to occur. In contrast, the
threshold value of the basic reproduction number R, =
of3K/(o + v)(o + v) for sustained oscillations to occur is
independent of host size.

To analyze the effect of seasonality on the basic SEI
model, we assume that the transmission rate can be ex-
pressed as a sinusoidal function of time ¢ (Dietz 1976),

B®) = B[l + &sin 2m1)], ®)

where (3, is the mean transmission coefficient (or baseline
of transmission) and 0 < & < 1 is the degree of seasonality
(or strength of the seasonal forcing). The periodically
forced model is thus obtained by substituting equation (3)
into model (1) with the allometric relationships (2). The
model behavior has been studied through nonlinear anal-
ysis (Kuznetsov 1995). We find those values of the param-
eters at which the model regimes undergo qualitative
changes (so-called bifurcations). Typically, there can be a
switch from equilibria to cycles or from single to multiple
attractors. Bifurcation analysis is performed by using nu-
merical continuation methods implemented in the spe-
cialized software LOCBIF (Khibnik et al. 1993) and CON-
TENT (Kuznetsov 1998). The dynamical features of the
seasonal model are illustrated in “Results.”

Results

Because finding empirical estimates of transmission co-
efficients in wildlife diseases is difficult (see, e.g., Begon
et al. 1999), it is essential to understand how the behavior
of the SEI model changes under a wide range of values
assigned to parameters € and 3, that fully describe disease
transmission in a seasonal environment. Figure 1 shows
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Figure 1: Bifurcation diagram of the seasonally forced SEI model in -
B, parameter space for a host with body size w = 1 kg. The shaded area
represents the parameter combinations for which model (1) displays
multiyear epizootic cycles (with return time of 3 years between out-
breaks). The population dynamics corresponding to the points a—e of
the parameter space along the dash-dotted line are illustrated in figure
2. Labels are defined as follows (see app. A in the online edition of the
American Naturalist): TC, transcritical bifurcation point; H, Hopf point;
tc, transcritical bifurcation; h(i), Neimark-Sacker bifurcations of cycle
period 3 f(i), flip (period doubling) bifurcations of cycle period # T3,
3-year epizootic cycle point; #3), tangent bifurcations.

the bifurcation diagram of the periodically forced SEI
model in &-f, space for a host with body mass of 1 kg.
We show only bifurcation curves corresponding to at-
tractors (stable equilibria and cycles) because this simpli-
fies the interpretation of the diagram.

Along the vertical axis (¢ = 0), it is possible to identify,
for increasing values of the baseline of transmission 3,
the simple bifurcation sequence of the nonseasonal model.
For 3,<TC (where TC is the transcritical bifurcation
point), the basic reproduction number R, is <1 (rabies
cannot establish in the host population, and the system
settles to its natural carrying capacity, a disease-free equi-
librium). At TC, there is a so-called transcritical bifur-
cation characterized by R, = 1, the threshold for pathogen
establishment. For TC < 8, < H (where H is the Hopf
point), the pathogen can invade its host population, which
eventually reaches a stable enzootic equilibrium. For
B, = H, the system undergoes a so-called Hopf bifurca-
tion. For B, > H, the disease model exhibits stable epi-
zootic cycles; the period of oscillation is larger than 2 years
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and increases for increasing values of the transmission
coefficient.

The introduction of seasonality (¢ > 0) does not affect
the threshold for the disease-free equilibrium, yet it re-
markably changes the model behavior for 8, > TC. Quite
obviously, a small degree of seasonality transforms the
enzootic equilibrium of the nonseasonal, unforced model
into an epizootic 1-year cycle (see fig. 2A). However, stron-

A

Infectives
o

0 12
Time t [years]

