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Tools used in the model

� Difference equations with daily step
(formulation)

� Fuzzy inference systems (parameterization)

�Takagi-Sugeno: provides an intuitive representation of a 
non linear system through a non linear interpolation of linear 
systems. 

�Mamdani: allows representing empirical knowledge when 
the system’s behavior is not known.



Why Fuzzy Logic?

� It makes possible to represent linguistic expressions and allows to
include non quantitative information gathered during field work.

� Allows enriching the model without replacing crisp logic.

� Permits a flexible design.

� Improves the model’s performance.

� It is easy to implement.



Basic Definitions

Definition: A fuzzy set A defined in an universe X is a set of 
pairs (x, µA(x)) where x belongs to X and µA(x) is a 
number in the interval [0, 1] representing the degree of 
membership of x in A.

This suggests that membership in a fuzzy subset should not 
be on a 0 or 1 basis, but rather on a 0 to 1 scale. That is, 
the membership should be an element of the interval 
[0, 1].

[ ]1,0: →XAµ



Membership functions
Membership functions are used to quantify the degree of membership

of an element of the universe X to the associated fuzzy set A. 

The choice of such function depends on the context of the variable. 
Most common functions are:

Z-sigmoidsS-sigmoids

Trapezoidal

Gaussian

Triangular



Example: “fuzzified” classic sets

It is possible to look at a classic or crisp set as a 
fuzzy set by taking the characteristic function as the 
membership function.

Membership functions



Usually, the degree of membership is assigned through the 

application of a certain number of rules. 

A fuzzy rule is a set of IF-THEN propositions that model the problem 

to be solved. 

The simpler rules have the format:

“If x is A then y is B”

A rule expresses a relationship between two fuzzy sets A and B, 

whose membership function is represented by a logical implication

Fuzzy rules

)y,x(BA→µ



Fuzzy rule-based systems (FRBS)

INPUT

OUTPUT

FRBSFRBS

A FRBShas 4 components:



Fuzzy rule-based systems (FRBS)

INPUT

OUTPUT

A FRBShas 4 components:

InputInput ProcessorProcessor
Here, non quantifiable 

input is translated into 

fuzzy sets of their 

respective universes. It 

assigns to each input 

variable a membership 

value into each fuzzy 

set.



Fuzzy rule-based systems (FRBS)

INPUT

OUTPUT

A FRBShas 4 components:

InputInput ProcessorProcessor

This is a key knowledge-

encoding component of 

fuzzy rule-based 

systems. 

The base is composed by 

a collection of fuzzy 

conditional propositions 

in the form of  IF-THEN

rules. 

Essentially, fuzzy rules 

are fuzzy relations of the 

Cartesian product of the 

universes of the variables 

of interest. 

RuleRule
BaseBase



Fuzzy rule-based systems (FRBS)

INPUT

OUTPUT

A FRBShas 4 components:

InputInput ProcessorProcessor

RuleRule
BaseBase

FuzzyFuzzy InferenceInference
MachineMachine

The fuzzy inference 

machine performs 

approximate 

reasoning using 

the compositional 

rule of inference.



Fuzzy rule-based systems (FRBS)

INPUT

OUTPUT

A FRBShas 4 components:

InputInput ProcessorProcessor

FuzzyFuzzy InferenceInference
MachineMachine

DefuzzificationDefuzzification

In fuzzy rule-based systems, the 

output is usually a fuzzy set. 

Often, especially in system 

modelling, a real number is 

required as output. The output 

processor provides real-valued 

output through defuzzification, a 

process used to choose a real 

number that is representative of 

the corresponding fuzzy set.



Fuzzy rule-based systems (FRBS)

Also called

FuzzyFuzzy

InferenceInference

SystemSystem

(FIS)(FIS)

INPUT

OUTPUT

FuzzyFuzzy InferenceInference
MachineMachine

DefuzzificationDefuzzification

RuleRule
BaseBase

InputInput ProcessorProcessor



Temperature 

Larval length

� Average larval length indicates development. 

� Development time is regulated by temperature. Higher

temperatures yield shorter development time, as in Pandey

(1972), Gibson (1981), Catto (1982), Levine (1978), Rossanigo

(1995), Fiel et al. (2008).

