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Spatial Spread of Infectious Diseases

The distribution of populations across 
space and the patterns of interaction 
among groups influence how diseases 
spread in space and time.



Spatial Spread of Infectious Diseases

John Snow 
(1854) tried to 
understand the 
origin of the 
cholera 
epidemic by 
analyzing the 
distribution of 
cases in 
London. 



Spatial Spread of Infectious Diseases

Mapping the cases helped localize the 
disease and identifying the pattern of water 
use traced the infections to the source.





Spatial Spread of Infectious Diseases

Influenza 1918-1919 pandemic



Spatial Spread of Infectious Diseases

Spatial spread of influenza for the 1918-1919 pandemic



Spatial Spread of Infectious Diseases

Age distribution of influenza deaths for the
1918-1919 pandemic



Spatial Spread of Infectious Diseases

Three pandemic waves: weekly combined influenza and
pneumonia mortality, United Kingdom, 1918–1919 



Spatial Spread of Infectious Diseases

Well-mixed population: each individual is 
equally exposed

Structured population: members of one 
group are more likely to come into contact 
with each other than with members of other 
“distant” groups.



Spatial structure:

• … affects the speed of the initial 
epidemic spread
• … is necessary when local 
interactions or local environment are 
important
• … is important for disease 
persistence.

Spatial Spread of Infectious Diseases



Spatial heterogeneity can: 

• .. lead to repeated reintroductions
• .. prevent extinction of the disease
• .. enhance persistence at a regional 
level.

Spatial Spread of Infectious Diseases

“Rescue” effects can appear if epidemics 
in different locations do not occur 
simultaneously (asynchrony).



Spatial Spread of Infectious Diseases

Spatial patterns in disease dynamics 
can be generated by:

• Asynchrony
• Age distribution of populations
• Seasonally varying transmission rates.



Spatial Spread of Infectious Diseases



Spatial Spread of Infectious Diseases



Population-based approaches

• Metapopulation or patch models



Population-based approaches

• Metapopulation or patch models

• Spatially continuous models

Landscapes



MetapopulationModels

Population is distributed into n spatially 
discrete groups linked to one another in 
some specified way.



MetapopulationModels

Individuals in a group are assumed well-
mixed



MetapopulationModels

Coupling terms represent how infection 
spreads among groups



MetapopulationModels

Spatial scale is represented through 
the choice of groups

Hierarchical transmission can be 
introduced



MetapopulationModels

Spatial scale is represented through 
the choice of groups

Hierarchical transmission can be 
introduced



MetapopulationModels

City – Town - Village



MetapopulationModels

Main urban area



MetapopulationModels

Sister towns



MetapopulationModels

For each subpopulation i the SIR model can 
be formulated as:
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where λi includes the transmission within
population i and the coupling to other
subpopulations.



MetapopulationModels

The force of infection λi can be expressed
as:
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ρij measures the relative strength of
transmission from population j to
population i.



MetapopulationModels

Plants or sessile hosts: spatial transmission
is wind- or vector-borne
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Here ρij is a decreasing function of the
distance between subpopulations j and i.



MetapopulationModels

iR0

Plants or sessile hosts: spatial transmission
is wind- or vector-borne.

for infectious individuals in population i as 
the expected number of secondary cases 
generated in all subpopulations:
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MetapopulationModels
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Plants or sessile hosts: spatial transmission
is wind- or vector-borne.

Dividing population j into two, k and l, implies
that

So         does not change.
iR0



MetapopulationModels
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Plants or sessile hosts: spatial transmission
is wind- or vector-borne.

However, adding more subpopulations
(more hosts) increases iR0

More pathogens can be intercepted by 
additional hosts.



MetapopulationModels

Individuals migrate: the SIR-type
model can be expressed as:
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where mij is the migration rate from j to i



MetapopulationModels
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Individuals migrate:

It is frequently assumed that mij=mji, , however
this is not always true.
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MetapopulationModels

CommutersCommuters: live in population j but travel
occasionally to population i

ijijij NIS ,, represent the number of
susceptibles, infected and total hosts
currently in population i that live in 
population j.



MetapopulationModels

CommutersCommuters: live in population j but travel
occasionally to population i
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MetapopulationModels

CommutersCommuters: live in population j but travel
occasionally to population i
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MetapopulationModels

CommutersCommuters: live in population j but travel
occasionally to population i
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MetapopulationModels

Epidemics initiated
with 10 cases in 
Inner London.

Data taken fron 1991 
census database and
all trips were short 
duration (r=2)



MetapopulationModels

CommutersCommuters: live in population j but travel
occasionally to population i

This gives a total of 3n2 equations for n
populations.



MetapopulationModels

CommuterCommuter aproximationsaproximations: simplify the
model.

Keeling and Rohani take 2 populations of
equal size and epidemiological
characteristics and assume that commuter
movements are very rapid.

