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Lecture
Seasonality and Diseases

Giulio De Leo

Deterministic, autonomous models

Let’s consider a typical SIR model:

ds

Gt MRl s
d

S =81 =+ )]
dR

ar AR

* S, I Rrepresent the state of the system at time t;
Note that here the rates of change in time dx;/dt
do not depend explicitly upon time t (the independent variable).

* W, B andyare model parameters (they determine the actual rate at which
processes occurs).
In basic SIR models, they are generally assumed
to be constant, i.e. they do not change with time.
These systems are called autonomous or time invariant systems.
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Assumption of time invariance for

model parameters might not hold true

Environmental stochasticity

— Non deterministic, year-to-year or within year random
fluctuations. Modeled through probability distribution functions

Climate change

— Long term trends in mean, variance and other statistical
properties of meteo-climatic variables, such as temperature,
precipitation, humidity, etc.

Seasonality

— Periodic, repetitive, and generally regular and
predictable pattern typically occurring every calendar year

Cyclical effects

— Periodic, repetitive, and more or less regular patterns spanning
time periods longer than one calendar year (and potentially
over several years or even decades, e.g. El Nifio, la La Nifia,
Pacific Decadal oscillation, interdecadal Pacific oscillation, etc.)
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Questions about seasonality

¢ What s the evidence of seasonal variations in diseases
incidence?

* What are the drivers of seasonality?
* How do we incorporate seasonality in our models?

* What is the effect of seasonality on the dynamics of infectious
diseases?

* Does the shape of seasonality matters?
* What are the implication for disease control and eradication?

* Main references on seasonality and diseases: _
— Keeling & Rohani 2008. Chapter 5. Princeton University Press. == i3
— Altizer et al. 2006. Ecology Letters 9:476-484
— Grassly & Fraser 2006. PRSLB, 273:2541-2550

A little bit of history

* Hippocrates, On Airs,

Waters and Places 380 BC AN
—  Sargent, ll, Frederick (1982), Hippocratic heritage : a history of A C C O U N T

ideas about weather and human health, New York: Pergamon
Press Of the Principal

. Syd enham Variations of zbe Weather,

And the Goncomitant
— Observationes medicae 1676 and Epistola responsoria

1670. commented on seasonal and recurrent epidemics Epidcmical Difeafcs,

° H|||ary 1740 > From m:fst(}e]ir;;:6;7t;+me End
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Soper 1929

SI model prediction Measles data in Glasgow
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* Soper wondered why - in direct contrast to predicted
damped oscillations from SIR model — wild epidemics were
observed

* Soper suggested that a missing ingredient in basic model was
seasonal change, because of “perturbing influences, such as
might be brought about by school break up reassembling, or
other annual recurrences”
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Since then, a large
body of work has
demonstrated
influence of measles,
pertussis,
chickenpox, rubella
and influenza

From Dowell 2001
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Seasonal
variation in the
incidence of
poliomyelitis by
latitude, 1956-57

From Dowell (2001)
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Open access, freely available online PLOS MEDICINE

Climate Drives the Meningitis Epidemics Onset
in West Africa

Benjamin Sultan'’, Karima Labadi?, Jean-Frangois Guégana. Serge Janicot' 2005
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Anecdotic evidence of the link
between climatic variability and
animal diseases




Peste des petits ruminants

* acute, contagious, viral disease
of small ruminants

* transmitted mostly by aerosol ¢ outbreaks associated with

droplets between animals in the onset of the rainy season
close contact. or dry cold periods
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PPR in goats in Nigeria; 1982-86.
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Ecology Letters, (2006) 9: 467-484

0.1111/j.1461-0248.2005.00879.x

REVIEWS AND

SYNTHESES

Seasonality and the dynamics of infectious diseases

Abstract
Sex

Sonia Altizer,'* Andrew Dobsor
Parviez Hosseini,? Peter Hudson,*
Mercedes Pascual® and Pejman
Rohani"*

onal variations in temperature, rainfall and resource availability are ubiquitous and
can exert strong pressures on population dynamies. Infectious diseases provide some of
the best-studied examples of the role of seasonality in shaping population fluctuations.

