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Abstract

Partially observed Markov process (POMP) models, also known as hidden Markov
models or state space models, are ubiquitous tools for time series analysis. The R package
pomp provides a very flexible framework for Monte Carlo statistical investigations using
nonlinear, non-Gaussian POMP models. A range of modern statistical methods for POMP
models have been implemented in this framework including sequential Monte Carlo, it-
erated filtering, particle Markov chain Monte Carlo, approximate Bayesian computation,
maximum synthetic likelihood estimation, nonlinear forecasting, and trajectory match-
ing. In this paper, we demonstrate the application of these methodologies using some
simple toy problems. We also illustrate the specification of more complex POMP mod-
els, using a nonlinear epidemiological model with a discrete population, seasonality, and
extra-demographic stochasticity. We discuss the specification of user-defined models and
the development of additional methods within the programming environment provided by
pomp.

Keywords: Markov processes, hidden Markov model, state space model, stochastic dynamical
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1. Introduction

A partially observed Markov process (POMP) model consists of incomplete and noisy mea-
surements of a latent, unobserved Markov process. The far-reaching applicability of this class
of models has motivated much software development (Commandeur et al. 2011). With the
exception of models with a linear, Gaussian structure, or models for which the latent pro-
cess takes values in a small discrete set, statistical inference typically involves Monte Carlo
computations. It has been a challenge to provide a software environment that can effectively
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handle broad classes of nonlinear POMP models and take advantage of the wide range of pro-
posed statistical methodologies. The pomp software package (King et al. 2014) differs from
previous approaches by providing a general and abstract representation of a POMP model.
Algorithms implemented within pomp are necessarily applicable to arbitrary POMP models.
Models formulated with pomp can be analyzed using multiple methodologies in search of the
most effective method, or combination of methods, for the problem at hand.

A POMP model may be characterized by the transition density for the Markov process and
the measurement density. However, some methods require only simulation from the transition
density whereas others require evaluation of this density. Still other methods may not work
with the model itself but with an approximation, such as a linearization. Algorithms for
which the dynamic model is specified only via a simulator are said to be plug-and-play (Bret6
et al. 2009; He et al. 2010). Plug-and-play methods can be implemented by “plugging” a
model simulator into the inference machinery. Many scientific POMP models are relatively
easy to simulate, and so the plug-and-play property facilitates data analysis. Even if one
candidate model has tractable transition probabilities, a scientist will frequently wish to
consider alternative models for which these probabilities are intractable. In a plug-and-play
methodological environment, analysis of variations in the model can be readily implemented
by changing a few lines of the model simulator codes. The price one pays for the flexibility
of plug-and-play methodology is primarily additional computational effort. However, plug-
and-play methods implemented using pomp have proved capable for state of the art inference
problems (e.g., King et al. 2008; Bhadra et al. 2011; Shrestha et al. 2011, 2013; Earn et al.
2012; Roy et al. 2012; Blackwood et al. 2013a,b; He et al. 2013; Breté 2014). The recent
surge of interest in plug-and-play methodology for POMP models includes the development
of nonlinear forecasting (Ellner et al. 1998), iterated filtering (Ionides et al. 2006), ensemble
Kalman filtering (Shaman and Karspeck 2012), approximate Bayesian computation (ABC)
(Sisson et al. 2007), particle Markov chain Monte Carlo (PMCMC) (Andrieu et al. 2010),
probe matching (Kendall et al. 1999), and synthetic likelihood (Wood 2010). Although the
pomp package provides a general environment for methods with and without the plug-and-
play property, development of the package to date has emphasized plug-and-play methods.

The pomp package is philosophically neutral as to the merits of Bayesian inference. It en-
ables a POMP model to be supplemented with prior distributions on parameters, and several
Bayesian methods are implemented within the package. Thus pomp is a convenient environ-
ment for those who wish to explore both Bayesian and non-Bayesian data analyses.

The remainder of this paper is organized as follows. Section 2 defines mathematical notation
for POMP models and relates this to their representation as objects of class ‘pomp’ in the
pomp package. Section 3 introduces several of the statistical methods currently implemented
in pomp. Section 4 constructs and explores a simple POMP model, demonstrating the use of
the available statistical methods. Section 5 illustrates the implementation of more complex
POMPs, using a model of infectious disease transmission as an example. Finally, section 6
discusses extensions and applications of pomp.

2. POMP models and their representation in pomp

Let 0 be a p-dimensional real-valued parameter, § € RP. For each value of 0, let {X (¢;0),t €
T} be a Markov process, with X (¢;6) taking values in R?. The time index set ' C R may
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Method Argument to the Mathematical terminology

pomp constructor
rprocess rprocess Simulate from fx, |x,_, (Tn | Zn-1;0)
dprocess dprocess Evaluate fx,|x,_,(Tn|Tn-1;0)
rmeasure rmeasure Simulate from fy, x, (yn | Tn;0)
dmeasure dmeasure Evaluate fy,|x, (yn | 7n;0)
rprior rprior Simulate from the prior distribution 7 (6)
dprior dprior Evaluate the prior density 7(0)
init.state initializer Simulate from fx,(xo;8)
timezero t0 to
time times li:N
obs data YN
states — To:N
coef params 0

Table 1: Constituent methods for class-‘pomp’ objects and their translation into mathematical
notation for POMP models. For example, the rprocess method is set using the rprocess
argument to the pomp constructor function.

be an interval or a discrete set. Let t; € T, i = 1,..., N, be the times at which X (¢;60)
is observed, and ty € T be an initial time. Assume ty < t1 < tg < -+ < ty. We write
X; = X(t;;0) and X;.; = (Xi, Xiy1,...,X;). The process Xo.ny is only observed by way of
another process Y1.ny = (Y1,...,Yy) with Y, taking values in R". The observable random
variables Y1.y are assumed to be conditionally independent given Xo.n. The data, yi.n =
(Y7, ..., yn), are modeled as a realization of this observation process and are considered fixed.
We suppose that Xo.n and Yi.x have a joint density fx,. . vi.n(Zom, Y1:m3;60). The POMP
structure implies that this joint density is characterized by the initial density, fx,(zo;0),
together with the conditional transition probability density, fx,|x,_, (zn | 2n—1;0), and the
measurement density, fy.|x, (¥n |n;0), for 1 <n < N. Note that this formalism allows the
transition density, fx,|x,_,, and measurement density, fy,|x,, to depend explicitly on n.

2.1. Implementation of POMP models

pomp is fully object-oriented: in the package, a POMP model is represented by an S4 object
(Chambers 1998; Genolini 2008) of class ‘pomp’. Slots in this object encode the components
of the POMP model, and can be filled or changed using the constructor function pomp and
various other convenience functions. Methods for the ‘pomp’ class use these components to
carry out computations on the model. Table 1 gives the mathematical notation corresponding
to the elementary methods that can be executed on a class-‘pomp’ object.

The rprocess, dprocess, rmeasure, and dmeasure arguments specify the transition proba-
bilies fx, x,_, (Tn | Tn—1;0) and measurement densities fy|x(y|x;0). Not all of these need to
be defined to implement any specific computation. In particular, plug-and-play methodology
by definition never uses dprocess. An empty dprocess slot in a class-‘pomp’ object is therefore
acceptable unless a non-plug-and-play algorithm is attempted. In the package, the data and
corresponding measurement times are considered necessary parts of a ‘pomp’ object whilst
specific values of the parameters and latent states are not. Applying the simulate function
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to an object of class ‘pomp’ returns another object of class ‘pomp’, within which the data y7. 5
have been replaced by a stochastic realization of Y7.y, the corresponding realization of Xy.
is accessible via the states method, and the params slot has been filled with the value of 6
used in the simulation.

To illustrate the specification of models in pomp and the use of the package’s inference al-
gorithms, we’ll use a simple example. The Gompertz (1825) model can be constructed via

R> library("pomp")
R> pompExample (gompertz)

which results in the creation of an object of class ‘pomp’, named gompertz, in the workspace.
The structure of this model and its implementation in pomp is described below, in section 4.
One can view the components of gompertz listed in Table 1 by executing

R> obs(gompertz)

R> states(gompertz)

R> as.data.frame(gompertz)
R> plot(gompertz)

R> time(gompertz)

R> coef (gompertz)

R> init.state(gompertz)

Executing pompExamples () lists other examples provided with the package.

2.2. Initial conditions

In some experimental situations, fx,(xo;6) corresponds to a known experimental initializa-
tion, but in general the initial state of the latent process will have to be inferred. If the
transition density for the dynamic model, fx,|x,_,(Zn|%n-1;0), does not depend on time
and possesses a unique stationary distribution, it may be natural to set fx,(xo;6) to be this
stationary distribution. Otherwise, and more commonly in the authors’ experience, no clear
scientifically motivated choice of fx,(x¢;6) exists and one can proceed by treating the value
of X as a parameter to be estimated. In this case, fx,(zo;0) concentrates at a point, the
location of which depends on 6.

2.3. Covariates

Scientifically, one may be interested in the role of a vector-valued covariate process {Z(t)}
in explaining the data. Modeling and inference conditional on {Z(¢)} can be carried out
within the general framework for nonhomogeneous POMP models, since the arbitrary densities
Ixu|Xn_1> fXxo and fy|x, can depend on the observed process {Z(t)}. For example, it may
be the case that an|Xn_1(xn | 2n—1;0) depends on n only through Z(t) for ¢, <t < t,.
The covar argument in the pomp constructor allows for time-varying covariates measured at
times specified in the tcovar argument. A example using covariates is given in section 5.



Journal of Statistical Software 5

3. Methodology for POMP models

Data analysis typically involves identifying regions of parameter space within which a postu-
lated model is statistically consistent with the data. Additionally, one frequently desires to
assess the relative merits of alternative models as explanations of the data. Once the user
has encoded one or more POMP models as objects of class ‘pomp’, pomp provides a variety of
algorithms to assist with these data analysis goals. Table 2 provides an overview of several in-
ference methodologies for POMP models. Each method may be categorized as full-information
or feature-based, Bayesian or Frequentist, and plug-and-play or not plug-and-play.