Figure 2: Time course of the infective hosts I(#) in the attractors of the
periodically forced SEI model. A—E are obtained by increasing the value
of seasonality & along the dash-dotted line in figure 1 (a—e). In B and
C, there are two coexisting attractors (black and gray curves).
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ger seasonal fluctuations of the transmission coefficient
B(t) can give rise to more complex dynamic behaviors
corresponding to the bifurcation curve f(1) and those re-
gimes in the &-G, plane that are mainly rooted in point
T3 (the 3-year epizootic cycle point) on the 3, axis.
Hereafter we report only major epidemiological results
linked to the bifurcation analysis of model (1) and refer
to appendix A in the online edition of the American Nat-
uralist for a detailed description of figure 1. Along the
curve f(1), the 1-year cycle undergoes a so-called flip bi-
furcation. It changes to a period-2 cycle, a phenomenon
called period doubling (see the time trajectory of fig. 2E,
corresponding to e in fig. 1). More complicated is the
explanation of the bifurcation curves rooted in T3. This
is not a bifurcation point in the nonseasonal model
(g = 0); it is the value of the transmission coefficient cor-
responding to an epizootic 3-year cycle. According to the
classical bifurcation theory of periodically forced models
(Kuznetsov 1995), T3 is the root of a pair of so-called
tangent bifurcation curves (#(3), and #(3), in fig. 1) that
identify a region in the parameter space &-f3, in which
population dynamics can resonate with the seasonal forc-
ing function, a phenomenon called frequency locking. This
gives rise to multiyear cycles with periods that are multiples
of 3 years. As a consequence, within this region, two at-
tractors coexist (fig. 1, shaded area): the first one corre-
sponds to the small period-1 epizootic cycle generated by
the seasonal forcing function for 3, > TC (see the black
time trajectory in fig. 2B, corresponding to b in fig. 1).
The second attractor is the multiyear cycle due to fre-
quency locking. It is characterized by an outbreak occur-
ring every 3 years, followed by a long interepidemic phase.
For sufficiently small values of seasonality, the multiyear
attractor is a period-3 epizootic cycle (see the gray time
trajectory in fig. 2B). For increasing levels of seasonality,
along the boundary f(3) of figure 1, the period-3 cycle
undergoes a flip bifurcation and is transformed into a
period-6 cycle. The period-6 epizootic cycle is also char-
acterized by disease outbreaks every 3 years and coexists
with a period-1 epizootic cycle (see fig. 2C, corresponding
to cin fig. 1). A further increase of the level of seasonality
produces a cascade of period-doubling bifurcations (f(6),
f(12), ..., f(ee)) that occurs close to f(3). Along f(), the
multiyear cycle bifurcates into chaos, but numerical sim-
ulations from several initial conditions have shown that
the basin of attraction of the chaotic attractor is too small
to have any ecological and epidemiological significance.
As a consequence, population dynamics basically converge
toward attractors characterized by disease outbreaks every
year (see fig. 2D, 2E, corresponding to d and e in fig. 1).
According to the bifurcation theory for seasonally forced
models, along the vertical axis (¢ = 0), there exist infinite
points T4, T5, ..., of frequency locking corresponding to

cycles of period 4, 5, ..., in which bifurcation curves sim-
ilar to those originated in point T3 are rooted. We have
omitted these curves in figure 1 because of their decreased
ecological significance. In general, periodic solutions with
large oscillation periods have very small basins of attrac-
tion (Schwartz 1985), and the state of the system in the
presence of environmental noise is very likely to converge
toward attractors with smaller oscillation periods (Green-
man et al. 2004). In our case, the system converges to
either the small, smooth, period-1 cycle or the cycles char-
acterized by an outbreak occurring every 3 years.

Figure 3 provides a synoptic view of the dynamic be-
havior of host species characterized by three different body
sizes: 1, 5, and 10 kg. To facilitate the comparative analysis,
we have rescaled the vertical axis as a function of the
average basic reproduction number because R, is propor-
tional to the mean transmission coefficient (,.

The bifurcation diagrams show that hosts with small
body size (and large birth and death rates according to
the allometric relationships) may exhibit dynamic regimes
more complex than those of hosts with large body size
(and small birth and death rates). As shown in figure 3B,
3G, the cascade of flip bifurcations involving period-1 cy-
cles is not present in hosts of 5 and 10 kg. Moreover,
multiyear cycles of larger hosts (feasible in shaded areas
of fig. 3B, 3C) have larger periods (4 years) than cycles of
1-kg hosts. As a consequence, hosts with larger body size
exhibit a longer interepidemic phase than hosts with
smaller body size. In addition, hosts with large body size
can exhibit multiyear epizootic cycles only for values of
the basic reproduction number R, larger than those of
hosts with small body size. Accordingly, for R, values rang-
ing between 2 and 3, only small, not large, species can
exhibit multiyear periodicity.

