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Abstract
Climate change is expected to alter the dynamics of infectious diseases around the globe. Predictive models

remain elusive due to the complexity of host–parasite systems and insufficient data describing how environ-

mental conditions affect various system components. Here, we link host–macroparasite models with the

Metabolic Theory of Ecology, providing a mechanistic framework that allows integrating multiple nonlinear

environmental effects to estimate parasite fitness under novel conditions. The models allow determining

the fundamental thermal niche of a parasite, and thus, whether climate change leads to range contraction

or may permit a range expansion. Applying the models to seasonal environments, and using an arctic

nematode with an endotherm host for illustration, we show that climate warming can split a continuous

spring-to-fall transmission season into two separate transmission seasons with altered timings. Although the

models are strategic and most suitable to evaluate broad-scale patterns of climate change impacts, close

correspondence between model predictions and empirical data indicates model applicability also at the spe-

cies level. As the application of Metabolic Theory considerably aids the a priori estimation of model para-

meters, even in data-sparse systems, we suggest that the presented approach could provide a framework

for understanding and predicting climatic impacts for many host–parasite systems worldwide.
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INTRODUCTION

Global climate change is well advanced, and climate models predict

that current warming trends will continue, and probably accelerate,

in the near future (IPCC 2007). One aspect of climate change that

has received considerable attention is the hypothesis that future

environmental conditions will alter parasite transmission dynamics.

Most early studies asserted that climate change would likely increase

the frequency and severity of disease outbreaks and/or lead to para-

site range expansions, due to warming-accelerated parasite develop-

ment, prolonged transmission seasons and other mechanisms (e.g.

Harvell et al. 2002). Recent studies, however, argue that this picture

is probably oversimplified: warmer temperatures may also increase

parasite or vector mortality, and these effects may balance or exceed

the impacts of faster development. Similarly, increased habitat suit-

ability in one area may be offset by decreased suitability elsewhere,

so that a hypothesised parasite range expansion may in reality turn

out as a range shift or range contraction (Kutz et al. 2009; Lafferty

2009). The complexity of host–parasite systems and knowledge gaps

in both theory and data currently prevent conclusive statements

regarding climate change impacts on most parasites (Marcogliese

2001; Hoberg et al. 2008; Rohr et al. 2011). Central theoretical ques-

tions, such as what type of host–parasite systems would be most

sensitive to climate change, or at which locations climate change

will have the greatest impact, have only begun to be addressed

(Rohr et al. 2011). Predictive models are needed to reliably estimate

risk and proactively define control strategies for parasites of humans

and wildlife in a changing environment.

Traditionally, host–parasite models are aimed at determining the

basic reproductive number R0 of a parasite (defined as ‘the average

number of secondary infections that result from introducing one

infected host into a population of susceptible hosts’ for micropara-

sites, and as ‘the expected lifetime reproductive output of a new-

born larva’ for macroparasites) as a function of the intrinsic

parameters of the host–parasite dynamics (Anderson & May 1991).

Such parameters may include, for example, birth and death rates

of host and parasite, rates of infection or time delays due to para-

site development. Many of these parameters are influenced by cli-

mate, often nonlinearly, and sometimes in opposing directions

(Mangal et al. 2008). Evaluating climate change impacts thus

requires information on the mathematical relation between environ-

mental covariates and model parameters (Rogers & Randolph

2006). Sometimes, these relationships can be quantified experimen-

tally and then input into host–parasite models to evaluate whether
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R0, or other measures of parasitism such as parasite prevalence

and burden, will likely increase or decrease under future conditions

(Mangal et al. 2008; Lafferty 2009). However, the impracticality of

developing species-specific models for all climate change impacts

on all parasites of humans and wildlife makes it preferable to also

develop strategic models (sensu May 1973) that can outline broad

patterns of expected impacts. Even in cases where insufficient spe-

cies-specific data prevent a detailed assessment, such models can

provide first qualitative predictions and aid the design of mitigation

and control strategies. Furthermore, such models can indicate

knowledge gaps to help define research priorities for system-spe-

cific tactical models.