Approaches that work with the full likelihood function, whether in a Bayesian or frequentist
context, can be called full-information methods. Since low-dimensional sufficient statistics
are not generally available for POMP models, methods which take advantage of favorable
low-dimensional representations of the data typically lose some statistical efficiency. We use
the term “feature-based” to describe all methods not based on the full likelihood, since such
methods statistically emphasize some features of the data over others.

Many Monte Carlo methods of inference can be viewed as algorithms for the exploration of
high-dimensional surfaces. This view obtains whether the surface in question is the likelihood
surface or that of some other objective function. The premise behind many recent method-
ological developments in Monte Carlo methods for POMP models is that generic stochastic
numerical analysis tools, such as standard Markov chain Monte Carlo and Robbins-Monro
type methods, are effective only on the simplest models. For many models of scientific interest,
therefore, methods that leverage the POMP structure are needed. Though pomp has suffi-
cient flexibility to encode arbitrary POMP models and methods and therefore also provides
a platform for the development of novel POMP inference methodology, pomp’s development
to date has focused on plug-and-play methods. In the remainder of this Section, we describe
and discuss several such methods, all currently implemented in the package.

3.1. The likelihood function and sequential Monte Carlo

The log likelihood for a POMP model is ¢(6) = log fv,. (y1.n;6), which can be written as a
sum of conditional log likelihoods,

N
E(H) = Z€n|1:n—1(9)7 (1)
n=1

where
€n|1:n—1 (9) = 10g fYn|Y1m71 (y’;kz | yik:n—l ) 9)7

and we use the convention that yi.,, is an empty vector. The structure of a POMP model
implies the representation

Cp1:n—1(0) = log /fyn|xn Wnl2n:0) fxy1 s (@n [ Y11 :0) dn. (2)

Although ¢(9) typically has no closed form, it can frequently be computed by Monte Carlo
methods. Sequential Monte Carlo (SMC) builds up a representation of fx. |v,.,,_, (Zn | Y., _1;0)

that can be used to obtain an estimate, fn‘lm_l(é?), of £p|1:n—1(¢) and hence an approximation,

£(0), to £(0). SMC (a basic version of which is presented as Algorithm 1), is also known as the
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(a) Plug-and-play

Frequentist Bayesian

Full information | Iterated filtering (mif, PMCMC (pmcme, section 3.3)
section 3.2)

Feature-based Nonlinear forecasting (nlf, ABC (abc, section 3.5)

section 3.6),
synthetic likelihood
(probe.match, section 3.4)

(b) Not plug-and-play

Frequentist Bayesian
Full information | EM and Monte Carlo EM, MCMC
Kalman filter
Feature-based Trajectory matching Extended Kalman filter

(traj.match),
extended Kalman filter,
Yule-Walker equations

Table 2: Inference methods for POMP models. For those currently implemented in
pomp, function name and a reference for description are provided in parentheses. Stan-
dard Expectation-Maximization (EM) and Markov chain Monte Carlo (MCMC) algorithms
are not plug-and-play since they require evaluation of fx, |x,_,(7n|Zn—1;0). The Kalman
filter and extended Kalman filter are not plug-and-play since they cannot be implemented
based on a model simulator. The Kalman filter provides the likelihood for a linear, Gaussian
model. The extended Kalman filter employs a local linear Gaussian approximation which
can be used for frequentist inference (via maximization of the resulting quasi-likelihood) or
approximate Bayesian inference (by adding the parameters to the state vector). The Yule-
Walker equations for ARMA models provide an example of a closed-form method of moments
estimator.

particle filter, since it is conventional to describe the Monte Carlo sample, {X,}L7 jpJin1:J }
as a swarm of particles representing fx, |v;.,(n |91, ;0). The swarm is propagated forward
according to the dynamic model and then assimilated to the next data point. Using an evo-
lutionary analogy, the prediction step (line 3) mutates the particles in the swarm and the
filtering step (line 7) corresponds to selection. SMC is implemented in pomp in the pfilter
function. The basic particle filter in Algorithm 1 possesses the plug-and-play property. Many
variations and elaborations to SMC have been proposed; these may improve numerical per-
formance in appropriate situations (Cappé et al. 2007) but typically lose the plug-and-play
property.

Basic SMC methods fail when an observation is extremely unlikely given the POMP model.
This leads to the situation that all particles are inconsistent with the observation, a phe-
menon known as particle depletion. Many elaborations of the basic SMC algorithm have been
proposed to ameliorate this problem. However, it is often preferable to remedy the situation
by seeking a better model. The plug-and-play property assists in this process by facilitating
investigation of alternative models.

In line 6 of Algorithm 1, systematic resampling (Algorithm 2) is used in preference to multi-
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Algorithm 1: Sequential Monte Carlo (SMC, or particle filter): pfilter(P, Np=.J),
using notation from Table 1 where P is a ‘pomp’ object with defined methods for rprocess,
dmeasure, init.state, coef, and obs.

input: Simulator for fx, |x,_, (Zn|%n—1;0); evaluator for fy, x, (yn | Tn;0); simulator for
Ix,(z0;0); parameter, 0; data, y}.,; number of particles, J.

Initialize filter particles: simulate X(fj ~ fx, (z0;0) for j in 1:J.
for n in 1: N do
Simulate for prediction: Xf’j ~ fXn| X1 (xn\Xf_Lj;G) for jin 1:J.
Evaluate weights: w(n, j) = fy,|x, (?/erIZjSH) for jin 1:J.
Normalize weights: w(n,j) = w(n,j)/ 27{121 w(n,m).
Apply Algorithm 2 to select indices ky.; with P{k; = m} = w(n, m).
Resample: set Xij = Xf’kj for jin 1:J.
Compute conditional log likelihood: fn|1:n,1 = log (J_l Z;]nzlw(n, m))
end
output: Log likelihood estimate, /(9) = S

el én|1:n,1; filter sample, XTZ;LJ, for nin 1: N.

nomial resampling. Algorithm 2 minimizes Monte Carlo variability while resampling with the
proper marginal probability. In particular, if all the particle weights are equal then Algo-
rithm 2 has the appropriate behavior of leaving the particles unchanged.

3.2. Iterated filtering

Iterated filtering is a technique for maximizing the likelihood obtained by SMC. The key
idea of iterated filtering is to replace the model we are interested in fitting—which has time-
invariant parameters—with a model that is just the same except that its parameters take a
random walk in time. Over multiple repetitions of the filtering procedure, the intensity of this
random walk approaches zero and the modified model approaches the original model. Adding
additional variability in this way has four positive effects:

Al. It smooths the likelihood surface, which facilitates optimization.
A2. Tt combats particle depletion, by dispersing the particles more widely.

A3. The additional variability can be exploited to estimate of the gradient of the (smoothed)
likelihood surface based on the same filtering procedure that is required to estimate of
the value of the likelihood.

A4. Tt preserves the plug-and-play property, inherited from the particle filter.

Iterated filtering is implemented in the mif function, as described in Algorithm 3, following
Ionides et al. (2006). By analogy with annealing, the random walk intensity can be called a
temperature, which is decreased at a prescribed cooling rate. One hopes that the algorithm
will freeze at the maximum of the likelihood as the temperature approaches zero.

The perturbations on the parameters in lines 2 and 6 of Algorithm 3 follow a normal dis-
tribution, with each component of the parameter vector perturbed independently. Neither
normality nor independence are necessary for iterated filtering, but, rather than varying the
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Algorithm 2: Systematic resampling: Line 6 of Algorithm 1.

input: Weights, w;.;, normalized so that ijl w; = 1.

Construct cumulative sum: ¢; = an:l Wy, for jin 1: J.
Draw a uniform initial sampling point: U; ~ Uniform[0, J~1].
Construct evenly spaced sampling points: U; = Uy + (j — 1)J 1 for jin2:J.
Initialize: set p = 1.
for j in1:J do

while U; > ¢, do

Step to the next resampling index: set p = p + 1.

end

Assign resampling index: set k; = p.
end
output: Resampling indices, k..

perturbation distribution, one can transform the parameters to make these simple algorithmic
choices reasonable.

Algorithm 3 gives special treatment to a subset of the components of the parameter vector
termed initial value parameters (IVPs), which arise when unknown initial conditions are
modeled as parameters. These IVPs will typically be inconsistently estimable as the length of
the time series increases, since for a stochastic process one expects only early time points to
contain information about the initial state. Searching the parameter space using time-varying
parameters is inefficient in this situation, and so Algorithm 3 perturbs these parameters only
at time zero.

Lines 6-11 of Algorithm 3 are exactly an application of SMC (Algorithm 1) to a modified
POMP model in which the parameters are added to the state space. This approach has
been used in a variety of previously proposed POMP methodologies (Kitagawa 1998; Liu and
West 2001; Wan and Van Der Merwe 2000) but iterated filtering is distinguished by having
theoretical justification for convergence to the maximum likelihood estimate (Ionides et al.
2011).

3.3. Particle Markov chain Monte Carlo

Full-information plug-and-play Bayesian inference for POMP models is enabled by particle
Markov chain Monte Carlo (PMCMC) algorithms (Andrieu et al. 2010). PMCMC methods
combine likelihood evaluation via SMC with MCMC moves in the parameter space. The sim-
plest and most widely used PMCMC algorithm, termed particle marginal Metropolis-Hastings
(PMMH), is based on the observation that the unbiased likelihood estimate provided by SMC
can be plugged in to the Metropolis-Hastings update procedure to give an algorithm targeting
the desired posterior distribution for the parameters (Andrieu and Roberts 2009). PMMH is
implemented in pmemc, as described in Algorithm 4. PMCMC can have a high computational
cost, since each SMC computation can itself be costly and tens of thousands of these SMC
computations will typically be necessary; this is demonstrated in section 4.4. Nevertheless,
its invention introduced the possibility of full-information plug-and-play Bayesian inferences
in some situations where they were previously unavailable.
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Algorithm 3: Iterated filtering: mif (P, start=0p, Nmif=M, Np=J, rw.sd=0y,p,

ic.

lag=L, var.factor=C, cooling.factor=a), using notation from Table 1 where P is

a ‘pomp’ object with defined rprocess, dmeasure, init.state and obs methods.

input: Starting parameter, 6p; simulator for fx,(z¢;#); simulator for

an\Xn,l(ﬂfn | £p—1;6); evaluator for fyn‘Xn (yn | xn ;0); data, y7.y; labels,

I c{1,...,p}, designating IVPs; fixed lag, L, for estimating IVPs; number of
particles, J, number of iterations, M; cooling rate, 0 < a < 1; perturbation scales,
o1:p; initial scale multiplier, C' > 0.

for m in 1: M do

Initialize parameters: [95]-]1‘ ~ Normal[[f];, (Ca™ '0;)?] for i in 1:p.
Initialize states: simulate Xé?j ~ fx, (aco; @gj) for jin 1:J.