Numerical simulations of the seasonal SEI model dy-
namics, starting from different initial conditions, show that
in parameter regions in which multiple attractors coexist
(shaded areas in figs. 1, 3), the attractor with the lowest
frequency-locking period (3 years for hosts of 1 kg, 4 years
for hosts of 5 and 10 kg) has the largest basin of attraction.
In the case of b in figure 1, for a host of 1 kg, simulations
starting from initial conditions chosen in the range
0.75K< S, < K and 0 < I, < 0.01K show that the basin of
the period-3 cycle is about twice as large as that of the
period-1 cycle (62% of the trajectories converge to a pe-
riod-3 cycle, 25% to a period-1 cycle, and 13% to epizootic
cycles with periods larger than 3 years; see also fig. Al in
the online edition of the American Naturalist). As a con-
sequence, numerical simulations confirm the theoretical
prediction that dynamical regimes corresponding to the
smallest frequency-locking period are the most likely to
occur.

Figure 4 shows the smallest frequency-locking period as
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Figure 3: Effects of increasing host body size w on the bifurcation diagram
of the seasonal SEI model in &-R, space for (A) w = 1 kg (e.g., mustelids),
(B) w =5 kg (e.g., foxes), and (C) w = 10 kg (e.g., jackals). Shaded
areas represent the parameter combinations for which model (1) displays
multiyear epizootic cycles. The return time between epidemics is 3 years
for hosts with w = 1 kg (A, shaded area) and 4 years for hosts with
w =5, 10 kg (B, C, shaded areas); t(i), tangent bifurcations of cycle
period i. Other parameters and curves are as defined in figure 1.

a function of the host body size (stepwise line) as predicted
by the model. It also compares the prediction with the
oscillation period observed for some mammal species that
are known to be important reservoirs for rabies. Log-log
regression shows significant positive correlation between
the observed period of epizootic cycles and host body size
(slope = 0.49, 95% confidence interval [CI]: 0.28-0.58,
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R* = 0.85, n = 10). Reduced major axis regression was
used to calculate the slope, and CIs were estimated by
bootstrapping (1,000 iterations). The shaded area of figure
4 corresponds to all the feasible cyclic solutions arising via
frequency locking. Therefore, the oscillation periods pre-
dicted by our seasonally forced SEI model match the ob-
served ones quite well. In the case of the black-backed
jackal, the period of oscillation predicted by the model
parameterized according to the vital rates as given by equa-
tions (2) for a 7.7-kg animal is larger than the one observed
by Courtin et al. (2000; 4 years instead of 3). Further
analyses show that if carrying capacity is only slightly larger
than that predicted by equation (2¢), the model will gen-
erate cycles of the observed length. We have not been able
to find information on epizootic cycles in rabies-infected
species with body size larger than 15 kg. This is, however,
in agreement with the prediction of our model that hosts
with large body size will exhibit epizootic oscillations only
for very large (and possibly nonrealistic) values of the basic
reproduction number R,.

Other Kinds of Seasonality

Seasonality may obviously affect demographic or epide-
miological parameters other than the transmission rate.

6 °
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Figure 4: Comparison of minimum frequency-locking oscillation periods
as predicted by seasonal SEI model against existing data for rabies epi-
demics in mammalian populations. The stepwise line represents the pre-
dicted period as a function of host body size w (kg). The points represent
the minimum observed epizootic cycle period: a, mongoose; b, arctic
fox; ¢, northern raccoon; d, red fox; e, f, black-backed jackal; g raccoon
dog; h, Eurasian badger; i, j, feral dog (see table 1 for data details). The
shaded area corresponds to parameter combinations for which multiyear
cycles can occur in the seasonal SEI model. Parameters ¢ and « are set
to 24w *> and 100w "%, respectively.
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The host fertility rate, for instance, usually exhibits quite
regular fluctuations in both temperate and tropical areas,
in correspondence to the succession of dry and rainy or
warm and cold seasons. We have thus analyzed the dy-
namical properties of the model assuming that the host
birth rate is a sinusoidal function of time (as described in
White et al. 1996; Ireland et al. 2004), namely,

v(t) = yow "1 + esin 271)], 4)

where »,w % is the average value of the intrinsic birth

rate and ¢ reflects the magnitude of seasonal variations,
as in equation (3). As shown in figure 5, the bifurcation
diagram of model (1) under the assumption of seasonal
birth rate (4) and constant transmission rate, plotted in
£-v, space, is similar to that of the SEI model, with seasonal
transmission rate depicted in figure 1. As in figure 1, the
shaded area represents those parameter combinations for
which disease outbreaks with 3-year return time are fea-
sible. Further analysis, not reported here, shows that even
in the case of seasonal birth rate, multiyear periodicity for
realistic values of R, and ¢ is possible only for hosts with
smaller body size.