Development time from egg to
infecting larvae



Lt(a)=

IC: Lt(0)=l0(Tt)

where Lt(a) average length of the “t” cohort aged “a”, 

r(Tt) growth rate, 

l0(Tt) length at eclosion andlL3(Tt) initial length of L3 larva. 

Maturation time is reached when“a” is such that:

Lt(a)< lL3(Tt+a)< L t(a+1).

Herer(Tt), l0(Tt) andlL3(Tt) are FIS of the Takagi-Sugeno type

[1+r(Tt+a)] Lt(a-1)  si Lt(a)< lL3(Tt+a)

lL3(Tt+a)                   si Lt(a)> lL3(Tt+a)

Model for development time from
eggs to infecting larvae



l0(Tt)
f[10] (T)=6T+323
f[15] (T)=-13.8T+620
f[20] (T)=1.2T+320
f[25] (T)=-4.6T+465
f[30] (T)=-2.4T+399
f[35] (T)=9

lL3(Tt)
g[10](T)=4T+799
g[15] (T)=2.8T+817
g[20] (T)=-5.8T+989
g[25] (T)=-3.6T+934
g[30] (T)=-13.8T+1240
g[35] (T)=21.62

r(Tt)

h[10] (T)=0.0036
h[15] (T)=0.0184T-0.2
h[20] (T)=0.0049T+0.0696
h[25] (T)=0.0136T-0.1485
h[30] (T)=-0.0031T+0.3545
h[35] (T)=0.007

lL3(T)=[1+r ](a) l0(T)

Model for
development time 
from eggs to
infecting larvae

Data from Pandey (1972)
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FieldField workwork
A 0.96 hectare paddock located on the University Campus 
(UNCPBA) in Tandil was used for the field work. The paddock 
was divided into 16 sub-paddocks. 
Two naturally infected calves contaminated the sub-paddocks 
with eggs of gastrointestinal parasites. 
Faecal samples for egg counts and coprocultures were taken 
weekly from the "contaminating" calves during the grazing 
period. Faecal egg counts were used to plot the contamination of
the paddock. Coprocultures allowed the identification of which 
nematode species were present in the contamination.
On the 15th day of each month, faecal matter was collected from 
the paddock. Then weekly samples were taken in the lab from 
collected faecal matter in order to analyse the development from
egg to L3. Simultaneously, grass samples were regularly taken 
from the paddock over the 16-month period to assess the 
infection of pastures as well as the survival of L3 larvae in 
pasture. (Fiel, C.A., et al., 2008)



Data
� HPG (eggs per gram): from field data. Value is kept constant from

the day of the sampling till next day of sampling (aprox. 15 days)
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. Simulations were run using mean daily
temperatures recorded at Tandil over the
period 1994-1998.
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Data were provided by Fiel and collaborators
from their field work carried on in 1994-1998.

Campo

Modelo

Campo

Modelo

Simulations of development time from
eggs to infecting larvae



Simulations of development time from
eggs to infecting larvae

How important is the order in which daily average 
temperatures occur? In other words, if we take any
given temperature vector and rearrange its
components, is the development time the
same?

If we take two vectors with mean temperature µ, is
there a significant difference between the outputs of
the model if the ranges of temperature are different? 
In other words, if the components of the temperature
vector are within the interval [µ−σ,µ+σ ] or the interval
[µ−2σ,µ+2σ], is there any significant difference?

The answer is YES



• The output error is less than the sampling error in the
field experiments. 

• Simulation results yield a mean estimation error (MEE) 
of 0.64 weeks, with variance 0.34, and a determination
coefficient R2 = 0.74.

• The model exhibits high sensitivity to daily temperature
variation and thermal amplitude. 

Model for development time from eggs to
infecting larvae



How does rainfall affect the life-cycle?

Two effects: 
• Regulates migration of L3 larvae to pasture.
• Affects pre-infective mortality of L3 larvae.