In this case:
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Coupling
parameter



MetapopulationModels

CommuterCommuter aproximationsaproximations:

If q is the proportion of time that individuals
spend in the other population, then
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MetapopulationModels

CommuterCommuter aproximationsaproximations:

The coupling parameter ρρρρ can be defined
as: )1(2 qq −=ρ
because when either the susceptibles of
one population or the infected of the other
move (not both), there is a transfer of
pathogen.

ρ is maximized when q=0.5



MetapopulationModels

Rapid commuter movements of individuals
from their home subpopulation to another
subpopulation and back are important in the
spread of human diseases.

Hence, models need to include both the
current location and the home location of
individuals. When movements are of short 
duration this can be aproximated by simple 
coupling.

Here R0 is independent of the coupling



MetapopulationModels
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CouplingCoupling andand SynchronySynchrony

The correlation between the disease dynamics
in two subpopulation is generally a sigmoidal
function of the interaction between them

Stochastic models for 2 populations
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MetapopulationModels

CouplingCoupling andand SynchronySynchrony

The scalings between the interaction strengths
are aprox.
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MetapopulationModels

ExtinctionExtinction andand RescueRescue EffectsEffects

Smaller populations will have fewer
infected individuals and thus be more prone
to stochastic effects.

Extinction risk decreases exponentially as 
population size increases.



MetapopulationModels

ExtinctionExtinction andand RescueRescue EffectsEffects

In a metapopulation subdivided in many small
isolated populations with no interaction or
coupling, the disease in each subpopulation
will be driven extinct, leading to a swifter
global eradication than if coupling is strong
and the metapopulation is well mixed. 



MetapopulationModels

ExtinctionExtinction andand RescueRescue EffectsEffects

Suppose N is population size and rate of

extinction is proportional to exp(-εN).

Then:
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MetapopulationModels
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ExtinctionExtinction andand RescueRescue EffectsEffects

Suppose N is divided into n small
noninteracting subpopulations size, then
for all populations to become disease-free:
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MetapopulationModels

ExtinctionExtinction andand RescueRescue EffectsEffects

When subpopulations interact, the infection
can be reintroduced into a disease-free 
subpopulation.

Long-term persistence can be observed
because infections is constantly reinvading.

Rescue events



MetapopulationModels

ExtinctionExtinction andand RescueRescue EffectsEffects

Rescue events are maximized when:

High rate of infection Strong coupling

Asynchrony Weak coupling

Persistence can be maximized at
intermediate levels of coupling



MetapopulationModels

When interaction between the subpopulations
is included, the level of local and global 
extinctions is an emergent property of the
dynamics and cannot be easily predicted
from the disease parameters

It is necessary to understand how population
structure, disease dynamics, population size, 
infectious import rate, and coupling interact
to determine disease persistence.



MetapopulationModels

VaccinationVaccination • Reduces prevalence of
infection

• Increases risk of extinction

• Reduces the effective
interaction strength

Less synchrony in the disease dynamics

More effective rescue events



MetapopulationModels

VaccinationVaccination

Pulsed vaccination campaigns act to
synchronize epidemics in coupled populations
and may lead to an increase in global 
extinction rates.

� Frequent pulses limit the buildup of susceptibles

� Infrequent pulses have a greater synchronizing
action

TimingTiming ofof vaccinationvaccination pulses?pulses?



MetapopulationModels

VaccinationVaccination

Two coupled populations with SIR-type infection.
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Lattice- or Grid-basedModels

The spatial location of the hosts is
considered important, but the population
cannot be partitioned into discrete
subpopulations

Individuals within a grid site are grouped
into a subpopulation



Lattice- or Grid-basedModels

Two-dimension square lattice

Higher dimensional lattices
can be used to replicate more 
complex social structure.

Hexagonal grids have also
been used.



Lattice- or Grid-basedModels
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Commuter-like interactions



Lattice- or Grid-basedModels

Commuter-like interactions



Lattice- or Grid-basedModels

Coupled lattice models show a wave-like
spread of infections across a 
homogeneous landscape.

However, the do not capture the expected
individual level behavior

The grid size must be chosen with extreme 
care



Lattice- or Grid-basedModels

CellularCellular AutomataAutomata

A cell can have only a finite, usually small, 
number of population states.

Each cell is usually either empty or occupied
by a susceptible, infectious or recovered
individual. Interactions occur only with 4 or 8 
neighboring lattice sites

Almost all cellular automata disease models
are stochastic. 



Lattice- or Grid-basedModels

CellularCellular AutomataAutomata

Cellular automata disease models are 
abtract models that do not incorporate
realistic human behavior.

They are abstract tools that can be used for
understanding the spatial dynamics of
transmission but are not predictive models



Lattice- or Grid-basedModels

Power Law



Lattice- or Grid-basedModels



Questionsand….