Because the reproductive season might be remarkably
short (as pointed out in Roberts and Kao 1998), we have
also derived the bifurcation diagram of the model using
more pulselike functions for the host birth rate,

1 + esin 2wt)]*
0+ esin @uo)sde

—0.25

®)

p(t) = pyw

where larger Z’s correspond to smaller pulse width. It turns
out that even in these cases, the bifurcation diagrams of
the modified seasonal SEI models (analyzed for z < 6) are
not topologically different from that of the model with a
sinusoidal transmission rate.

As observed by Altizer et al. (2006), the actual dynamics
depend on which parameters are assumed to be seasonal
and the shape and level of seasonality. Yet, further analyses
not reported here show that the qualitative behavior of
the seasonal SEI model does not depend on which de-
mographic or epidemiological parameters actually char-
acterize the seasonal fluctuations (also in the cases of sev-
eral parameters with seasonal fluctuations and differences
in the phase between them), a phenomenon that was ob-
served in other seasonally forced population models
(Gragnani and Rinaldi 1995). The results we have derived
here are thus quite robust with respect to alternative hy-
potheses of the type of seasonality.
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Figure 5: Bifurcation diagram for model (1) under the assumption of a
seasonally fluctuating birth rate of the host (see eq. [5]) for hosts with
body size w = 1 kg. The shaded area represents the parameter combi-
nations for which model (1) displays multiyear epizootic cycles (return
time of 3 years between outbreaks). Curves are as defined in figure 1.
The mean transmission coefficient 3, has been set to 50. Other parameter
values are as defined in figure 1.

The Effect of the Host Immune Response

Most host species do not produce an effective immune
response to the rabies virus, so the infection inexorably
leads to the death of the infected individual. However, for
a few wildlife species (such as raccoons and skunks), rabies
occasionally may not be fatal (Coyne et al. 1989). More
commonly, there is a large number of other diseases in
which the host can develop temporary or permanent im-
munity. We explore the consequences of naturally acquired
immunity of the host for the epidemic dynamics of the
seasonally forced model. We incorporate a new class R
into model (1) to account for recovered individuals that
become immune as a result of infection. In the case of
rabies, the exposed individuals become immune without
developing a full-blown infection, that is, without moving
from class E to class I. Hence, the epidemic model can be
rewritten as follows:

%f = WS+ R — (u+yN)S—BOSL  (6a)
% = B(t)SI— (6 + pu + yYN)E, (6b)
g = (1 —poE— (a+p+yN), (6¢)
% — poE— (i + yN)R, (6d)



where the S, E, and I classes have the same meaning as in
model (1), as do parameters », u, v, 0, a, and 3(f). The
parameter p represents the mean fraction of exposed in-
dividuals that develop a permanent immune response to
the pathogen; R thus represents the density of recovered
and immune hosts. We have assumed that immune in-
dividuals are fully reproductive. The total population den-
sity is N, namely, N = S+ E+ I + R. Obviously, when
the probability of developing immunity tends to 0 (p —
0), model (6) reduces to the classical SEI model (1). A
similar nonseasonal version of model (6) was analyzed by
Coyne et al. (1989) and Childs et al. (2000). They showed
that even for small values of p, epizootic cycles cannot
occur in the nonseasonal SEIR model. As a consequence,
no multiyear epidemic cycles can arise through frequency
locking in seasonally forced model (6). Figure 6 reports
the bifurcation diagram of model (6) in e-83, parameter
space for two values of p. The shaded areas represent the
parameter combinations for which disease outbreaks with
3-year return time are feasible for the SEIR model. We
note that multiyear periodicity appears only in response
to high levels of seasonal forcing and no longer occurs for
low & regardless of host body size. We refer to appendix
B in the online edition of the American Naturalist for a
detailed description of the bifurcation diagram depicted
in figure 6.

Results obtained with model (6) are independent of the
assumption, which holds for rabies, that exposed individ-
uals skip full-blown infection before becoming immune.
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In fact, we have found similar results with an SEIR model
in which exposed individuals become infected and infec-
tious before developing immunity. It is interesting to note
that results similar to those of our SEIR model with density
dependence in the host demography were obtained by
Kuznetsov and Piccardi (1994) for models of childhood
diseases and by Casagrandi et al. (2006) for models of
influenza epidemics in constant human populations. In
both cases, host immunity was included.