In this paper, we review examples from human and wildlife disease systems to illustrate

Table 1 Parasites and rens from huma

nd vertebrate animals for which seasonal drivers generate annual pe

ks or long riation in in

Pathogen /discase Host

Veetor-borne discases
Malaria (Plasmodinns vivax and — Humans

Plasmodinm falciparnn)

Dengue haemorrhagic fever  Humans

(dengue viruses type 1—4)

West Nile virus \vian hosts, humans,

other vertebrares
Tick-borne encephalitis viras  Rodents, humans
Diarrhoeal discases
Cholera (15brio cholerae) Humans
Rotavirus infections FHumans
Respiratory-aerosol and

contact-borne pathogens
Measles (morbillivirus) Humans

Timing of outbreaks

Peak transmission during

WALM OF £iny seasons

Peak case rates during hot-dry
and rainy scason

Human cases peak in summer and early

fall in temperate regions

Transmission durin

spring and summer;

persistence depends on seasonality

One or two annual peaks in
bring and fall
Winter peaks; timin:

with latitude

Increases in fall ar spring

Mechanism of s

Rainfall

and temperature affect mosquito

vector abundance, biting rates and parasite

development within vectors
Rainf:

veetor abundance, temperature influences

and temperature affect mosquito

parasite replication in vectors
Temperature and rainfall

fect mosquito
veetor abundanee; temperature influences
parasite replication in vectors

Virus occurs in are;

s with scasons
synchrony of larval and nymph tcks
as determined by rapid fall cooling

Rainfa
pathogen survival and transmission

and temperature influence

\agregaton of children could

elevate contacts and transmission

Host aggregation during school terms
inc

ses transmission

* So, there are plenty of seasonal fingerprints in
the appearance of recurrent epidemics
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Outline

e What s the evidence of seasonal variations in diseases
incidence?

—>What are the drivers of seasonality?
* How do we incorporate seasonality in our models?

* What is the effect of seasonality on the dynamics of infectious
diseases?

* Does the shape of seasonality matters?
* What are the implication for disease control and eradication?

What causes seasonality?
* Host behavior

— School terms

— Seasonal migration between
urban and country sides

— Wildlife host behavior

N
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Processes important to
parasite transmission 2>
* Effect of seasonal variations
of physical parameters
(temperature, humidity,
rainfall, salinity, flow, etc.)

Source: Altizer et al. 2006

Development or survival
of parasite stages

Host social contacis

Vector abundance

* on Vibrio cholera

* Nematodes’ free living
stages

* Vector survival

Host birth rate 2>

Annual
plants

Mammals
or birds

Bivoltine,
insects

Host susceptibility =

Manth of year

Outline

> How do we incorporate seasonality

in our models?

13-Jan-15
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How do we incorporate seasonality? (Part I)

* Let’s focus on seasonality in transmission rate 3
* We need to make [ a function of time [(t)

2500 EZﬂ—ﬂ(t)& —;tS
2000 di
1500 —=LM)SI —(y+ )l
2000 dt
500 drR
5 1 —=9 —uR
0 0 e A—u

Bt) = ,30(1+ yin COS(a)t)) NB: o =2n
— { when period of
Mean Amplitude of Frequency S
contact rate forcing of forcing seasonallty isl yr

Outline

>What is the effect of seasonality
on the dynamics of infectious diseases?

13-Jan-15
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The simplest case:

seasonal fluctuations in transmission rate translate into
fluctuations of similar period and magnitude in disease incidence

Bt) = B,(1+ B, cos(at))

Transmission
rate

NN

0 12

Disease
incidence

ANNMNNNNNNMN
0 12
Time t [years]

Bailey’s (1975) SIR model

‘:'j_f =N — B(t)SI /N B(t) = B, (L+ f, cos(at))
dI
5 = AOSH/N -

* Bailey explored the dynamics of small perturbation to the unforced
equilibrium assuming a small amplitude of seasonality (£;<<1).