Initialize filter mean for parameters: 6y = 6.

forn in1:N do

Perturb parameters: [@ij]i ~ Normal([@fllu

]i, (@™ 1o;)?) fori & I, jin 1:J.
Simulate prediction particles: Xij ~ X X s ($n|X7€11,j ; @ij) for jin 1: J.
.oP T

;10,;) for jin1:J.

Normalize weights: w(n,j) = w(n,j)/ Zizl w(n,u).

Apply Algorithm 2 to select indices k1.7 with P{k, = j} = @ (n,j).

Resample particles: Xf;:j = kaj and @ij = @fkj for jin 1:J.

Filter mean: [én]z = Z}]:l w(n,j) [@ij]i fori ¢ I.

Prediction variance: [V;,11]; = (@™ 1s;)? + > w(n,j)([@iﬂi — [_n]i)2 for i ¢ I.
end
Update non-IVP parameters: [0,,]; = [0n—1]i + V7 Zi:[:l (V,f)_l (6;, — 6. _,) fori ¢ I.
Update IVPs: [0,,]; = }E] [653]1 forie 1.

Evaluate weights: w(n, j) = fy,|x, (y;*L|X7];

end
output: Monte Carlo maximum likelihood estimate, 65;.

3.4. Synthetic likelihood of summary statistics

Some motivations to estimate parameter based on features rather than the full likelihood

include

Bl1.

B2.

B3.

B4.

Reducing the data to sensibly selected and informative low-dimensional summary statis-
tics may have computational advantages (Wood 2010).

The scientific goal may be to match some chosen characteristics of the data rather than
all aspects of it. Acknowledging the limitations of all models, this limited aspiration may
be all that can reasonably be demanded (Kendall et al. 1999; Wood 2001).

In conjunction with full-information methodology, consideration of individual features has
diagnostic value to determine which aspects of the data are driving the full-information
inferences (Reuman et al. 2006).

Feature-based methods for dynamic models typically do not require the POMP model
structure. However, that benefit is outside the scope of the pomp package.
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Algorithm 4: Particle Markov Chain Monte Carlo: pmcmc(P, start=0p,
Nmcmc =M, Np=J, rw.sd=01,), using notation from Table 1 where P is a ‘pomp’ object
with defined methods for rprocess, dmeasure, init.state, dprior, and obs.

input: Starting parameter, 6p; simulator for fx,(z¢;#); simulator for
Ixn|Xp_1 (Tn | Tn—1;0); evaluator for fy, x, (Yn|Tn;0); data, y.\; number of
particles, J; number of filtering operations, M; perturbation scales, o1.,; evaluator
for prior, fo(#).
Initialization: compute £(f) using Algorithm 1 with .J particles.
for m in 1: M do
Propose parameters: [0]]; ~ Normal ([0,,,—1];, 07) for i in 1:p.

Compute £(6F) using Algorithm 1 with J particles.
Generate U ~ Uniform[0, 1].

S S AP )
e fo(bm—1) exp(£(0m-1))
(01, é(ﬁm_l)) , otherwise.

)

Set (O, L(0m)) =

end
output: Samples, 01.)/, representing the posterior distribution, fo|v,, (6| y].x)-

B5. Feature-based methods are typically doubly plug-and-play, meaning that they require
simulation, but not evaluation, for both the latent process transition density and the
measurement model.

When pursuing goal B1, one aims to find summary statistics which are as close as possible
to sufficient statistics for the unknown parameters. Goals B2 and B3 deliberately look for
features which discard information from the data; in this context the features have been
called probes (Kendall et al. 1999). The features are denoted by a collection of functions,
S = (Sy1,...,S4), where each S; maps an observed time series to a real number. We write
S = (51,...,54) for the vector-valued random variable with S = S(Y1.n), with fs(s;0)
being the corresponding joint density. The observed feature vector is s* where s = S;(y}. v ),
and for any parameter set one can look for parameter values for which typical features for
simulated data match the observed features. One can define a likelihood function, fs(6) =
fs(s*;0). Arguing that S should be approximately multivariate normal, for suitable choices
of the features, Wood (2010) proposed using simulations to construct a multivariate normal
approximation to ¢s(f), and called this a synthetic likelihood.

Simulation-based evaluation of a feature matching criterion is implemented by probe (Algo-
rithm 5). The feature matching criterion requires a scale, and a natural scale to use is the
empirical covariance of the simulations. Working on this scale, as implemented by probe, there
is no substantial difference between the probe approaches of Kendall et al. (1999) and Wood
(2010). Numerical optimization of the synthetic likelihood is implemented by probe.match,
which offers a choice of the subplex method (Rowan 1990; King 2008) or any method provided
by optim or the nloptr package (Johnson 2014; Ypma 2014).

3.5. Approximate Bayesian computation (ABC)

ABC algorithms are Bayesian feature-matching techniques, comparable to the frequentist
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Algorithm 5: Synthetic likelihood evaluation: probe(P, nsim=.J, probes=S), us-
ing notation from Table 1 where P is a ‘pomp’ object with defined methods for rprocess,
rmeasure, init.state, and obs.

input: Simulator for fx, |x,_, (Zn|Zn-1;0); simulator for fx,(wo;0); simulator for
I X (Yn | p;0); parameter, 0; data, yj.,; number of simulations, J; vector of
summary statistics or probes, S = (Sq,...,Sq).

Compute observed probes: s} = S;(yj.,) for ¢ in 1:d.

Simulate J datasets: Yi.n; ~ fyy.y (y1:n;6) for jin 1:J.

Compute simulated probes: s;; = S;(Yi.ny;) foriin 1:d and jin 1:J.

Compute sample mean: ju; = J ! Z}'le si; for ¢ in 1:d.

Compute sample covariance: L = (J — 1)71 ijl(sij — i) (Sk; — ) for 4 and k in 1:d.

Compute the log synthetic likelihood:

1 ., 1, . 1 d
l5(0) = =5 (" = p) 271 (s" = p) — 5 log 3] - 5 log(2m).

output: Synthetic likelihood, /5(6).

Algorithm 6: Approximate Bayesian Computation: abc(P, start=0p, Nmcmc=M,
probes=S, rw.sd=01,, epsilon=¢), using notation from Table 1, where P is a ‘pomp’
object with defined methods for rprocess, rmeasure, init.state, dprior, and obs.

input: Starting parameter, 6p; simulator for fx,(z¢;#); simulator for
Ixn1Xp_1 (Tn | Tn_1;0); simulator for fy. |x, (yn|zn;0); data, yj.n; number of
proposals, M; vector of probes, S = (S1,...,Sg); perturbation scales, o1.y; evaluator
for prior, fo(#); feature scales, 11.4; tolerance, e.

Compute observed probes: s} = S;(yj.,y) for i in 1 : d.
for m in 1: M do

Propose parameters: [0]; ~ Normal([,,—1];,02) for i in 1:p.
Simulate dataset: Yi.ny ~ fYLN(yLN;HP).
Compute simulated probes: s; = S;(Y1.x) for 7 in 1:d.
Generate U ~ Uniform[0, 1].

d *\ 2 P
— 0;.)
o, ity (ZE) < au < Jolm)
Set 0, = ¢ ™ 1 i=1 < Ti ) © o fo(Om-1)’

0p_1, otherwise.
end
output: Samples, 01.5/, representing the posterior distribution, fgs, (¢ EE

11



12 Partially observed Markov processes

generalized method of moments. The vector of summary statistics S, the corresponding
random variable S, and the value s* = S(yj. ), are defined as in section 3.4. The goal of ABC
is to approximate the posterior distribution of the unknown parameters given S = s*. ABC
has typically been motivated by computational considerations, as in point B1 of section 3.4
(Sisson et al. 2007; Toni et al. 2009; Beaumont 2010). Points B2 and B3 also apply (Ratmann
et al. 2009).

The key theoretical insight behind ABC algorithms is that an unbiased estimate of the like-
lihood can be substituted into a Markov chain Monte Carlo algorithm to target the required
posterior, the same result that justifies PMCMC (Andrieu and Roberts 2009). However,
ABC takes a different approach to approximating the likelihood. The likelihood of the ob-
served features, £5(0) = fs(s*;0), has an approximately unbiased estimate based on a single
Monte Carlo realization Y7.nx ~ fy,.n (- ;6) given by

d d £\ 2
R 4B =, if <Si — 5 ) < €,
ey = § < B me (= 3)

0, otherwise,

where By is the volume of the d-dimensional unit ball. The likelihood approximation in Eq. 3
differs from the synthetic likelihood in Algorithm 5 in that only a single simulation is required.
As € become small, the bias in Eq. 3 decreases but the Monte Carlo variability increases. The
ABC implementation abc (presented in Algorithm 6) is a random walk Metropolis-Hastings
algorithm with the likelihood approximation from Eq. 3. In the same style as iterated filtering
and PMCMC, we assume a Gaussian random walk in parameter space.