Conclusions

In this work, we have analyzed the remarkable effects of
seasonality in lethal diseases of self-regulating wildlife pop-
ulations. Through allometric scaling of demographic and
epidemiological parameters, we have examined the dy-
namics of the epidemiological system over a wide range
of host body sizes. Our analysis shows that while the un-
forced SEI model exhibits multiyear epizootic cycles only
for large values of the reproduction number R, (Bolzoni
et al. 2008), the seasonally forced model can exhibit mul-
tiyear periodicity for much smaller and realistic values (<5)
of R,. Furthermore, bifurcation analysis shows that hosts
with small mean body size may exhibit complex dynamics
even with small levels of seasonal forcing. Resonance (fre-
quency locking) is the key mechanism that determines the
onset of multiyear periodic cycles for low transmission
coefficients. Larger hosts have longer oscillation cycles,
whose typical period can be predicted by our SEI model

t(2)

Baseline of transmission 3,
w
o

(2)

f(2)

0 0.2

Seasonality €

04 0

0.2

Seasonality £

Figure 6: Bifurcation diagram in e-3, space for SEIR model (6) with the coefficient of transmission periodically forced (see eq. [3]) for (A) p =
0.1 and (B) p = 0.2. Shaded areas represent the parameter combinations for which model (6) displays multiyear epizootic cycles (return time of 3
years between outbreaks). Note that epizootic cycles are feasible only for large values of seasonality. Other parameter values and curves are as defined

in figure 1.
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Table 1: Summary of data on rabies used in figure 4

Observed Predicted
Mass period period

Species name (kg) Reference (yr) Reference (yr)
Mongoose Herpestes javanicus .55  Carbone and Gittleman 2002 1 Everard et al. 1974 2
Arctic fox Alopex lagopus 3.19 Carbone and Gittleman 2002 3 Anderson et al. 1981 3
Northern raccoon Procyon lotor 4.3 Childs et al. 2000 4 Childs et al. 2000 3
Red fox Vulpes vulpes 4.6  Carbone and Gittleman 2002 3 Anderson et al. 1981 3
Black-backed jackal

Canis mesomelas 7.7 Carbone et al. 2005 3 Courtin et al. 2000 4
Black-backed jackal

C. mesomelas 7.7 Carbone et al. 2005 4 Walton and Joly 2003 4
Raccoon dog Nyctereutes

procyonides 8.0  Atanasov 2005 4 Kim et al. 2006 4
Eurasian badger Meles meles 13.0  Carbone and Gittleman 2002 6 Smith 2002 4
Feral dog Canis familiaris 14.7  Butler et al. 2004 4 Bingham et al. 1999 4
Feral dog C. familiaris 14.7  Butler et al. 2004 5 Widdowson et al. 2002 4

Note: The observed period reports the minimum observed period of epizootic cycles; the predicted period shows the minimum frequency-locking

period predicted by model (1).

for host species of different sizes. The prediction is in
accordance with field observations on several mammals
infected with rabies (see fig. 4; table 1). This relationship
could thus be used to predict the outbreak frequency for
newly established diseases by knowing the host body size
only.

Our analysis shows that the explicit consideration of the
latency period may dramatically change the population
dynamics of the infectious disease with respect to what is
predicted by susceptibles-infectives (SI)-like models of a
self-regulating host population (Ireland et al. 2004). In
fact, multiyear periodicity can occur even for very low
levels of seasonality in the case of a seasonally forced SEI
model, while this is not possible in the simpler SI-like
models. Moreover, in the seasonally forced SEI model, high
levels of seasonality coupled with high values of the basic
reproduction number R, can potentially produce chaotic
dynamics. However, the basins of attraction of the chaotic
attractors are quite small, and even for intermediate or
high levels of seasonality, the system basically tends to
display yearly peaks of infectives (see fig. 2D, 2E).

These conclusions are quite robust with respect to al-
ternative assumptions about how seasonality affects the
model parameters. The same qualitative structure of the
bifurcation diagram is retained when seasonality is in-
cluded in demographic or epidemiological parameters
other than transmission rate, even when more than one
parameter has seasonal oscillation or when significant
phase differences between oscillations of the seasonally
forced parameters are included. Also, different shapes of
the seasonal forcing function do not substantially alter the
bifurcation diagram.

By contrast, if the disease causes an immune response

with subsequent recovery (SEIR model), no multiyear pe-
riodicity occurs at low levels of seasonality, even when only
a small fraction of infected hosts is able to develop such
a response. Therefore, immunity has a crucial role in de-
termining the dynamic regimes of wildlife diseases. This
model behavior suggests that a correct estimate of the
degree of immunity in the host population is necessary to
predict the disease dynamics. This has important impli-
cations for implementing successful control policies. For
instance, SEIR models can effectively describe the im-
munity induced in a host population by vaccination. Be-
cause vaccination policies increase the immunity p, they
can drive host population dynamics from long-period epi-
zootic cycles with large epidemic peaks to cycles with a
short period for the same level of seasonality.