One path towards a framework of generalised host–parasite mod-

els that can account for climatic impacts may be through the ‘Meta-

bolic Theory of Ecology’ (Brown et al. 2004). This theory states

that metabolism scales allometrically with body size and exponen-

tially with temperature, or specifically, I / M3/4e�E/kT, where I rep-

resents metabolic rate, M is body mass, E is the average activation

energy of respiration, T is temperature in degrees Kelvin, and k is

Boltzmann’s constant (Gillooly et al. 2001). From this basis, the the-

ory derives similar scaling rules for ecological processes and patterns

from the organismal to the ecosystem level. The theory has been

successful in predicting physiological (e.g. developmental times),

demographic (e.g. birth and death rates) and population parameters

(e.g. population growth rate, carrying capacity) across a wide variety

of taxa (Brown et al. 2004). Metabolic Theory has also been applied

to explore potential climate change impacts, for example, on ecto-

therms (Dillon et al. 2010) and plant-herbivore systems (O’Connor

et al. 2011). Although most predictions of Metabolic Theory have

not been validated specifically for parasites (Rohr et al. 2011), the

theory has been applied to explain patterns of parasite abundance

and biomass production (Hechinger et al. 2011), as well as rates of

pathogenesis (Cable et al. 2007). Furthermore, allometric equations

akin to those of Metabolic Theory have been used in SIR-models

of microparasites to estimate transmission rates, to relate the fre-

quency of epidemic outbreaks to host body size, and to analyse

how seasonality may affect epidemics (de Leo & Dobson 1996;

Bolzoni et al. 2008).

Here, we link traditional host–macroparasite models and the con-

cept of R0 with Metabolic Theory to provide a mechanistic frame-

work that allows estimating parasite fitness under novel

environmental conditions. Our models are strategic inasmuch that

they are intended for illuminating and predicting general patterns of

climate change impacts on macroparasites, but they can also be

refined into species-specific tactical models by inclusion of appro-

priate biological detail to increase prediction accuracy. Of the two

cornerstones of Metabolic Theory, we incorporate the exponential

relationships between temperature and parasite development and

mortality, which have been documented for various parasite species

(e.g. Young et al. 1980; Smith et al. 1986; Smith 1990). We defer

inclusion of the allometric scaling of metabolism with body mass to

future work, because it remains unclear whether parasites follow the

same scaling ‘rules’ as free-living species (Hechinger et al. 2011;

Rohr et al. 2011). Instead, where parameter values are needed for

illustration, we focus on arctic host–parasite systems, because the

Arctic – owing to its low species diversity, a strong climate signal,

and limited confounding anthropogenic factors – is a particularly

good system for unravelling the ecological and epidemiological

impacts of climate change (Kutz et al. 2009; Molnár et al. 2010). For

further simplicity, we develop the models for the example of para-

sitic nematodes with a direct life cycle and endotherm hosts (May

& Anderson 1979), but emphasise that these simplifications do not

restrict the generality of the framework, and the models can be

extended to other parasite life cycles and other ecosystems.

METHODS

Model development

In parasitic nematodes with a direct life cycle, adult parasites reside

within the host and produce transmission stages that pass out of

the host into the environment. Free-living individuals then pass

through several developmental stages until they reach the infective

stage and can be taken up again by the host (Fig. 1). Development

time to this infective stage depends on metabolic rate, and thus

ambient temperature. Mortality of the free-living stages, irrespective

of cause (e.g., senescence, predation, environmental factors), is also

taken as temperature-dependent (Pietrock & Marcogliese 2003;

Brown et al. 2004; O’Connor et al. 2006; McCoy & Gillooly 2008).

The rate of parasite uptake by hosts may or may not be tempera-

ture-dependent, depending on the mechanisms determining host–
parasite encounters (see Appendix S1 in Supporting Information),

and we discuss both the temperature-independent and temperature-

dependent cases. Other life cycle components may in general also

be influenced by temperature, but for simplicity and to aid clarity of

exposition, we only consider temperature effects on the free-living

stages and assume no effects on parasites within hosts. Specifically,

we consider the case of an endotherm host and further assume sea-

Figure 1 Schematic of a nematode direct life cycle. Boxes represent hosts, adult

parasites within hosts, and the free-living larval stage that is infective to hosts.

Solid arrows represent the rates that determine losses and gains to each

compartment. Dashed arrows indicate the developmental time delays between

birth (the moment when newly shed parasites first enter the environment) and

infectivity (sL), and between uptake and sexual maturity (sP) respectively. A

proportion of parasites (1-DL, 1-DP) do not survive these delays (dotted arrows).

The delay-length sL, the mortality of free-living stages lL and the proportion

DL = exp(�lLsL) are taken to be temperature-dependent (marked red); parasite

uptake rate (q, blue) may or may not be temperature-dependent (cf. text). All

parameters are described in Table 1.
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son-independent parasite development to sexual maturity inside the

host (i.e. no hypobiosis). Further, we focus on temperature effects

only and assume that other environmental covariates are not limit-

ing. Finally, we consider a one-host/one-parasite system with

constant host density, ignoring potential interspecific competition

for host resources between different parasite species or differing

susceptibility to parasites between different host species. Each of

these simplifying assumptions can be relaxed to adapt the model to

other host–parasite systems.