3.6. Nonlinear forecasting

Nonlinear forecasting (NLF') uses simulations to build up an approximation to the one-step
prediction distribution that is then evaluated on the data. We saw in section 3.1 that SMC
evaluates the prediction density for the observation, fy, |v,.._, (5 |¥1.,_1;0), by first building
an approximation to the prediction density of the latent process, fx, |vi.,_.(Zn|¥i._1:0)-
NLF, by contrast, uses simulations to fit a linear regression model which predicts Y,, based
on a collection of L lagged variables, {Y,—¢,,...,Y,—¢, }. The prediction errors when this
model is applied to the data give rise to a quantity called the quasi likelihood, which behaves
for many purposes like a likelihood (Smith 1993). The implementation in n1f maximises the
quasi likelihood computed in Algorithm 7, using the subplex method (Rowan 1990; King
2008) or any other optimizer offerered by optim. The construction of the quasi likelihood in
nlf follows the specific recommendations of Kendall et al. (2005). In particular, the choice
of radial basis functions, fx, in line 5 and the specification of mj; and s in lines 3 and 4
were proposed by Kendall et al. (2005) based on trial and error. The quasi likelihood is
mathematically most similar to a likelihood when min(a;.r,) = 1, so that £g(#) approximates
the factorization of the likelihood in Eq. 1. With this in mind, it is natural to set a;.;, = 1: L.
However, Kendall et al. (2005) found that a two-step prediction criterion, with min(a;.z,) = 2,
led to improved numerical performance. It is natural to ask when one might choose to use
quasi-likelihood estimation in place of full likelihood estimation implemented by SMC. Some
considerations follow, closely related to the considerations for synthetic likelihood and ABC
(sections 3.4 and 3.5).
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Algorithm 7: Simulated quasi log likelihood for NLF. Pseudocode for the quasi like-
lihood function optimized by nlf(P, start=60p, nasymp=.J, nconverge=B5, nrbf=K,
lags=1L). Using notation from Table 1, P is a ‘pomp’ object with defined methods for
rprocess, rmeasure, init.state, and obs.

input: Simulator for fx,|x,_, (zn |Zn—1;0); simulator for fx,(z¢;0); simulator for

Iy, 1x,, (Yn | 1 ;0); parameter, 0; data, yj.y; collection of lags, cy.r; length of
discarded transient, B; length of simulation, J; number of radial basis functions, K.

Simulate long stationary time series: Y1.(py.7) ~ fvi. 5., (Y1:(B+1) 3 0)-

Set Ymin = min{Y(p1):(B+7)}s Ymax = max{Y(pi1).(4+s)} and R = Yinax — Yinin-

Locations for basis functions: my = Yiin + R x [1.2 x (k= 1)(K —1)7! = 0.1] for k in 1: K.
Scale for basis functions: s =0.3 x R .

Define radial basis functions: fx(x) = exp{(z — my)?/2s%*} for k in 1: K.

Define prediction function: H(yn—c;, Yn—cos---sYn—cy) = Ele lele @k fre(Yn—c;)-

Compute {aj :j € 1: L,k € 1: K} to minimize

1 B+J 2
6% = J Z [Yn —H(Y—c, Yoy, - - ’Y”—CL)] :
n=B+1

Compute the simulated quasi log likelihood:

= N 9
~ N— * _H *_ , *_ . *_
eQw) - = 9 Clog 2w — g [yn (y” €1 57;262 Yn cL)] 7

n=1+¢c

where ¢ = max(cy.p).

output: Simulated quasi log likelihood, @Q(Q).

CI.

C2.

C3.

C4.

C5.

NLF benefits from stationarity since (unlike SMC) it uses all time points in the simulation
to build a prediction rule valid at all time points. Indeed, NLF has not been considered
applicable for non-stationary models and, on account of this, n1f is not appropriate if the
model includes time-varying covariates. An intermediate scenario between stationarity
and full non-stationarity is seasonality, where the dynamic model is forced by cyclical
covariates, and this is supported by nlf (cf. B1 in section 3.4).

Potentially, quasi-likelihood could be preferable to full likelihood in some situations. It
has been argued that a two-step prediction criterion may sometimes be more robust to
model misspecification that the likelihood (Xia and Tong 2011) (cf. B2).

Arguably, two-step prediction should be viewed as a diagnostic tool that can be used to
complement full likelihood analysis rather than replace it (Ionides 2011) (cf. B3).

NLF does not require that the model be Markovian (cf. B4).

NLF is doubly plug-and-play (cf. B5).

13



14 Partially observed Markov processes

C6. The regression surface reconstruction carried out by NLF does not scale well with the
dimension of the observed data. NLF is recommended only for univariate timeseries
observations, and this is a requirement for nlf.

NLF can be viewed as an estimating equation method, and so standard errors can be com-
puted by standard sandwich estimator or bootstrap techniques (Kendall et al. 2005). The
optimization in NLF is typically carried out with a fixed seed for the random number gen-
erator, so the simulated quasi-likelihood is a deterministic function. If rprocess depends
smoothly on the random number sequence and on the parameters, and the number of calls to
the random number generator does not depend on the parameters, then fixing the seed results
in a smooth objective function. However, some common components to model simulators,
such as rnbinom, make different numbers of calls to the random number generator depending
on the arguments, which introduces nonsmoothness into the objective function.

4. Model construction and data analysis: simple examples

4.1. A first example: the Gompertz model

The plug-and-play methods in pomp were designed to facilitate data analysis based on com-
plicated models, but we’ll first demonstrate the basics of pomp using simple discrete-time
models, the Gompertz and Ricker models for population growth (Reddingius 1971; Ricker
1954). The Ricker model will be introduced in section 4.5, and the rest of section 4 will
use the Gompertz model. The Gompertz model postulates that the density, X;ya¢, of a
population of organisms at time t + At depends on the density, Xy, at time t according to

Xppne = K7 X077 ey (4)
In Eq. 4, K is the carrying capacity of the population, r is a positive parameter, and the
g; are independent and identically-distributed lognormal random variables with loge; ~
Normal(0, 02). Additionally, we’ll assume that the population density is observed with errors
in measurement that are lognormally distributed:

logV; ~ Normal (log X, 7'2) . (5)
Taking a logarithmic transform of Eq. 4 gives
log X¢4at ~ Normal ((1—e™" At) log K + e "5 log X, 02) . (6)

On this transformed scale, the model is linear and Gaussian and so we can obtain exact
values of the likelihood function by applying the Kalman filter. Plug-and-play methods are
not strictly needed, and this example therefore allows us to compare the results of generally
applicable plug-and-play methods with exact results from the Kalman filter. Later we’ll look
at the Ricker model and a continuous-time model for which no such special tricks are available.

The first step in implementing this model in pomp is to construct an R object of class ‘pomp’
that encodes the model and the data. This involves the specification of functions to do some or
all of rprocess, rmeasure, and dmeasure, along with data and (optionally) other information.
The documentation (?pomp) spells out the usage of the pomp constructor, including detailed
specifications for all its arguments and links to several examples.
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To begin, we’ll write a function that implements the process model simulator. This is a
function that will simulate a single step (¢ — t + At) of the unobserved process Eq. 4.

R> gompertz.proc.sim <- function(x, t, params, delta.t, ...) {
+ eps <- exp(rnorm(n = 1, mean = 0, sd = params["sigma"]))
+ S <- exp(-params["r"] * delta.t)

+ setNames (params ["K"]"(1 - S) * x["X"]"S * eps, "X")

+ }

The translation from the mathematical description Eq. 4 to the simulator is straightforward.
When this function is called, the argument x contains the state at time t. The parameters
(including K, r, and o) are passed in the argument params. Notice that x and params are
named numeric vectors and that the output must likewise be a named numeric vector, with
names that match those of x. The argument delta.t species the time-step size. In this case,
the time-step will be 1 unit; we’ll see below how this is specified.

Next, we’ll implement a simulator for the observation process Eq. 5.

R> gompertz.meas.sim <- function(x, t, params, ...) {
+ setNames (rlnorm(n = 1, meanlog = log(x["X"]), sd = params["tau"l), "Y")
+ }

Again the translation from the measurement model Eq. 5 is straightforward. When the func-
tion gompertz.meas.sim is called, the named numeric vector x will contain the unobserved
states at time t; params will contain the parameters as before. This return value will be a
named numeric vector containing a single draw from the observation process Eq. 5.

Complementing the measurement model simulator is the corresponding measurement model
density, which we implement as follows:

R> gompertz.meas.dens <- function(y, x, t, params, log, ...) {

+ dlnorm(x = y["Y"], meanlog = log(x["X"]), sdlog = params["tau"],
+ log = log)

+ }

We'll need this later on for inference using pfilter, mif and pmcmc. With the above in place,
we build an object of class ‘pomp’ via a call to pomp:

R> gompertz <- pomp(data = data.frame(time = 1:100, Y = NA), times = "time",
+ rprocess = discrete.time.sim(step.fun = gompertz.proc.sim, delta.t = 1),
+ rmeasure = gompertz.meas.sim, t0 = 0)

The first argument (data) specifies a data-frame that holds the data and the times at which
the data were observed. Since this is a toy problem, we have as yet no data; in a moment, we’ll
generate some simulated data. The second argument (times) specifies which of the columns of
data is the time variable. The rprocess argument specifies that the process model simulator
will be in discrete time, with each step of duration delta.t taken by the function given in
the step.fun argument. The rmeasure argument specifies the measurement model simulator

15



16 Partially observed Markov processes

function. t0 fixes tg for this model; here we have chosen this to be one time unit prior to the
first observation.

It is worth noting that implementing the rprocess, rmeasure, and dmeasure components as
R functions, as we’'ve done above, leads to needlessly slow computation. As we will see below,
pomp provides facilities for specifying the model in C, which can accelerate computations
many fold.

Before we can simulate from the model, we need to specify some parameter values. The
parameters must be a named numeric vector containing at least all the parameters referenced
by the functions gompertz.proc.sim and gompertz.meas.sim. The parameter vector needs
to determine the initial condition X (tg) as well. Let’s take our parameter vector to be

R> theta <- c(r = 0.1, K =1, sigma = 0.1, tau = 0.1, X.0 = 1)

The parameters r, K, o, and T appear in gompertz.proc.sim and gompertz.meas.sim. The
initial condition Xg is also given in theta. The fact that the initial condition parameter’s
name ends in .0 is significant: it tells pomp that this is the initial condition of the state variable
X. This use of the .0 suffix is the default behavior of pomp: one can however parameterize the
initial condition distribution arbitrarily using pomp’s optional initializer argument.