A number of processes that are not accounted for in
this study might be relevant in determining the observed
detailed patterns of specific rabies outbreaks. Spatial dy-
namics, multiple-strain interactions, and stochastic fade-
out of the disease during the endemic phase (Mollison
1991; Mollison and Levin 1995; Rohani et al. 2002; Real
et al. 2005) are obviously key factors that are considered
important drivers of disease dynamics. Nevertheless, the
allometric scaling approach adopted here provides key in-
sights into the broad patterns of behavior likely to be
observed in a large class of host species exposed to lethal
pathogens and living in seasonal environments. In fact, as
already outlined by Grenfell et al. (1995) and Keeling et
al. (2001) for human disease, the explicit introduction of
seasonality into models of host-parasite interaction in
wildlife is a crucial element of realism. Without this key
ingredient, it would be impossible to reproduce and ex-



plain the multiyear cycles observed for low values of the
basic reproduction number.

Acknowledgments

We are very grateful to R. Casagrandi for his invaluable
suggestions and remarks and to L. Real for his useful com-
ments that improved the manuscript. This work was sup-
ported in part by the National Center for Ecological Anal-
ysis and Synthesis (a center funded by National Science
Foundation [NSF] grant DEB-0072909 and the University
of California at Santa Barbara, Seasonality and Infectious
Diseases Group [to L.B. and G.A.D.L.]), NSF grant DEB-
0225453 (to A.P.D.), and the Italian Ministry of Research
project I104CE49G8 (to L.B., M.G., and G.A.D.L.).

Literature Cited

Altizer, S., A. P. Dobson, P. Hosseini, P. Hudson, M. Pascual, and P.
Rohani. 2006. Seasonality and the dynamics of infectious diseases.
Ecology Letters 9:467-484.

Anderson, R. M., H. C. Jackson, R. M. May, and A. M. Smith. 1981.
Population dynamics of fox rabies in Europe. Nature 289:765—
771.

Aron, J. L., and I. B. Schwartz. 1984. Seasonality and period-doubling
bifurcations in an epidemic model. Journal of Theoretical Biology
110:665-679.

Atanasov, A. T. 2005. Allometric relationship between the length of
pregnancy and body weight in mammals. Bulgarian Journal of
Veterinary Medicine 8:13-22.

Begon, M., S. M. Hazel, D. Baxby, K. Bown, R. Cavanagh, J. Chantrey,
T. Jones, and M. Bennett. 1999. Transmission dynamics of a zoo-
notic pathogen within and between wildlife host species. Pro-
ceedings of the Royal Society B: Biological Sciences 266:1939—-1945.

Bingham, J., and G. K. Purchase. 2002. Reproduction in the jackals
Canis adustus Sundevall, 1846, and Canis mesomelas Schreber, 1778
(Carnivora: Canidae), in Zimbabwe. African Zoology 37:21-26.

Bingham, J., C. M. Foggin, A. I. Wanderler, and F. W. G. Hill. 1999.
The epidemiology of rabies in Zimbabwe. 1. Rabies in dogs (Canis
familiaris). Onderstepoort Journal of Veterinary Research 66:1-10.

Bolker, B. M., and B. T. Grenfell. 1993. Chaos and biological com-
plexity in measles dynamics. Proceedings of the Royal Society B:
Biological Sciences 251:75-81.

Bolzoni, L., G. A. De Leo, M. Gatto, and A. P. Dobson. 2008. Body-
size scaling in an SEI model of wildlife disease. Theoretical Pop-
ulation Biology 73:374-382.

Briggs, C. J., and H. C. J. Godfray. 1996. The dynamics of insect-
pathogen interactions in seasonal environments. Theoretical Pop-
ulation Biology 50:149-177.

Butler, J. R. A,, J. T. du Toit, and J. Bingham. 2004. Free-ranging
domestic dogs (Canis familiaris) as predators and prey in rural
Zimbabwe: threats of competition and disease to large wild car-
nivores. Biological Conservation 115:369-378.

Cable, J. M., B. J. Enquist, and M. E. Moses. 2007. The allometry of
host-pathogen interactions. PLoS One 2:e1130.

Carbone, C., and J. Gittleman. 2002. A common rule for the scaling
of carnivore density. Science 295:2273-2276.