Free-Living Stage Model



Pre-infective mortality

Downpour2 (50-600)5

Downpour1 (10-50)Autumn (45-228)4

High
(0.5-1)

Rain (5-20)Spring (228-365)L3 (0.7-1)3

Moderate
(0.2-0.6)

Drizzle2 (2-10)Winter (136-319)L2 (0.3-0.9)2

Low
(0-0.35)

Drizzle1 (0-2)Summer (-45-136)L1(0-0.6)1

Mortality ([%])Rainfall ([mm])Season ([d])Age ([%])

Free-Living Stage Model
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MigrationParámetros Variable 

Lingüística(tipo) 

Nombre Tipo 

α β γ η 

Verano Z 0 136   

Otoño Trapezoidal 45 121 151 228 

Invierno Trapezoidal 136 213 243 319 

Estación 

(entrada) 

Primavera S 228 365   

Debil Z 2 5   

Moderada  Triangular 2 5 10  

Fuerte Trapezoidal 5 8 17 20 

Muy Fuerte Trapezoidal 10 20 40 50 

Lluvias 

(entrada) 

Torrenciales S 50 70   

Muy Baja Z 0 0.1   

Baja Triangular 0.1 0.2 0.4  

Moderada Triangular 0.5 0.6 0.8  

Migración 

(salida) 

Alta S 0.8 1   

 

Free-Living Stage Model



Lluvia

Dia

M
ig

ra
ci

ón

Migration

Free-Living Stage Model



L3ND

Day
1

Day
2

Day
4

Day
3

Day
301…

µ in pasture

µ in dungpat

µ preinfective

L3D
M
i
g
r
a
t
i
ó
n

L3P

( )( )( ) ( )
( ) ( )aTlaif L

 a- Hata,Ra,t - aH

tLt

tet

+≤
++=

3

Pr 11)( µ

( )
( )




=
=

=
wwPatWt HPG(t) .NAnimal 

wwPatWt HPG(t) NAnimal 
tH

  weightscow' if   )(18

  weightscalf' if   )(3.6
)(0

( )( ) ( )
)1t(ND3L)t(D3L)-1( )))t(t,R(-1()1t(D3L

tjjsijH)t(ND3L

IDDP

j

++=+

=+=

µδ
ττ

( )
( ) ( ) ( )kC)t(11kC

)t(D3L)t(t,R(0C

tpt

DPt

µ
δ

−=+
=

( ) ( ) ( )∑
−

=
−+=

1t

1i
it3L ikC0CtP

Mortality in 
pasture

Number of infective larvae in pasture

Free-Living Stage Model



Parámetros Variable 

Lingüística(tipo) 

Nombre Tipo 

α β γ η 

Verano Z 0 136   

Otoño Trapezoidal 45 121 151 228 

Invierno Trapezoidal 136 213 243 319 

Estación 

(entrada) 

Primavera S 228 365   

Baja Z 0 14   

Moderada Trapezoidal 10 15 23 26 

Temperatura 

(entrada) 

Alta S 23 32   

Baja Triangular 0 0.2   

Moderada Triangular 0.1 0.2 0.4 0.5 

MortalidadPastura 

(salida) 

Alta S 0.25 0.7   

 

Mortality in 
pasture

Free-Living Stage Model



Free-Living Stage Model



Simulations: dynamics of the infective
larval population

Field data



Simulations: dynamics of the infective
larval population

Field data



December 1997 -
January 1998

April 19982:(1997)

July 1997July 19971:(1997)

November 1997August 19972:(1996)

July 1996July 19961:(1996)

November-
December 1995

November-
December 1995

2:(1995)

September 1995November 19951:(1995)

SimulationField dataSemester: (Year)

Peak of infection



OctoberOctober2:(1997)

JanuaryMarch1:(1997)

OctoberOctober2:(1996)

JanuaryApril1:(1996)

OctoberOctober2:(1995)

JanuaryApril1:(1995)

SimulationField dataSemester: (Year)

Beginning of infection



End of October 
1998

End of October 
1998

2:(1997)

End of September 
1997

End of September 
1997

1:(1997)

End of June 1997End of June 19972:(1996)

End of October 
1996

End of November 
1996

1:(1996)

End of June 1996End of June 19962:(1995)

End of December 
1995

End of December 
1995

1:(1995)

SimulationField dataSemester: (Year)
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Argentina

Main cattle
production
regions

Buenos Aires

Santa Fe -
Cordoba

Corrientes



Model response to variations in the temperature series

Simulations: dynamics of the infective
larval population



Respuestas del modelo a variaciones en las series de temperatura.