We can now simulate the model at these parameters:

R> gompertz <- simulate(gompertz, params = theta)

Now gompertz is identical to what it was before, except that the missing data have been
replaced by simulated data. The parameters (theta) at which the simulations were performed
have also been saved internally to gompertz. We can plot the simulated data via

R> plot(gompertz, variables = "Y")
Fig. 1 shows the results of this operation.

4.2. Computing likelihood using SMC

As discussed in section 3, some parameter estimation algorithms in the pomp package are
doubly plug-and-play in that they require only rprocess and rmeasure. These include the
nonlinear forecasting algorithm nlf, the probe-matching algorithm probe.match, and ap-
proximate Bayesian computation via abc. The plug-and-play full-information methods in
pomp, however, require dmeasure, i.e., the ability to evaluate the likelihood of the data given
the unobserved state. The gompertz.meas.dens above does this, but we must incorporate it
into the ‘pomp’ object in order to use it. We can do this with another call to pomp:

R> gompertz <- pomp(gompertz, dmeasure = gompertz.meas.dens)

The result of the above is a new ‘pomp’ object gompertz in every way identical to the one we
had before, but with the measurement-model density function dmeasure now specified.

To compute the likelihood of the data, we can use the function pfilter, an implementation of
Algorithm 1. We must decide how many concurrent realizations (particles) to use: the larger
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Figure 1: Simulated data from the Gompertz model (Egs. 4 and 5). This figure shows the
result of executing plot (gompertz, variables = "Y").

the number of particles, the smaller the Monte Carlo error but the greater the computational
burden. Here, we run pfilter with 1000 particles to estimate the likelihood at the true
parameters:

R> pf <- pfilter(gompertz, params = theta, Np = 1000)
R> loglik.truth <- logLik(pf)

R> loglik.truth

[1] 36.27102

Since the true parameters (i.e., the parameters that generated the data) are stored within the
‘pomp’ object gompertz and can be extracted by the coef function, we could have done

R> pf <- pfilter(gompertz, params = coef (gompertz), Np = 1000)

or simply

R> pf <- pfilter(gompertz, Np = 1000)

Now let’s compute the log likelihood at a different point in parameter space, one for which r,
K, and o are each 50% higher than their true values.

R> theta.guess <- theta.true <- coef (gompertz)

R> theta.guess[c("r", "K", "sigma")] <- 1.5 * theta.truel[c("r", "K", "sigma")]
R> pf <- pfilter(gompertz, params = theta.guess, Np = 1000)

R> loglik.guess <- logLik(pf)

R> loglik.guess

[1] 25.19585
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In this case, the Kalman filter computes the exact log likelihood at the true parameters to
be 36.01, while the particle filter with 1000 particles gives 36.27. Since the particle filter
gives an unbiased estimate of the likelihood, the difference is due to Monte Carlo error in
the particle filter. One can reduce this error by using a larger number of particles and/or
by re-running pfilter multiple times and averaging the resulting estimated likelihoods. The
latter approach has the advantage of allowing one to estimate the Monte Carlo error itself;
we’ll demonstrate this in section 4.3.

4.3. Maximum likelihood estimation via iterated filtering

Let’s use the iterated filtering approach described in section 3.2 to obtain an approximate
maximum likelihood estimate for the data in gompertz. We’'ll initialize the algorithm at
several starting points around theta.true and just estimate the parameters r, 7, and . The
following codes accomplish this.

R> estpars <- c("r", "sigma", "tau")

R> library("foreach")

R> mifl <- foreach(i = 1:10, .combine = c) %dopar’ {

theta.guess <- theta.true

rlnorm(n = length(estpars), meanlog = log(theta.guess[estpars]),

sdlog = 1) -> theta.guess[estpars]

mif (gompertz, Nmif = 100, start = theta.guess, transform = TRUE,
Np = 2000, var.factor = 2, cooling.fraction = 0.7,
rw.sd = c(r = 0.02, sigma = 0.02, tau = 0.02))

+ + + + + 4+ o+

}

R> pfl <- foreach(mf = mifl, .combine = c) %dopar’, {

+ pf <- replicate(n = 10, logLik(pfilter(mf, Np = 10000)))
+ logmeanexp (pf)

+ }

Note that we’ve set transform = TRUE in the call to mif above: this transforms the parame-
ters before performing iterated filtering to enforce the positivity of parameters. We’ll see how
such parameter transformations are implemented in section 4.5. Note also that we’ve used
the foreach package (Revolution Analytics and Weston 2014) to parallelize the computations.

Each of the 10 mif runs ends up at a different point estimate (Fig. 2). We focus on that
with the highest estimated likelihood, having evaluated the likelihood several times to reduce
the Monte Carlo error in the likelihood evaluation. The particle filter produces an unbiased
estimate of the likelihood; therefore, we’ll average the likelihoods, not the log likelihoods.

R> mfl <- mifl[[which.max(pf1)]]

R> theta.mif <- coef (mfl)

R> loglik.mif <- replicate(n = 10, logLik(pfilter(mfil, Np = 10000)))

R> loglik.mif <- logmeanexp(loglik.mif, se = TRUE)

R> theta.true <- coef(gompertz)

R> loglik.true <- replicate(n = 10, logLik(pfilter(gompertz, Np = 20000)))
R> loglik.true <- logmeanexp(loglik.true, se = TRUE)
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Figure 2: Convergence plots can be used to help diagnose convergence of the iterated filtering
algorithm. These and additional diagnostic plots are produced when plot is applied to a ‘mif’
or ‘mifList’ object.
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20 Partially observed Markov processes

For the calculation above, we have replicated the iterated filtering search, made a careful
estimation of the log likelihood, / , and its standard error using pfilter at each of the resulting
point estimates, and then chosen the parameter corresponding to the highest likelihood as our
numerical approximation to the MLE. Taking advantage of the Gompertz model’s tractability,
we also use the Kalman filter to maximize the exact likelihood, ¢, and evaluate it at the
estimated MLE obtained by mif. The results are:

r o T pfilter { s.e. exact/
truth | 0.1000 0.1000 0.1000 36.02 0.07  36.01

mif MLE | 0.0127 0.0655 0.1200 37.61 0.08 37.62
exact MLE | 0.0322 0.0694 0.1170 37.87 0.05 37.88

Usually, the last row and column of this results table would not be available even for a
simulation study validating the inference methodology for a known POMP model. In this
case, we see that the mif procedure is successfully maximizing the likelihood up to an error
of about 0.1 log units.

4.4. Full-information Bayesian inference via PMCMC

To carry out Bayesian inference we need to specify a prior distribution on unknown parame-
ters. The pomp constructor function provides the rprior and dprior arguments, which can
be filled with functions that simulate from and evaluate the prior density, respectively. Meth-
ods based on MCMC require evaluation of the prior density (dprior), but not simulation
(rprior), so we specify dprior for the Gompertz model as follows.

R> hyperparams <- list(min = coef (gompertz)/10, max = coef (gompertz) * 10)

R> gompertz.dprior <- function (params, ..., log) {

+ f <- sum(dunif (params, min = hyperparams$min, max = hyperparams$max,
+ log = TRUE))

+ if (log) f else exp(f)

+ }

The PMCMC algorithm described in section 3.3 can then be applied to draw a sample from
the posterior. Recall that, for each parameter proposal, PMCMC pays the full price of a
particle-filtering operation in order to obtain the Metropolis-Hastings acceptance probability.
Compare this to iterated filtering, which obtains for the same price an estimate of the deriva-
tive and a probable improvement of the parameters. For this reason, PMCMC is relatively
inefficient at maximizing the likelihood. When Bayesian inference is the goal, it is advisable
to first locate a neighborhood of the MLE using, for example, iterated filtering. PMCMC
can then be initialized in this neighborhood to sample from the posterior distribution. The
following adopts this approach, running 5 independent PMCMC chains.

R> pmcmcl <- foreach(i=1:5,.combine=c) %dopar’, {

+ pmcme (pomp (gompertz, dprior = gompertz.dprior), start = theta.mif,
+ Nmcmc = 40000, Np = 100, max.fail = Inf,

+ rw.sd = c(r = 0.01, sigma = 0.01, tau = 0.01))

+ }
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Figure 3: Diagnostic plots for the PMCMC algorithm. The trace plots in the left column
show the evolution of 5 independent MCMC chains after a burn-in period of length 20000.
Kernel density estimates of the marginal posterior distributions are shown at right. The
effective sample size of the 5 MCMC chains combined is lowest for the r variable and is 160:
the use of 40000 proposal steps in this case is a modest number. The density plots at right
show the estimated marginal posterior distributions. The vertical line corresponds to the true
value of each parameter.
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Comparison with the analysis of section 4.3 reinforces the observation of Bhadra (2010) that
PMCMC can require orders of magnitude more computation than iterated filtering. Iterated
filtering may have to be repeated multiple times while computing profile likelihood plots,
whereas one successful run of PMCMC is sufficient to obtain all required posterior inferences.
However, in practice, multiple runs from a range of starting points is always good practice
since assessment of convergence within a single chain is unreliable. To verify the convergence
of the approach or to compare the performance with other approaches, we can use diagnostic
plots produced by the plot method Fig. 3.

4.5. A second example: the Ricker model

In section 4.6, we’ll illustrate probe matching (section 3.4) using a stochastic version of the
Ricker map (Ricker 1954). We switch models to allow direct comparison with Wood (2010),
whose synthetic likelihood computations are reproduced below. In particular, the results of
section 4.6 demonstrate frequentist inference using synthetic likelihood and also show that
the full likelihood is both numerically tractable and reasonably well behaved, contrary to
the claim of Wood (2010). We’ll also take the opportunity to demonstrate features of pomp
that allow acceleration of model codes through the use of R’s facilities for compiling and
dynamically linking C code.

The Ricker model is another discrete-time model for the size of a population. The population
size, Ny, at time ¢ is postulated to obey

Niy1 =1 N exp(—N; + e), es ~Normal[0, o%]. (7)
In addition, we assume that measurements, Y;, of N; are themselves noisy, according to
Y; ~Poisson(¢p Ny). (8)

As before, we’ll need to implement the model’s state-process simulator (rprocess). We have
the option of writing these functions in R, as we did with the Gompertz model. However,
we can realize many-fold speed-ups by writing these in C. In particular, pomp allows us to
write snippets of C code that it assembles, compiles, and dynamically links into a running R
session. To begin the process, we’ll write snippets for the rprocess, rmeasure, and dmeasure
components.