Carbone, C., G. Cowlishaw, N. J. B. Isaac, and J. M. Rowcliffe. 2005.

Seasonality in Rabies Epidemics 827

How far do animals go? determinants of day range in mammals.
American Naturalist 165:290-297.

Casagrandi, R., L. Bolzoni, S. A. Levin, and V. Andreasen. 2006. The
SIRC model and influenza A. Mathematical Biosciences 200:152—
169.

Childs, J. E., A. T. Curns, M. E. Dey, L. A. Real, L. Feinstein, O. N.
Bjernstad, and J. W. Krebs. 2000. Predicting the local dynamics
of epizootic rabies among raccoons in the United States. Pro-
ceedings of the National Academy of Sciences of the USA 97:
13666-13671.

Courtin, E, T. E. Carpenter, R. D. Paskin, and B. B. Chomel. 2000.
Temporal patterns of domestic and wildlife rabies in central Na-
mibia stock-ranching area, 1986—1996. Preventive Veterinary Med-
icine 43:13-28.

Coyne, M. J., G. Smith, and E E. McAllister. 1989. Mathematical
model for the population biology of rabies in raccoons in the mid-
Atlantic states. American Journal of Veterinary Research 50:2148—
2154.

De Leo, G. A., and A. P. Dobson. 1996. Allometry and simple epi-
demic models for microparasites. Nature 379:720-722.

Dietz, K. 1976. The incidence of infectious diseases under the influ-
ence of seasonal fluctuations. Lecture Notes in Biomathematics
11:1-15.

Everard, C. O. R., G. M. Baer, and A. James. 1974. Epidemiology of
mongoose rabies in Grenada. Journal of Wildlife Diseases 10:190—
196.

Gao, L. Q., J. Mena-Lorca, and H. W. Hethcote. 1995. Four SEI
endemic models with periodicity and separatrices. Mathematical
Biosciences 128:157-184.

Gragnani, A., and S. Rinaldi. 1995. A universal bifurcation diagram
for seasonally perturbed predator-prey models. Bulletin of Math-
ematical Biology 57:701-712.

Greenman, J., M. Kamo, and M. Boots. 2004. External forcing of
ecological and epidemiological systems: a resonance approach.
Physica D 190:136-151.

Grenfell, B. T., B. M. Bolker, and A. Kleczkowski. 1995. Seasonality
and extinction in chaotic metapopulations. Proceedings of the
Royal Society B: Biological Sciences 259:97-103.

Hanski, I., P. Turchin, E. Korpimaiki, and H. Henttonen. 1993. Pop-
ulation oscillations of boreal rodents: regulation by mustelid pred-
ators leads to chaos. Nature 364:232-235.

Hethcote, H. W,, and J. A. York. 1984. Gonorrhea transmission dy-
namics and control. Springer, Berlin.

Ireland, J. M., R. A. Norman, and J. V. Greenman. 2004. The effect
of seasonal host birth rates on population dynamics: the impor-
tance of resonance. Journal of Theoretical Biology 231:229-238.

Kamo, M., and A. Sasaki. 2002. The effect of cross-immunity and
seasonal forcing in a multi-strain epidemic model. Physica D 165:
228-241.

. 2005. Evolution toward multi-year periodicity in epidemics.
Ecology Letters 8:378—385.

Keeling, M. J., and B. T. Grenfell. 1997. Disease extinction and com-
munity size: modeling the persistence of measles. Science 275:65—
67.

Keeling, M. J., P. Rohani, and B. T. Grenfell. 2001. Seasonally forced
dynamics explored as switching between attractors. Physica D 148:
335-347.

Khibnik, A. I, Y. A. Kuznetsov, V. V. Levitin, and E. V. Nikolaev.
1993. Continuation techniques and interactive software for bifur-
cation analysis of ODEs and iterated maps. Physica D 62:360-371.




828 The American Naturalist

Kim, C.-H., C.-G. Lee, H. C. Yoon, H.-M. Nam, C.-K. Park, J.-C.
Lee, M.-I. Kang, and S.-H. Wee. 2006. Rabies, an emerging disease
in Korea. Journal of Veterinary Medicine B 53:111-115.

Koelle, K., M. Pascual, and M. Yunus. 20054. Pathogen adaptation
to seasonal forcing and climate change. Proceedings of the Royal
Society B: Biological Sciences 272:971-977.

Koelle, K., X. Rodd, M. Pascual, M. Yunus, and G. Mostafa. 2005b.
Refractory periods and climate forcing in cholera dynamics. Nature
436:696-700.