We follow the classical framework of Anderson & May to repre-

sent the host–parasite dynamics within coupled differential equa-

tions (Anderson & May 1978; Dobson & Hudson 1992), but

modify our models to allow explicitly for a developmental time

delay in the free-living stages (Anderson & May 1991):

dL

dt
¼ kDL Tð ÞP t � sL Tð Þð Þ � lL Tð ÞL � q Tð ÞLH ð1aÞ

dP

dt
¼ q Tð ÞDPLH t � sPð Þ � lP þ bHð ÞP

� aHH
P

H
þ P2

H 2

kNB þ 1

kNB

� �
ð1bÞ

Here, L represents the abundance of free-living larvae that are

infective to hosts, P is total abundance of adult parasites within

hosts, and H is host abundance. Temporal changes in these com-

partments are determined by the rates of parasite birth (k), para-
site mortality (lL, lP), host mortality (bH, aH) and the rate of

parasite uptake by hosts (qH ), as well as the degree of parasite

aggregation within the host population, specified by a negative

binomial distribution with aggregation parameter kNB (not to be

confused with Boltzmann’s constant k ). All parameters are

defined in Table 1. The temperature-dependent parameter sL(T )

represents the time delay between the moment when newly shed

parasites first enter the environment (hereafter referred to as

‘birth’) and the moment they reach the infective stage (Fig. 1).

Temperature-dependence is also incorporated in the instantaneous

mortality of free-living parasites, lL(T ), and the composite param-

eter DL(T ) = exp[�lL(T )sL(T )], which describes the proportion

of parasites that survive from birth to infectivity. For parasite

uptake, we initially consider the temperature-independent case,

q(T ) ≡ q0, but then also evaluate in Appendix S1 how possible

temperature-dependencies in this rate may alter model predictions.

All other parameters are temperature-independent as per our

assumptions, including the proportion of parasites that survive the

prepatent period within the host (of length sP) to reach sexual

maturity, DP.

We link the host–parasite dynamics (1) with parasite physiology,

and thus temperature, by assuming that mortality (lL) and develop-

ment rate (sL
�1) of the free-living stages scale with the Boltzmann

factor, e�E/kT, as predicted by Metabolic Theory (Gillooly et al.

2001; Brown et al. 2004; McCoy & Gillooly 2008; Munch & Salinas

2009). This relationship, also known as the Van’t Hoff–Arrhenius
relation, is based on the exponential increase in biochemical reac-

tion rates and metabolic rate with increasing body temperature

(Brown et al. 2004). Standardising the Boltzmann factor to a refer-

ence temperature T0, development time can be written as (Gillooly

et al. 2001)

sL Tð Þ ¼ s0e
Es
k

1
T
� 1

T0

� �
ð2aÞ

and the instantaneous mortality rate as (McCoy & Gillooly 2008)

lL Tð Þ ¼ l0e
� El

k
1
T
� 1

T0

� �
ð2bÞ

with the scaling factors s0 and l0 representing development time

and mortality at T0 respectively.

Although eqn 2 describes temperature dependencies in a broad

range of taxa well, it only holds within the ‘normal temperature range

of activity’ (Brown et al. 2004). Extrapolation beyond these ranges

may yield unrealistic predictions of development or mortality, and

consequently of the host–parasite dynamics, at low or high tempera-

tures (cf. Results, Fig. 2). For instance, ectotherms (including para-

sites) show no detectable development beneath or above certain

temperature thresholds (Trudgill et al. 2005; Dixon et al. 2009).

Indeed, the thermal response of most biological traits is unimodal

over the full temperature range (Dell et al. 2011), and this needs to be

incorporated into population models to fully understand climate

change impacts (Deutsch et al. 2008; Huey et al. 2009).

Table 1 Parameter definitions for the host–parasite models represented by eqns 1 and 8

Parameter Definition Units

H Host abundance —
bH Instantaneous host death rate due to causes other than parasitism time�1

aH Instantaneous host death rate where mortality is due to the influence of the parasite parasite�1 time�1

k Instantaneous rate of parasite birth * time�1

lL Instantaneous death rate of the free-living parasite stages time�1

sL Developmental time from birth to infective stage * time

DL Proportion of parasites that survive from birth to

the infective stage [DL = exp(�lL(T) sL(T))] *
—

lP Instantaneous death rate of parasites within the host due to causes other than host death time�1

sP Length of prepatent period time

DP Proportion of parasites that survive the prepatent period —
q Instantaneous rate of ingestion of infective larvae by hosts host�1 time�1

kNB Parameter of the negative binomial distribution that measures the degree of aggregation

of adult parasites within the host population

—

*In this context, ‘birth’ refers to the moment when newly born parasites first enter the environment (e.g. as eggs or first-stage larvae) to become free-living.