R> ricker.sim <- '

+ e = rnorm(0, sigma);

+ N=r*N=x*x exp(-N + e);
+ 1

R> ricker.rmeas <- '

+ y = rpois(phi * N);

+ 1

R> ricker.dmeas <-
+ lik = dpois(y, phi * N, give_log);
+ !

Note that, in this implementation, both N and e are state variables. The logical flag give_log
requests the likelihood when FALSE, the log likelihood when TRUE. Notice that, in these
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snippets, we never declare the variables; pomp will construct the appropriate declarations
automatically.

In a similar fashion, we can add transformations of the parameters to enforce constraints.

R> par.trans <- '

Tr = exp(r);

Tsigma = exp(sigma);
Tphi = exp(phi);
TN_O = exp(N_0);

+ + 4+ + o+

R> par.inv.trans <- '

+ Tr = log(r);

Tsigma = log(sigma);
Tphi = log(phi);
TN_O = log(N_0);

+ + 4+ +

Note that in the foregoing C snippets, the prefix T designates the transformed version of the
parameter.

Now we can construct a ‘pomp’ object as before and fill it with simulated data:

R> pomp(data = data.frame(time = seq(0, 50, by = 1), y = NA),

params = c(r = exp(3.8), sigma = 0.3, phi = 10,
N.O =7, e.0 = 0)) —> ricker
model codes written to '/tmp/Rtmpy9qogl/pomp6CA6735D69F2.c'
link to shared-object library '/tmp/Rtmpy9qogIl/pomp6CA6735D69F2.s0"
R> ricker <- simulate(ricker,seed=73691676L)

+ rprocess = discrete.time.sim(step.fun = Csnippet(ricker.sim),
+ delta.t = 1), rmeasure = Csnippet(ricker.rmeas),

+ dmeasure = Csnippet(ricker.dmeas),

+ parameter.transform = Csnippet(par.trans),

+ parameter.inv.transform = Csnippet(par.inv.trans),

+ paramnames = c("r", "sigma", "phi", "N.O", "e.0"),

+ statenames = c("N", "e"), times = "time", t0 = O,

+

+

4.6. Feature-based synthetic likelihood maximization

In pomp, probes are simply functions that can be applied to an array of real or simulated data
to yield a scalar or vector quantity. Several functions that create useful probes are included
with the package, including those recommended by Wood (2010). In this illustration, we will
make use of these probes: probe.marginal, probe.acf, and probe.nlar. probe.marginal
regresses the data against a sample from a reference distribution; the probe’s values are those
of the regression coeflicients. probe.acf computes the auto-correlation or auto-covariance of
the data at specified lags. probe.nlar fits a simple nonlinear (polynomial) autoregressive
model to the data; again, the coeflicients of the fitted model are the probe’s values. We
construct a list of probes:
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R> plist <- list(probe.marginal("y", ref = obs(ricker), transform = sqrt),

+ probe.acf("y", lags = c(0, 1, 2, 3, 4), transform = sqrt),
+ probe.nlar("y", lags = c(1, 1, 1, 2), powers = c(1, 2, 3, 1),
+ transform = sqrt))

Each element of plist is a function of a single argument. Each of these functions can be
applied to the data in ricker and to simulated data sets. Calling pomp’s function probe
results in the application of these functions to the data, and to each of some large number,
nsim, of simulated data sets, and finally to a comparison of the two. [Note that probe
functions may be vector-valued, so a single probe taking values in R* formally corresponds to
a collection of k probe functions in the terminology of section 3.4.] Here, we’ll apply probe
to the Ricker model at the true parameters and at a wild guess.

R> pb.truth <- probe(ricker, probes = plist, nsim = 1000, seed = 1066L)
R> guess <- c(r = 20, sigma = 1, phi = 20, N.O = 7, .0 = 0)

R> pb.guess <- probe(ricker, params = guess, probes = plist, nsim = 1000,
+ seed = 1066L)

Results summaries and diagnostic plots showing the model-data agreement and correlations
among the probes can be obtained by

R> summary (pb.truth)
R> summary(pb.guess)
R> plot(pb.truth)
R> plot(pb.guess)

An example of a diagnostic plot (using a smaller set of probes) is shown in Fig. 4. Among the
quantities returned by summary is the synthetic likelihood (Algorithm 5). One can attempt
to identify parameters that maximize this quantity; this procedure is referred to in pomp
as “probe matching”. Let us now attempt to fit the Ricker model to the data using probe-
matching.

R> pm <- probe.match(pb.guess, est = c("r", "sigma", "phi"), transform = TRUE,
+ method = "Nelder-Mead", maxit 2000, seed = 1066L, reltol = 1e-08)

This code runs optim’s Nelder-Mead optimizer from the starting parameters guess in an
attempt to maximize the synthetic likelihood based on the probes in plist. Both the starting
parameters and the probes are stored internally in pb.guess, which is why we need not
specify them explicitly here. While probe.match provides substantial flexibility in choice of
optimization algorithm, for situations requiring greater flexibility, pomp provides the function
probe.match.objfun, which constructs an objective function suitable for use with arbitrary
optimization routines.

By way of putting the synthetic likelihood in context, let’s compare the results of estimating
the Ricker model parameters using probe-matching and using iterated filtering, which is based
on likelihood. The following code runs 600 MIF iterations starting at guess:
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Figure 4: Results of plot on a ‘probed.pomp’-class object. Above the diagonal, the pairwise
scatterplots show the values of the probes on each of 1000 data sets. The red lines show the
values of each of the probes on the data. The panels along the diagonal show the distributions

of the probes on the simulated data, together with their values on the data and a two-

sided p value. The numbers below the diagonal are the Pearson correlations between the
corresponding pairs of probes.
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R> mf <- mif(ricker, start = guess, Nmif = 100, Np = 1000, transform = TRUE,
+ cooling.fraction = 0.95750, var.factor = 2, ic.lag = 3, max.fail = 50,
+ rw.sd = c(r = 0.1, sigma = 0.1, phi = 0.1))
R> mf <- continue(mf, Nmif = 500, max.fail = 20)

The follpwing table compares parameters, Monte Carlo likelihoods (g), and synthetic likeli-
hoods ({s, based on the probes in plist) at each of (a) the guess, (b) the truth, (¢) the MLE
from mif, and (d) the maximum synthetic likelihood estimate (MSLE) from probe.match.

r o 10} 14 ls
guess | 20.0 1.000 20.0 -230.9 -12.3
truth | 44.7 0.300 10.0 -139.5 17.5
MLE | 45.0 0.186 10.2 -137.7 18.0

MSLE | 42.1 0.337 11.3 -145.6 20.4

These results demonstrate that it is possible, and indeed not difficult, to maximize the likeli-
hood for this model, contrary to the claim of Wood (2010).

4.7. Bayesian feature matching via ABC

Whereas synthetic likelihood carries out many simulations for each likelihood estimation, ABC
(as described in section 3.5) uses only one. Each iteration of ABC is therefore much quicker,
essentially corresponding to the cost of SMC with a single particle or synthetic likelihood
with a single simulation. A consequence of this is that ABC cannot determine a good relative
scaling of the features within each likelihood evaluation and this must be supplied in advance.
One can imagine an adaptive version of ABC which modifies the scaling during the course of
the algorithm, but here we do a preliminary calculation to accomplish this.

R> plist <- list(probe.mean(var = "Y", transform = sqrt),
+ probe.acf ("Y", lags = c(0, 5, 10, 20)),
+ probe.marginal ("Y", ref = obs(gompertz)))

+ psim <- probe(gompertz, probes = plist, nsim = 500)

+ scale.dat <- apply(psim$simvals, 2, sd)

R> abcl <- foreach(i = 1:5, .combine = c¢) %dopar’ {

+ abc (pomp (gompertz, dprior = gompertz.dprior), Nabc = 4e6,
+ probes = plist, epsilon = 2, scale = scale.dat,

+ rw.sd = c(r = 0.01, sigma = 0.01, tau = 0.01))

+ }

The effective sample size of the ABC chains is lowest for the r parameter (as was the case
for PMCMC) and is 510, as compared to 160 for pmcmc in section 4.4. The total compu-
tational effort allocated to abc here matches that for pmcmc since pmcmec used 100 particles
for each likelihood evaluation but is awarded 100 times fewer Metropolis-Hastings steps. In
this example, we conclude that abc converges somewhat more rapidly (as measured by total
computational effort) than pmcme. Fig. 5 investigates the statistical efficiency of abc on this
example. We see that abc gives rise to somewhat broader posterior distributions than the
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Figure 5: Marginal posterior distributions using full information via pmcme (solid line) and
partial information via abc (dashed line). Kernel estimates are shown for the posterior
marginal density of r (left panel), o (middle panel), and 7 (right panel). The vertical lines
indicate the true values of each parameter.

full-information posteriors from pmcmc As in all numerical studies of this kind, one cannot
readily generalize from one particular example: even for this specific model and dataset, the
conclusions might be sensitive to the algorithmic settings. However, one should be aware of
the possibility of losing substantial amounts of information even when the features are based
on reasoned scientific argument (Shrestha et al. 2011; Ionides 2011). Despite this loss of sta-
tistical efficiency, points B2-B5 of section 3.4 identify situations in which ABC may be the
only practical method available for Bayesian inference.