Kuznetsov, Y. A. 1995. Elements of applied bifurcation theory.
Springer, New York.

. 1998. CONTENT: integrated environment for analysis of
dynamical systems. Rapport de Recherche UPMA-98-224. Ecole
Normale Supérieure de Lyon, Lyon.

Kuznetsov, Y. A., and C. Piccardi. 1994. Bifurcation analysis of pe-
riodic SEIR and SIR epidemic models. Journal of Mathematical
Biology 32:109-121.

McKenzie, A. A. 1993. Biology of the black-backed jackal with ref-
erence of rabies. Onderstepoort Journal of Veterinary Research 60:
367-371.

McKenzie, F. E., G. F. Killen, J. C. Beier, and W. H. Bossert. 2001.
Seasonality, parasite diversity, and local extinctions in Plasmodium
falciparum malaria. Ecology 82:2673-2681.

Mollison, D. 1991. Dependence of epidemic and population processes
on basic parameters. Mathematical Biosciences 107:255-287.

Mollison, D., and S. Levin. 1995. Spatial dynamics of parasitism.
Pages 384-398 in A. Dobson and B. Grenfell, eds. Ecology of
infectious diseases in natural populations. Cambridge University
Press, Cambridge.

Nisbet, R., and W. Gurney. 1982. Modelling fluctuating populations.
Wiley, New York.

Olsen, L. E, and W. M. Schaffer. 1990. Chaos vs. noisy periodicity:
alternative hypotheses for childhood epidemics. Science 249:499—
504.

Olsen, L. E, G. L. Truty, and W. M. Schaffer. 1988. Oscillations and
chaos in epidemics: a nonlinear dynamic study of six childhood
diseases in Copenhagen, Denmark. Theoretical Population Biology
33:344-370.

Pastoret, P. P., and B. Brochier. 1999. Epidemiology and control of
fox rabies in Europe. Vaccine 17:1750-1754.

Peters, R. H. 1983. The ecological implications of body size. Cam-
bridge University Press, Cambridge.

Pugliese, A. 1991. An SEI epidemic model with varying population
size. Pages 121-138 in S. Busenberg and M. Martelli, eds. Differ-
ential equation models in biology, epidemiology and ecology.
Springer, New York.

Real, L. A., C. Russell, L. Waller, D. Smith, and J. Childs. 2005. Spatial
dynamics and molecular ecology of North American rabies. Jour-
nal of Heredity 96:1-8.

Roberts, M. G., and R. R. Kao. 1998. The dynamics of an infectious
disease in a population with birth pulses. Mathematical Biosciences
149:23-36.

Rohani, P, M. J. Keeling, and B. T. Grenfell. 2002. The interplay
between determinism and stochasticity in childhood diseases.
American Naturalist 159:469-481.

Ruxton, G. D. 1996. The effects of stochasticity and seasonality on
model dynamics: bovine tuberculosis in badgers. Journal of Animal
Ecology 65:495-500.

Schwartz, 1. B. 1985. Multiple stable recurrent outbreaks and pre-
dictability in seasonally forced nonlinear epidemic models. Journal
of Mathematical Biology 21:347-361.

Schwartz, I. B., and L. H. Smith. 1983. Infinite subharmonic bifur-
cation in a SEIR epidemic model. Journal of Mathematical Biology
18:233-253.

Silva, M., and J. A. Downing. 1995. The allometric scaling of density
and body mass: a nonlinear relationship for terrestrial mammals.
American Naturalist 145:704-727.

Smith, G. C. 2002. The role of the badger (Meles meles) in rabies
epizootiology and the implications for Great Britain. Mammal
Review 32:12-25.

Swart, J. H. 1989. Hopf bifurcation and stable limit cycle behavior
in the spread of infectious diseases, with special application to fox
rabies. Mathematical Biosciences 95:199-207.

Walton, L. R., and D. O. Joly. 2003. Canis mesomelas. Mammal Spe-
cies 715:1-9.

White, K. A. J,, B. T. Grenfell, R. J. Hendry, O. Lejeune, and J. D.
Murray. 1996. Effect of seasonal host reproduction on host-ma-
croparasite. Mathematical Biosciences 137:79-99.

Widdowson, M.-A., G. J. Morales, S. Chavez, and J. McGrane. 2002.
Epidemiology of urban canine rabies, Santa Cruz, Bolivia, 1972—
1997. Epidemiology and Infection 8:458—461.

Associate Editor: Tim Coulson
Editor: Donald L. DeAngelis