* The magnitude M of the forced system is:

2rfy : :
M = i
\/(ﬂﬂo = wz)z + (wﬂRo )2 '

Non-seasonal
system

20 25

5 0 15
Time(Years)

where:
 is the frequency of the forcing function

F=./ uf, the intrinsic frequency of oscillations of the unforced system

13-Jan-15
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By making the appropriate substitutions
for measles (k&R page 160-161):

. 1/y=13 days « PBy=500
- p=002y? |:> .« Tp=2n/F = 21y

- R,=17 « T=2no = 1y

) M =7.76p8

Therefore, a 10% variation in the transmission
parameter translates into seasonal variations of
78% in case notification

=>» Relatively modest levels of variation in the
transmission rate can translate into large
amplitude fluctuations in the observed
disease incidence

13-Jan-15
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Moreover...
27
as M = '28 4
2 2 2
/\//F — w&(a),uRo)
Natural Frequency of

frequency of oscillation of the

oscillation forcing function

—> forcing is most greatly amplified when the
intrinsic period of oscillation T,,=2n/F is
close to the period of the seasonal forcing
function, i.e.lyear(F—> o)

Influenza model by Dushoff et al. 2004 PNAS

d_S _ N _ S _ I 5 ﬂ(t)SI p);ramical re;onqnce can account for seasonality of
dl_ smsl |
dt N D

where:

D = duration on infectiousness (6 — 8 days)
L = duration of immunity (4-8 years)
N = 500,000 Ry=Dg,= 10

Bt) = 5,1+ f, cos(at)) f,=0.04

- Endogenous period of oscillation: T =27,/DL/(R, —1)
T between 0.4 and 1.5 years

13-Jan-15
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D = duration of infection L = duration of immunity Dushoff et al. 2004 PNAS
D=0.02yr L=4yr $,=500 8,=0.02 > T=0.59 yr
4000 ——T—T—T—T—T—T—7—
3500 | : _
3000 f 0, .1 —>Harmonic
250N A A ) [1%¢ N _;1

2000 ¥ 7N UV U W 7 VA oscillations

1500

1000 |- ratio peak/trough (B) = 1.04 1
500 I ratio peak/trough (1) =2.00
1 1 1 1 1 1 1 1 1

0
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D =0.0025yr L=8yr 3, =400 3, =0.02> T=0.94 yr

~ 4000 Pr—y—— T

3500 - | TEEEE ?—j

oo NN L AR

2000 [ | | i [] | | 4 - Harmonic
1500 g+t \,-. Sisiwimiwiw

10001 |}/ | 1 1YL H resonance
500 |-ratio péatk/trpdg_h 8V \, é~

0
10 11 12 13 14 15 16 17 18 19 20
Time (years)

Duration on infection (D)
Duration of immunity (L)
Mean transmission rate (/)

E Dynamical resonance can account for seasonality of

Peak/trough

08 1 11 12 13 1.4

Approximate endogenous period

0.4 0.5 0.6 07 08

Fig. 2. Magnitude of observed oscillations (ratio of peak-to-trough inci-
dence) in the stochastic forced SIRS epidemic model plotted against the
approximated period of endogenous oscillations in the SIRS model
[27VDL/(Ry — 1)], for 2,000 sets of parameters randomly chosen from the
ranges given in the text (shown are the 1,560 trials where the disease persisted
for at least 20 years after being started from the deterministic equilibrium).
Underlying variation in transmission rate is = 4% (i.e,, 87 = 0.04 in Eq. 3).
Strong resonance occurs when the approximate endogenous period is near
1 year.
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Effect of seasonality