Model’s response to seasonality of precipitations.

Simulations: dynamics of the infective
larval population



The model adequately replicates the dynamics of
� the time at which the first L3 larvae appear in the

pasture, 
� the days in which peak infections occur, and
� the duration of the infection.

The simulations results suggest diferent implications about
the effects of weather conditions on the infection
dynamics. 

The model properly reflects the impact of seasonality
(temperature and precipitation) on preinfective (in dung) 
and infective (in pasture), corroborating the hypothesis.

Simulations: dynamics of the free-living 
infective larval population



21 days

L3P

L4
L4i

(Inhibition)

Ingested L3

Adults
(L5)

Parasitic Stage Model



Fuzzy inference systemof Mamdani type.

Variables:
� Number of days that the L3 cohort spent in the pasture

� Mean daily temperature

� Photoperiod

Proportion of inhibited larvae
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Proporción de larvas inhibidas.

Variable 

Lingüística(tipo) 

 

Valor de los parámetros 

 

 

Nombre de la función 

 de membresía 

 

Tipo 

a b c d 

T-m Z(x;a;b) 3 4   

F1 Tri(x;a,b,c) 3 6 7  

F2 Tri(x;a,b,c) 6.5 8 10  

F3 Tri(x;a,b,c) 9.9 12 14  

Tiempo de 

exposición 

(entrada) 

T-M S(x;a,b) 13.5 16   

D2 Z(x;a,b) 9.1 12.5   

D4 Tri(x;a,b) 9.1 12.5 15.5  

D6 Tri(x;a,b) 12.5 16 19.8  

Temperatura 

(entrada) 

D8 S(x;a,b) 16.5 19.8   

Fot1 Z(x;a,b)     

Fot2 Trap(x;a,b) 11.1 13 14.4 14.55 

Fotoperíodo 

(entrada) 
Fot3 S(x;a,b) 14 14.7   

Baja Tri(x;a,b) 0 6 12  

Moderada Tri(x;a,b) 10 25 60  

Proporción de 

 larvas inhibidas 

(salida) Alto Tri(x;a,b) 50 75 90  

Proportion of inhibited larvae



Proporción de larvas inhibidas.

Fot1

Proportion of inhibited larvae



Proporción de larvas inhibidas.Fot2

Proportion of inhibited larvae



Proporción de larvas inhibidas.

Fot3

Proportion of inhibited larvae



Output of the fuzzy inference system (proportion of ingested larvae that 
arrest their development) depending on time of exposure to 
environmental conditions. 

Proportion of inhibited larvae
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Estimation of number of eggs depending
of parasite load in the host



The model is a fuzzy inference system of

Mamdani type.

The components, membership functions

and rules are based on the hypotheses:

EPG is regulated by three variables:
� Parasite load (carga sanitaria).
� Host’s age (edad).
� Season (epoca del año).

Estimation of number of eggs depending
of parasite load in the host
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Parámetros 

 

Variable 

Lingüística (tipo) 

 

Nombre 

 

Tipo 

α β γ η 

Terneros de destete Z 0 8   

Novillitos Gaussiana 2.2 9   

Edad del 

hospedador 

(entrada) Novillo S 10 15   

Bajo Z 0 7500   

Moderado Trapecio 3500 7500 18500 22500 

Carga parasitaria 

(entrada) 

Alto S 18000 50000   

Verano Z 0 136   

Otoño Trapecio 45 121 151 228 

Invierno Trapecio 136 213 243 319 

Época del año 

(entrada) 

Primavera S 228 365   

Bajo Z 0 350   

Moderado Trapecio 200  350  550  700 

Huevos por 

gramo de materia 

fecal 

(salida) 

Alto S 550 850   

 

Estimation of number of eggs depending
of parasite load in the host
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EPG: number of eggs per gram(FISM)

µpre: preinfective mortality(FISM)

µP: L3 mortality in pasture(FISM)