4.8. Parameter estimation by simulated quasi-likelihood

Within the pomp environment, it is fairly easy to try a quick comparison to see how nlf (sec-
tion 3.6) compares with mif (section 3.2) on the Gompertz model. Carrying out a simulation
study with a correctly specified POMP model is appropriate for assessing computational and
statistical efficiency, but does not contribute to the debate on the role of two-step prediction
criteria to fit misspecified models (Xia and Tong 2011; Ionides 2011). The nl1f implementation
we will use to compare to the mif call from section 4.3 is

R> nlfl <- nlf(gompertz, nasymp = 1000, nconverge = 1000, lags = c(2, 3),
+ start = c(r = 1, K = 2, sigma = 0.5, tau = 0.5, X.0 = 1),
+ est = c("r", "sigma", "tau"), transform.params = TRUE)

where the first argument is the ‘pomp’ object, start is a vector containing model parame-
ters at which nlf’s search will begin, est contains the names of parameters nlf will esti-
mate, and lags specifies which past values are to be used in the autoregressive model. The
transform.params = TRUE setting causes the optimization to be performed on the trans-
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Figure 6: Comparison of mif and nlf for 10 simulated datasets using two criteria. (A)
Improvement in likelihood at point estimate over the true parameter value. (B) Improvement
in simulated quasi-likelihood at point estimate over the true parameter value. In both panels,
the diagonal line is the 1-1 line.

formed scale, as in section 4.3. In the call above lags = c(2, 3) specifies that the autore-
gressive model predicts each observation, y; using y;—2 and y;_3, as recommended by Kendall
et al. (2005). The quasilikelihood is optimized numerically, so the reliability of the optimiza-
tion should be assessed by doing multiple fits with different starting parameter values: the
results of a small experiment (not shown) indicate that, on these simulated data, repeated
optimization isn’t needed. nlf defaults to optimization by the subplex method (Rowan 1990;
King 2008), though all optimization methods provided by optim are available as well. nasymp
sets the length of the simulation on which the quasilikelihood is based; larger values will
give less variable parameter estimates, but will slow down the fitting process. The computa-
tional demand of nlf is dominated by the time required to generate the model simulations,
so efficient coding of rprocess is worthwhile.

Fig. 6 compares the true parameter, ¢, with the maximum likelihood estimate (MLE), 6,
from mif and the maximized simulated quasi-likelihood (MSQL), 6, from n1f. Fig. 6A plots

A A

0(0) — £() against £(f) — £(0), showing that the MSQL estimate can fall many units of log
likelihood short of the MLE. Fig. 6B plots {q(f) — £o() against {q(f) — {q(6), showing
that likelihood-based inference is almost as good as nlf at optimizing the simulated quasi-
likelihood criterion which nlf targets. Fig. 6 suggests that the MSQL can be inefficient:
some weakly identified combination of parameters that is close to its maximum at the MLE
nevertheless attains its maximum at some distance from the MLE. Another possibility is that
this particular implementation of n1f was unfortunate. Each mif optimization took 32.8 sec
to run, compared to 6.5 sec for nlf, and it is possible that extra computer time or other
algorithmic adjustments could substantially improve either or both estimators. It is hard to
ensure a fair comparison between methods, and in practice there is little substitute for some

experimentation with different methods and algorithmic settings on a problem of interest.
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Figure 7: Diagram of the SIR epidemic model. The host population is divided into three
classes according to infection status: S, susceptible hosts; I, infected (and infectious) hosts;
R, recovered and immune hosts. Births result in new susceptibles and all individuals have a
common death rate p. Since the birth rate equals the death rate, the expected population
size, N = S+ I+ R, remains constant. The S—I rate, A, called the force of infection, depends
on the number of infectious individuals according to A(t) = fI/N. The I-R, or recovery,
rate is 7. The case reports, C, result from a process by which infections are recorded with
probability p. Since diagnosed cases are treated with bed-rest and hence removed, infections
are counted upon transition to R.

If the motivation for using NLF is preference for 2-step prediction over the likelihood, a
comparison with SMC-based likelihood evaluation and maximization is useful to inform the
user of the consequences of that preference.

5. A more complex example: epidemics in continuous time

5.1. A stochastic, seasonal SIR model.

A mainstay of theoretical epidemiology, the SIR model describes the progress of a contagious,
immunizing infection through a population of hosts. The hosts are divided into three classes,
according to their status vis-a-vis the infection (Fig. 7). The susceptible class (S) contains
those that have not yet been infected and are thereby still susceptible to it; the infected class
(I) comprises those who are currently infected and, by assumption, infectious; the removed
class (R) includes those who are recovered or quarantined as a result of the infection. Individ-
uals in R are assumed to be immune against reinfection. We let S(t), I(t), and R(t) represent
the numbers of individuals within the respective classes at time ¢.

It is natural to formulate this model as a continuous-time Markov process. In this process, the
numbers of individuals within each class change through time in whole-number increments.
In particular, individuals move between classes (entering S at birth, moving thence to I, and
on to R unless death arrives first) at random times. We will here assume that the birth rate,
death rate, and the rate of transition, -, from I to R are constants. The S to I transition rate,
the so-called force of infection, A(t), however, should be an increasing function of I(t). For
many infections, it’s reasonable to assume that the A(¢) is jointly proportional to the fraction
of the population infected and the rate at which an individual comes into contact with others.
Here, we’ll make these assumptions, writing A(¢t) = S I(t)/N, where (3 is the transmission rate

29
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and N = .5+ I + R is the population size. We’ll go further and assume that birth and death
rates are equal and independent of infection status; we’ll let 1 denote the common rate. A
consequence is that the expected population size remains constant.

Under these assumptions, the model’s deterministic skeleton is a system of nonlinear ordi-
nary differential equations—a vectorfield—on the space of positive values of S, I, and R.
Specifically, the SIR deterministic skeleton is

as I
—:u(N—S)—ﬁNS

dt

dI I

— =B—8—~T—ul
7 BN I —p
dR

= —~NI—uR

prm

It is typically impossible to monitor S, I, and R, directly. It sometimes happens, however,
that public health authorities keep records of cases, i.e., individual infections. The number of
cases, C(t1,t2), recorded within a given reporting interval [t1,%2) might perhaps be modeled
by a negative binomial process

C(tl, tg) ~ negbin(p A[ﬁR(tl, tg), 9)

where A7, g(t1,t2) is the accumulated number of recoveries that have occured over the interval
in question, p is the reporting rate, i.e., the probability that a given infection is observed
and recorded, 6 is the negative binomial “size” parameter, and the notation is meant to
indicate that E[C(t1,t2) | Ar—gr(t1,t2) = H| = pH and Var [C(t1,t2) | Arr(ti,t2) = H| =
p H+ p? H?/6. The fact that the observed data are linked to an accumulation, as opposed to
an instantaneous value, introduces a little bit of complication, which we discuss below.

5.2. Implementing the SIR model in pomp

As before, we’ll need to write functions to implement some or all of the SIR model’s rprocess,
rmeasure, dmeasure, and skeleton components. We have the option of writing these func-
tions in R. However, we can realize many-fold speed-ups by writing these in C. In particular,
one writes snippets of C code that are assembled, compiled, and dynamically linked.

To begin the process, we’ll write snippets that specify the measurement model (rmeasure and
dmeasure):

R> rmeas <- '

+ cases = rnbinom_mu(theta, rho * incid);

+ 1

R> dmeas <- '

+ lik = dnbinom_mu(cases, theta, rho * incid, give_log);
+ 1

Here, we're using cases to refer to the data (number of reported cases) and incid to refer
to the true incidence (number of new infections) over the reporting interval. The negative
binomial simulator rnbinom_mu and density function dnbinom_mu are provided by R. The
logical flag give_log requests the likelihood when FALSE, the log likelihood when TRUE. Notice
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that, in these snippets, we never declare the variables; pomp will construct the appropriate
declarations automatically.

For the rprocess portion, we could use gillespie.sim to implement the continuous-time
Markov process exactly using the stochastic simulation algorithm of Gillespie (1977). For
many practical purposes, however, this would prove prohibitively slow. If we are willing to
live with an approximate simulation scheme, we can use the so-called “tau-leap” algorithm,
one version of which is implemented in pomp via the euler.sim plug-in. This algorithm
holds the transition rates A, u, v constant over a small interval of time 0t and simulates the
numbers of births, deaths, and transitions that occur over that interval. It then updates
the state variables S, I, R accordingly, increments the time variable by dt, recomputes the
transition rates, and repeats. Naturally, as 6t — 0, this approximation to the true continuous-
time process becomes better and better. The critical feature from the inference point of view,
however, is that no relationship need be assumed between the Euler simulation interval §t
and the reporting interval, which itself need not even be the same from one observation to
the next.

Under the above assumptions, the number of individuals leaving any of the classes by all avail-
able routes over a particular time interval is a multinomial process. In 1()2)1rticular, the proba-
Mt

bility that an S individual, for example, becomes infected is pg_; = GET (1-— e~ M)+ 5t);

the probability that an S individual dies before becoming infected is pg_, = /V;;Tu (1 -
e~ MO+ 0t). and the probability that neither happens is 1 — pg_ — ps_ = e~ A+,
Thus, if Ag,; and Ag_, are the numbers of S individuals acquiring infection and dying,
respectively, in the Euler simulation interval (t,¢ + 0t), then

(As—1,A55,8 — Agyr — Agy) ~ multinomial (S(t); ps—1,ps—, 1 — ps—1 —ps—). (9)

The expression on the right arises with sufficient frequency in compartmental models that
pomp provides special functions for it. In pomp, the random variable (Ag_,7,Ag—,) in Eq. 9
is said to have an FEuler-multinomial distribution. The pomp functions reulermultinom
and deulermultinom provide facilities for respectively drawing random deviates from, and
computing the p.m.f. of, such distributions. As the help pages relate, reulermultinom and
deulermultinom parameterize the Euler-multinomial distributions by the size (S(t) in Eq. 9),
rates (A(¢) and p), and time interval 6¢. Obviously, the Euler-multinomial distributions
generalize to an arbitrary number of exit routes.

The help page (?euler.sim) informs us that to use euler.sim, we need to specify a function
that advances the states from ¢ to t+4dt. Again, we’ll write this in C to realize faster run-times:

R> sir.step <- '

+ double ratel[6];

+ double trans[6];

+ rate[0] = mu * popsize;

+ rate[1] = beta * I / popsize;
+ rate[2] = mu;

+ rate[3] = gamma;

+ rate[4] = mu;

+ rate[5] = mu;

31
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trans[0] = rpois(ratel[0] * dt);
reulermultinom(2, S, &ratel[1], dt, &trans[1]);
reulermultinom(2, I, &ratel[3], dt, &trans[3]);
reulermultinom(1l, R, &rate[5], dt, &trans[5]);
S += trans[0] - tramns[1] - trans[2];

I += trans[1] - trans[3] - trans[4];

R += trans[3] - trans[5];

incid += trans[3];

+ + + + + + + 4+ o+

As before, the undeclared variables will be handled by pomp. Note, however, that in the
above we do declare certain local variables. In particular, the rate and trans arrays hold the
rates and numbers of transition events, respectively. Note too, that we make use of pomp’s
C interface to reulermultinom.