So, if F = @ = forcing is most greatly

amplified, oscillations have same period of the
forcing function (i.e. 1 yr)

What happen if F < ©?
If the intrinsic period of oscillation is close to

an integer multiple of the period of the forcing
function, i.e. ®/F=2, 3,4, .., n

- then sub-harmonic resonance
(multi-years periodicity)

Dietz (1976)

R, VS. B

——> Degree of

seasonality
Ry=17 Ry=10 Ry =3
Natural Period ~ 2.1 yrs Natural Period ~ 2.8 yrs Natural Period ~ 2.1 yrs
-8 -6 -6
Harmonic T=1 T=1 T=1
. . = B 4 =0.02
oscillations 8 o 1 o S Ay
5 ~1%0 995 1000 %0 995 o "% 995 10000
§ = = b T=1
Harmonic = T=2 T=1 -
resonance s - e ol By =0.1
g J Nl B At BN (ATATATATAVATAY
g . -10 -10
2 g90 995 1000 ~ 990 995 1000 960 995 1000
- =7 °° = ° -
Multi-year ! " 57| . =1
- B & B, =0.225
riodicity e
pe -10) -10 -10
990 995 1000 990 995 1000 990 995 1000
Time (Years)
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Constructing a bifurcation diagram

* Choose a starting value for control parameter (eg ,=0.025)
» Set model’s initial conditions (eg S(0) = 0.01, 1(0) = 0.01
* Integrate for some period (eg. 200 years)

* For final 10 years of the simulation, note IQ at the same time
every year (eg October 1%)

* Use a scatter plot to draw IC against value of f5;
* Slightly increase value of control parameter and repeat

:I:l'ﬂl =0. 025 _l-c 'ﬂl =0.05 %':'ﬂ;{ =0.25
......... ! Woa b b ddbiid
. | Chaotic

g 4
E s . Z,
-E::F”lﬁ“nn" ..E':Fl ﬁ F ﬁ Tl 2| dynamics
A L
i iy |||||||J Dl £ |T I| |
|I-: 9L M :W' ':G 0 imL oo I‘Ibll_:?I i .!‘JI:E'
A bifurcation diagram
< B =0. 025 .1, =0.05 or2° 1 =0.25
g qap s bbb b E-.... ' EEREER ﬂ ' O O A | i
"3 B & .| chao
sl g ULl g
: ""'“”“"J Taslals 3] 1 1
lI 13 s P e & = 'i'ml-..‘
st
i 100 *“ “
S e
g 50 3 D

@ THE ROYAL
[& SOCIETY

Transmission rate S
Population dynamic interference among

childhood diseases

Pejman Rohani’, David J. Earn, Biirbel Finke: milallla_l‘xl.r)an'r Grenfell
Department of Zoology, University of Cambridge, Downing Stret, Cambridge CH2 3EJ, UK
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Seasonally forced rabid SEI model

Bolzoni et al. 2008a, Bolzoni et al. 2008b

Susceptibles dS/dt =aS -(b + yN)S — /35l

Exposed dE/dt = Sl - (c+ b + yN)E

(infected but not yet infective)

Infective di/dt = of - (a+ b + yN)I
N=S+E+I

a = fertility rate
= transmission rate
y = density dependence

b = natural mortality

o = disease-induced mortality
o = transition rate E—l

K = carrying capacity = (a- b)/y

Nature Vol. 289 26 February 1981

765

Population dynamics of fox rabies in Europe

Roy M. Anderson’, Helen C. Jackson’, Robert M. May* & Anthony M. Smith"

NB: For suitable combinations

of model parameters, i.e.
- high transmission rate Sor
- high carrying capacity K
- and long incubation time

the autonomous
(non-seasonal) system
exhibits sustained
oscillations

Fox density, K (km~?)