µb: adult mortality

pinhi(j,k)= proportion of inhibited larvae
of cohort “j” aged “k” (FISM)

δDP: migration rate(FISM)

The complete model



Simulations



Parasitic stage dynamics
Seasonal availability of L3 larvae on pasture



Inhibited Larvae: Response to variations in Temperature input series

Parasitic stage dynamics



Inhibited Larvae: Response to variations in Temperature input series

Parasitic stage dynamics



Parasitic stage dynamics



Inhibited Larvae: Response to variations in Daily Ingestion input

Parasitic stage dynamics



Inhibited Larvae: Response to variations in Daily Ingestion input

Parasitic stage dynamics



• The results coincide with the observed effects of
the photoperiod variations in Tandil during Spring
and Summer. 

• The model reflects an inverse relationship
between temperature and the proportion of
inhibited larvae.

• Wider amplitude in amount of light hours resulted
in a decreasing numbers of inhibited larvae. 

• Higher grazing presure resulted in lower
proportion of inhibited larvae in Spring.

Parasitic stage dynamics



Simulation with parasite load data reported in Suárez et al. (1994)

Estimation of number of eggs depending
of parasite load in the host



Variable parasite load and host’s age

Estimation of number of eggs depending
of parasite load in the host



� The model accurately estimates EPG 
depending on the host’s parasite load 
and age.

� The estimation of the maximum EPG 
value and the time of occurrence is a 
good indicator of the herd’s state.

� There is a non linear relationship
between the parasite load and the EPG 
estimation.

Estimation of number of eggs depending
of parasite load in the host



Simulations of Parasite
Load Control 



Control of Parasite Load

Usually herd’s treatments are either:
� Scheduled in advance (Tactic Treatment).
� When weight loss occurs (Symptomatic 

Treatment).
� Defined by parasitological and/or production 

parameters (Strategic Treatment).



� The paddock is initialy free of infective
larvae. 

� The herd has 25 animals remaining in the
paddock during 20 months beginning on
January 1st.

� The animals enter the paddock with a low
level of infection (5000 adults per animal).

� Grazing presure is simulated with a L3 
ingestion rate fixed at 0.3.

Initial Conditions



Control of Parasite Load
Strategic treatments

Tandil, province of Buenos Aires (X̅ =14°C; R=888 mm): 

Drug treatment calendar:
1st application: 20/04/06. Action period : 56 days.
2nd application: 10/06/06. Action period : 56 days.
3rd application: 01/10/06. Action period : 56 days.
4th application: 01/04/07. Action period : 56 days.



Control of Parasite Load
Strategic treatments



Reconquista, province of Santa Fe (X̅=19.5°C; R=1408 mm ):

Control of Parasite Load
Strategic treatments

Drug treatment calendar:
1st application: 21/03/06. Action period : 56 days.
2nd application: 21/06/06. Action period : 56 days.
3rd application: 01/11/06. Action period : 56 days.
4th application: 01/04/07. Action period : 56 days.



Reconquista, province of Santa Fe (X̅=19.5°C; R=1408 mm):

Control of Parasite Load
Strategic treatments



� Controls intended to avoid high infection levels 
in pasture should be done between April and 
June. 

� Preventive treatments can be done between 
September and October. 

� Controls in January, February, July, August, 
November and December are not convenient 
since their effects are minimal. 

� Treatments in March, April, May, June, 
September and October are strongly related to 
pasture dynamics.

Control of Parasite Load
Strategic treatments



Current Research

Parasite counts at different stages (egg, L3, adults) 
are being recorded over a period of two years in 
fields in the district of Olavarrìa, Province of Buenos 
Aires.

The model is run with temperature and precipitation
time series obtained from the National Meteorological
Service.



Final Comments

� The model incorporates aspects that have
not been previously implemented in other
models. 

� The advantages of this model are: 
� its modular construction, 
� the use of difference equations, and
� parameterization using fuzzy

inference systems.



Final Comments

� The use of fuzzy inference systems in the 
parameterization of models permits an 
adequate description of complex dynamics 
involving large numbers of variables and 
information that is not easily quantifiable 
and that could not have been included 
using clasic mathematical tools.
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