Two significant wrinkles remains to be explained. First, notice that in sir.step, the vari-
able incid accumulates the total number of recoveries. Thus, incid will be a counting
process that is nondecreasing with time. In fact, the number of recoveries within an interval,
A1 g(ti,t2) = incid(ta) — incid(t1). Clearly, including incid as a state variable violates
the Markov assumption. However, this is not an essential violation: because none of the rates
A, i, or v depend on cases, the process remains essentially Markovian.

We still have a difficulty with the measurement process, however, in that our data are assumed
to be records of infections resolving within a given interval while the process model keeps
track of the accumulated number of infections that have resolved since the record-keeping
began. We can get around this difficulty by re-setting cases to zero immediately after each
observation. We tell pomp to do this using the pomp function’s zeronames argument, as we
will see in a moment. The section on “accumulator variables” in the “Advanced Topics in
pomp” document (provided with the package) discusses this in more detail.

The second wrinkle has to do with the initial conditions, i.e., the states S(to), I(to), R(to).
By default, pomp will allow us to specify these initial states arbitrarily. For the model to
be consistent, they should be positive integers that sum to the population size N. We can
enforce this constraint by customizing the parameterization of our initial conditions. We do
this in by specializing a custom initializer in the call to pomp. Let’s construct it now and
fill it with simulated data.

R> pomp(data = data.frame(cases = NA, time = seq(0, 10, by=1/52)),

x0 <~ c(8 =0, I=0,R=0, incid = 0)

fracs <- params[c("S.0", "I.0", "R.0")]

x0[1:3] <- round(params['popsize'] * fracs/sum(fracs))
x0

+ times = "time", t0 = -1/52, dmeasure = Csnippet (dmeas),
+ rmeasure = Csnippet(rmeas), rprocess = euler.sim(

+ step.fun = Csnippet(sir.step), delta.t = 1/52/20),

+ statenames = c("S", "I", "R", "incid"),

+ paramnames = c("gamma", "mu", "theta", "beta", "popsize",
+ "rho", "S.O0", "I.0", "R.0"), zeronames=c("incid"),

+ initializer=function(params, t0, ...) {

+

+

+

+
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Figure 8: Result of plot(sirl). The ‘pomp’ object sirl contains the SIR model with
simulated data.

+ }, params = c(popsize = 500000, beta = 400, gamma = 26,
+ mu = 1/50, rho = 0.1, theta = 100, S.0 = 26/400,
+ I.0=20.002, R.0 =1)) -> siril

R> simulate(sirl, seed = 1914679908L) -> sirl

Notice that we are assuming here that the data are collected weekly and use an Euler step-size
of 1/20 wk. Here, we've assumed an infectious period of 2 wk (1/ = 1/26 yr) and a basic
reproductive number, Ry of /(v + ) =~ 15. We've assumed a host population size of 500,000
and 10% reporting efficiency. Fig. 8 shows one realization of this process.

5.3. Complications: seasonality, imported infections, extra-demographic
stochasticity.

Let’s add a bit of real-world complexity to the simple SIR model. We’ll modify the model to
take four facts into account:

1. For many infections, the contact rate is seasonal: f = [(t) is a periodic function of
time.

2. The host population may not be truly closed: imported infections arise when infected
individuals visit the host population and transmit.

3. The host population need not be constant in size. If we have data, for example, on the
numbers of births occurring in the population, we can incorporate this directly into the
model.
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4. Stochastic fluctuation in the rates A, u, and -y can give rise to extrademographic stochas-
ticity, i.e., random process variability beyond the purely demographic stochasticity we’ve
included so far.

To incorporate seasonality, we’d like to assume a flexible functional form for 3(t). Here, we’ll
use a three-coefficient Fourier series:

log B(t) = by + by cos 2wt + by sin 27t.

There are a variety of ways to account for imported infections. Here, we’ll simply assume
that there is some constant number, ¢, of visiting infected individuals. Putting this together
with the seasonal contact rate results in a force of infection A(t) = 8(t) (I(t) +¢) /N.

Let’s suppose we have data on the number of births occurring each month in this population
and that these data are in the form of a data-frame birthdat with columns time and births.

We can incorporate this variable birthrate into our model by passing it as a covariate to the
simulation code. When we pass birthdat as the covar argument to pomp, we’ll create a
look-up table that will be used within the simulator. The linear interpolation of the lookup
table will be handled transparently by pomp: from the user’s perspective, a variable births
will simply be available for use.

Finally, we can allow for extrademographic stochasticity by allowing the force of infection to
be itself a random variable. We’ll accomplish this by assuming a random phase in 5:

A0 = () 1)

where ® satisfies the stochastic differential equation
d® = dt + o dWy,

where dWW (t) is a white noise, specifically an increment of standard Brownian motion.

Let’s modify the process-model simulator to incorporate these complexities.

R> seas.sir.step <- '

double ratel[6];

double trans[6];

double beta;

double dW;

beta = exp(bl + b2 * cos(2 * M_PI * phase) + b3 * sin(2 * M_PI * phase));
rate[0] = births;

rate[1] = beta * (I + iota) / popsize;

rate[2] = mu;

rate[3] = gamma;

rate[4] = mu;

rate[5] = mu;

trans[0] = rpois(rate[0] * dt);
reulermultinom(2, S, &ratel[1], dt, &trans[1]);
reulermultinom(2, I, &rate[3], dt, &trans([3]);

+ + + + F + o+ o+ o+ o+ o+ o+ o+
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reulermultinom(1l, R, &rate([5], dt, &trans[5]);

dW = rnorm(dt, sigma * sqrt(dt));

S += trans[0] - tramns[1] - trans[2];

I += trans[1] - trans[3] - trans[4];

R += trans[3] - trans[5];

incid += trans[3];

pop += trans[0] - trans[2] - trans[4] - trans[5];
phase += dW;

noise += (dW - dt) / sigma;

+ + 4+ + F + + 4+ o+ o+

R> pomp(sirl, rprocess = euler.sim(

step.fun = Csnippet(seas.sir.step), delta.t = 1/52/20),
dmeasure = Csnippet(dmeas), rmeasure = Csnippet(rmeas),
covar = birthdat, tcovar = "time", zeronames = c("incid", "noise"),
statenames = c("S", "I", "R", "incid", "pop", "phase", "noise"),

paramnames = c("gamma", "mu", "popsize", "rho","theta","sigma",
"s.o", "I.0", "R.O0", "bi", "b2", "b3", "iota"),
initializer = function(params, tO, ...) {
x0 <= c(8 =0, I=0,R=0, incid = 0, pop = 0,
noise = 0, phase = 0)
fracs <- params[c("S.0", "I.0", "R.0")]
x0[1:3] <- round(params['popsize'] * fracs / sum(fracs))
x0[5] <- params['popsize']
x0
}, params = c(popsize 500000, iota =5, bl =6, b2 = 0.2,
b3 = -0.1, gamma 26, mu = 1/50, rho = 0.1, theta = 100,
sigma = 0.2, S.0 = 0.055, I.0 = 0.002, R.0 = 0.94)) -> sir2
R> simulate(sir2, seed = 1914679908L) -> sir2

+ 4+ F o+ o+ o+ o+ o+ o+ o+

Fig. 9 shows the simulated data and latent states. The sir2 object we’ve constructed here
contains all the key elements of models used within the pomp to investigate cholera (King
et al. 2008), measles (He et al. 2010), malaria (Bhadra et al. 2011), pertussis (Blackwood
et al. 2013a; Lavine et al. 2013), pneumonia (Shrestha et al. 2013), and rabies (Blackwood
et al. 2013b).

6. Conclusion

The pomp package is designed to be both a tool for data analysis based on POMP models
and a sound platform for the development of inference algorithms. The model specification
language provided by pomp is very general. Implementing a POMP model in pomp makes a
wide range of inference algorithms available. Moreover, the separation of model from inference
algorithm facilitates objective comparison of alternative models and methods. The examples
demonstrated in this paper are relatively simple, but the package has been instrumental in a
number of scientific studies (e.g., King et al. 2008; Bhadra et al. 2011; Shrestha et al. 2011;
Earn et al. 2012; Roy et al. 2012; Shrestha et al. 2013; Blackwood et al. 2013a,b; Lavine
et al. 2013; He et al. 2013; Bret6 2014). As a development platform, pomp is particularly
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Figure 9: One realization of the SIR model with seasonal contact rate, imported infections,
and extrademographic stochasticity in the force of infection.
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convenient for implementing algorithms with the plug-and-play property, since models will
typically be defined by their rprocess simulator, together with rmeasure and often dmeasure,
but can accommodate inference methods based on other model components (e.g., dprocess
and skeleton, the deterministic skeleton of the latent process). As an open-source project,
the package readily supports expansion, and the authors invite community participation in the
pomp project in the form of additional inference algorithms, improvements and extensions
of existing algorithms, additional model/data examples, documentation contributions and
improvements, bug reports, and feature requests.

Complex models and large datasets can challenge computational resources. With this in mind,
key components of the pomp are written in C, and pomp provides facilities for users to write
models either in R or, for the acceleration that typically proves necessary in applications,
in C. Multi-processor computing also becomes necessary for ambitious projects. The two
most common computationally intensive tasks are assessment of Monte Carlo variability and
investigation of the role of starting values and other algorithmic settings on optimization
routines. These analyses require only embarrassingly parallel computations and need no
special discussion here.

The package contains more examples (via pompExamples), which can be used as templates for
implementation of new models; the R and C code underlying these examples is provided with
the package. In addition, pomp provides a number of interactive demos (via demo). Further
documentation and an introductory tutorial are provided with the package and on the pomp
website.
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