30

DAMPED
OSCILLATIONS

—mm %
0

10 30 50
Incubation period, 1/ (days)
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Which is the effect of seasonality
in the transmission rate? -
p=L,(1+ ¢gsin(2xt))

Body size = 1 kg S

CWuaprdjosﬁlﬂtion

ves

(A)

P
y?faos
h(4)

R2

h(2)

H’

40

Infectives

% B & EEED v o > G RR R £ ottt R g
>
c 20 B R
] 2 :
a £ )
- = !
173 VAVAVAVAVAVAVAVAVAVAVAVA
2 VVVVVVN
TC! » =]
DISEASE FREE 2 j
0 = h |
0 0.1 02 03 0.4 8 | ’
£
Seasonality & A.A/\AA]\/J\/M
. . 0 12
Bolzoni et al. 2008a, Bolzoni et al. 2008b Time ¢ [years]

* In seasonally forced models, more than one
possible qualitative dynamical behavior may
exist for the same set of model parameters
(generally higher values of 3,)

- there are multiple stable attractors

and which attractor is observed depends upon
the initial conditions

13-Jan-15
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Size of the basin on attraction (b) for different
initial conditions

- period-1 cycle
[ ] period3cycle
[ ] period4 cycle

If we add environmental noise,
there is the possibility of
switching from a period-3 cycle to
cycles of period 1 or 4

and vice versa

Susceptible 5,

4K -
001K

Infectious 1,

by () T(°C)

D,

Ry/C

Ecology Letters, 2012) doi:10.1111/ele.1202

IDEA AND
(43814391l Metabolic approaches to understanding climate change

impacts on seasonal host-macroparasite dynamics

0.5

0.25 Abstract
Piter K. Molnac'™ Susan ) Ketz?  Climate change is expected to ler the dynamics of infctious discases around the globe. Predicive models
Brysnne M, Hoar'and Andrew P, remain clsive due 1o the complexity of bost-paraste systems and insufficient dats descrbing how eaviroa-

Dobson,’* mental conditions affect vasious system compoacats. Here, we link host-maccoparssite models with the

0 100 200 300
Day-of-the-year
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Outline

> Does the shape of seasonality matters?

1700 Winter Term Spring Term Autumn Term
1600 ol
—_ T
& 1500 Term Time 1
L ool pmmmmtmeny lemmmmaaad jmmmedfmmaa 1
o ! \, ' : T 1 } ' H
c ' N 'y Comected ! ' s '
S 1300} Cosine—=\ ! 1 TemTme | I 1
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a0 . . .
0 50 100 150 200 250 300 350

Does the shape of
the forcing function matter?

* |s seasonality is driven by schools,
a “square wave” might be more appropriate

1801

Time (Years)

B(t) = B,1+ Bterm(t))

* B is the amplitude of
seasonality

e “term(t)” is +1 during school
terms and -1 during holiday

* Mean transmission ,needs to
be tuned by taking into
account that there are 92
holidays and 273 school days

13-Jan-15
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Does it matter?

Sinusoidally forced
g

H,

ELSEVIER Preca D 148 (000 317335

PHYSICA ()

Seasonally forced disease dynamics explored as
switching between attractors
Matt . Keeling*, Pejman Rohani, Bryan T Grenfell

Term-time forced
-

L

09 ; 0.8 : 54
08 08
= 07 ) 0.7
= 0: - 0. 4
g E 3
2 08 2 06 5
-4 a
g 05 55 05 a §
) £
§ 04 E 0.4 §
g 03 3 0.3 2
02 0.2
01 0.1 1
£oo 1000 1500 §00 1000 1500
Mean Transmission Rate, B, Mean Transmission Rate, f§;
L —
ICA )
Seasonally forced disease dynamics explored as
switching between attractors
Matt J. Keeling*, Peyman Rohani, Bryan T Grenfell
Unforced

Term-time
attractor

~[._System attractor

Holiday-time
attractor —~
(]

0.045 0.05 0.055 0.06
Susceptibles

Trajectories of the holiday
term-time attractor
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T Seasonally forced disease dynamics e\
R R L L switching between attractors -
Trajectories-0f the school days M. e, Pean Robas, Byon T Grenel
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‘ \ e
- : \
Term-time-- L N
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\ NN
107 Y \\‘ Y 3
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Outline

> What are the implication for disease control
and eradication?

A Simple Model for Complex
Dynamical Transitions in

Effect of control it S
* Consider a SIR model with a fraction p of newborns vaccinated

ds

rrie v(l-p)-BU)SI — 15

CI—I—/i’(t)SI —(y+ )l

at YT H

drR

— = - 1R

q o

* Now, let’s do a linear change of the state variables of the model
S=s(1-p)

I =i(l-p)
R=rl-p)+pv/iu

13-Jan-15
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A Simple Model for Complex
Dynamical Transitions in
Epidemics
David J. D. Earn, 2* Pejman Rohani,? Benjamin M. Bolker,>
Bryan T Grenfell®

Effect of control

* By substituting into the system, after some simplifications...

ds . )
L v pOa- pysi—si
= BOU-Psi=(r+ )
ﬂ— i— ur

a A

* Therefore, under vaccination, system reduces to basic SIR
model with transmission rate 3 corrected for vaccination
effort

* Similarly, if birth rates v were to change to v’, the transmission
rate B would be replaced with Bv’/v

A Simple Model for Complex
Dynamical Transitions in

Epidemics
10 -
L 10 \ -
= 108 = \ t
bt
S 1078 | .
S o \ Prevaccine era
= L
= osl \ England & Wales

1 1 1
4] 250 500 750 1000 1250 1500 1750 2000
Mean Transmission Rate (8}

< Vaccination ----- baby boom —
<€ >
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The dynamics of measles in
sub-Saharan Africa

Matthew J. Ferrari', Rebecca F. Grais®, Nita Bharti’, Andrew J. K_ Conlan’, Ottar N. Bjernstad™*, Lara J. Wolfson’,

Philippe J. Guerin', Al Djibo® & Bryan T. Grenfell*
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The dynamics of measles in
sub-Saharan Africa

* Erratic epidemics
* Strong transmission

seasonality might still
help to predict the
annual start of the
outbreak

regular, pulsed vaccine
programmes may lead to
more regular dynamics
but are unlikely to
eliminate major
outbreaks until baseline
vaccine levels reach high
levels.

Explaining Seasonal Fluctuations of Measles in Niger Using
Nighttime Lights Imagery
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Scignce 334, 1424 (2011);

AYAAAS DOI: 10.1126/science. 1210554
E Miamey Zinder
[=]
58
=
E-E i
3
= o |
(=]
F E =
T i ™
g2 j i
= g i
S o g w ﬂ
53] § | 2
%‘N‘ L i HI
3 IR b
E N.' 4! - "n
Eall, S
m o
[ nuGe & Dar 2 0.e2 2

Estimated relative transmissian rata

13-Jan-15

27



13-Jan-15

Reported measles cases | == ==r..

* shading gives central 95% of predicted measles
incidence from 25000 model simulations from

Commune 1

— nighttime lights—
informed model (red)

50 200

— no migration model
(blue)

— constant migration
model (gray).

Daily reported cases ©
510

—

307 = 42 142

* Dashed line indicates timing of outbreak response
vaccination.

Outline

- Conclusions
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Conclusions

» Seasonality can be a fundamental determinant of the
dynamics of infectious diseases
— Harmonic resonance and multi-year variability
— Multiple, coexisting stable attractors, shift among them
— Strength and shape of seasonality do matter
— Seasonality might increase the peak/trough ratio and,
under specific circumstances, foster stochastic fade out of
the disease
* To exert the maximum effect, possibility of tuning up
the timing of vaccination interventions so as to account
for seasonal fluctuations

* Climate change might affect the dynamics of infectious
diseases also through subtle but crucial changes in the
strength and type of seasonality
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