© 2012 Blackwell Publishing Ltd/CNRS

Idea and Perspective Climate change impacts on macroparasites 3



Several unimodal models exist to describe development as a func-

tion of temperature (e.g. Johnson & Lewin 1946; Sharpe & DeMic-

hele 1977; Schoolfield et al. 1981; Régnière et al. 2012), of which the

Sharpe–Schoolfield model is the most popular. This model provides

a natural extension to the Van’t Hoff–Arrhenius relation by propos-

ing a reversible inactivation of the rate-controlling enzyme for

development at high and low temperatures. The Sharpe–Schoolfield
model for development times can be written as

sL Tð Þ ¼ s0e
Es
k

1
T
� 1

T0

� �

� 1þ e

EL
s
k

1
T
� 1

T L
s

� �
þ e

EH
s
k

� 1
T
þ 1

T H
s

� �0
@

1
A; ð3aÞ

where EL
s and Es

H represent the inactivation energies at the lower

and upper temperature thresholds, Ts
L and Ts

H respectively

(Schoolfield et al. 1981; Kooijman 2010). Equation 3a results in a

concave-up relationship between temperature and development time

(Fig. 2a) with curve steepness at the temperature boundaries

determined by the inactivation energies. High inactivation energies

yield steep increases in development time, and thus sharply defined

temperature thresholds. Low inactivation energies allow a more

gradual cessation of development with some (slowed) development

occurring just below and above Ts
L and Ts

H respectively (de Jong

& van der Have 2008).

Like development time, mortality frequently deviates substantially

from the Van’t Hoff–Arrhenius relation at temperature extremes by

increasing sharply above and below upper and lower thermal thresh-

olds respectively (e.g. Grenfell et al. 1986; Smith 1990; Régnière

et al. 2012). To capture such threshold behaviours, while simulta-

neously allowing mortality to follow the Van’t Hoff–Arrhenius rela-
tion at intermediate temperatures, we consider a mathematically

similar extension to eqn 2b as was introduced for development in

eqn 3a:

lL Tð Þ ¼ l0e
�El

k

1
T
� 1

T0

� �

� 1þ e

EL
l
k

1
T
� 1

T L
l

� �
þ e

EH
l
k

� 1
T
þ 1

T H
l

� �0
@

1
A ð3bÞ

Although this equation is partially phenomenological, with the

model parameters El
L and El

H lacking a clear enzyme kinetic

or other mechanistic derivation, these parameters do have

mathematically analogous roles as the inactivation energies of the
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Figure 2 Temperature-dependent predictions, based on eqns 2 (Van’t Hoff–Arrhenius; dashed lines) or 3 (Sharpe–Schoolfield development model and our analogous

mortality model; solid lines), for (a) time delay between birth and infectivity, (b) instantaneous mortality of free-living parasites, (c)–(d) R0 (scaled to the constant C,

eqn 5) for parasites experiencing (c) low and (d) high uptake respectively (see Table 2 for model parameters). Circles are independently estimated development times and

mortality rates of Ostertagia gruehneri under laboratory conditions (B. Hoar, unpublished data), indicating excellent fits between model predictions and empirical

measurements. Vertical lines indicate temperature thresholds above which (a) O. gruehneri cannot develop to infectivity, (b) mortality is immediate. Arrows show optimal

temperatures for development, survival, and R0, when using eqn 3.
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Sharpe–Schoolfield development model, determining how abruptly

mortality increases at the lower and upper thresholds, Tl
L and Tl

H

(Fig. 2b).

To evaluate the impact of these temperature-dependencies on

total parasite fitness, we consider the basic reproductive number R0

for system (1),

R0 Tð Þ ¼ kDPDL Tð Þ
aH þ bH þ lP

� q Tð ÞH
lL Tð Þ þ q Tð ÞH ; ð4Þ

and evaluate this expression as a function of temperature, using

either eqns 2 or 3 for development and mortality, and setting

q(T )H ≡ q0H (see Appendix S1 for the case where parasite uptake

rate q(T )H is also temperature-dependent). One key quantity in

such analyses is the temperature range where R0 � 1, as R0 � 1

implies that the parasite could establish under such conditions

(Anderson & May 1991). However, whether R0 � 1 depends not

only on the functions sL(T ), lL(T ) and q(T ) but also on the tem-

perature-independent factor C = kDP/(aH + bH + lP). Because we

assumed no climate impacts on C, and because the magnitude of C

will be species-specific, we keep our analyses general and do not

specify this constant. Instead, we evaluate all temperature-induced

changes to R0 relative to C:

R0 Tð Þ
C

¼ DL Tð Þq Tð ÞH
lL Tð Þ þ q Tð ÞH ð5Þ

The effect of seasonality

With the above approach, R0 is initially estimated as a function of

temperature using the simplifying assumption that temperature

remains constant year-round. For a more realistic model of climate

change impacts, we now relax this assumption to consider seasonal

temperature variations. For this, we define

T tð Þ ¼ cK þ dK � sin t � t0ð Þ � 2p
365

� �
; ð6Þ

where T(t ) represents temperature in °K on day-of-the-year t, cK is

mean annual temperature, dK is half the annual temperature range,

and t0 is day-of-the-year when temperature increases to its annual

mean (Grenfell et al. 1987).

With seasonality added, the temperature-dependent parameters of

the free-living stages become variables of time. In particular, the

length of the delay between birth and infectivity [previously denoted

sL(T )] varies with time-of-the-year, and is obtained by integrating

over the instantaneous (time-/temperature-dependent) development

rates (sL(T(t )))
�1 experienced by the parasite from birth until devel-

opment is complete. For this, we define ~sLðtÞ as the time delay

between birth and infectivity, if infectivity is reached at time

t. ~sLðtÞcan be obtained from

1 ¼
Z t

t�~sL tð Þ

sL T uð Þð Þð Þ�1
du ð7Þ

(Grenfell et al. 1987; McCauley et al. 1996). As the length of the

developmental delay is itself a function of time-of-the-year, eqn 1

needs to be re-written:

dL

dt
¼ k~DL tð ÞP t � ~sL tð Þð Þ 1� d~sL

dt

� �
� lL T tð Þð ÞL � q T tð Þð ÞLH

ð8aÞ
dP

dt
¼ q T t � sPð Þð ÞDPLH t � sPð Þ � lP þ bHð ÞP

� aHH
P

H
þ P2

H 2

kNB þ 1

kNB

� �
ð8bÞ

with ~sLðtÞ given by (7), and ~DLðtÞ given by

~DL tð Þ ¼ exp �
Z t

t�~sL tð Þ

lL T uð Þð Þdu

0
B@

1
CA; ð9Þ

denoting the proportion of parasites that survive from birth at

t-~sLðtÞ to infectivity at t (Györi & Eller 1981). If desired, eqns 7–9
can be simplified further algebraically (McCauley et al. 1996), but

this is unnecessary for our purpose.

To gain a detailed picture of how climate change could affect par-

asite fitness in a seasonal environment, we use eqns 6–9 to calculate

R0 as a function of parasite birth date for various climate scenarios.

For this, we consecutively initialise eqn 8 with a single newly shed

egg for all days-of-the-year and calculate expected lifetime reproduc-

tive output for each of these birth dates. For comparability with the

simplified constant-temperature case, we again scale all estimates of

R0 to C = kDP/(aH+bH+lP).

Model parameterisation

We only parameterise model components that are necessary to cal-

culate R0(T ) according to eqn 5. In this, we set the parameters of

the thermal components of Metabolic Theory, that is, the activa-

tion and inactivation energies of the Van’t Hoff–Arrhenius and

Sharpe–Schoolfield models, as predicted by these bodies of theory.

For simplicity, we assume equal activation and inactivation ener-

gies between development, sL(T ), and mortality, lL(T ), as pre-

dicted by Metabolic Theory (Brown et al. 2004). All other

parameters (the scaling factors s0 and l0, and the parameters

determining parasite uptake rate, q0 and H ), could in theory be

scaled allometrically with body size (Brown et al. 2004), but we

refrain from doing this for the reasons outlined above. Instead,

we use the nematode Ostertagia gruehneri, which is the most com-

mon gastrointestinal parasite of caribou (Rangifer tarandus ) (Kutz

et al. 2012), to determine illustrative parameter values. For clarity,

we report all temperatures in °C, but note that model input

requires transforming these to °K.
Specifically, we set the activation energies Es = El = 0.65 eV, in

accordance with empirical measurements of development (Gillooly

et al. 2001; Brown et al. 2004) and mortality (McCoy & Gillooly 2008)

across a variety of taxa. The reference temperature T0 can be chosen

arbitrarily for the standard Boltzmann factor (eqn 2), but should be

chosen at an intermediate temperature of the thermal development

window for the Sharpe–Schoolfield model (eqn 3) because T0 indi-

cates a temperature where organisms experience little, if any, low or

high temperature inactivation (Schoolfield et al. 1981). Focusing on

arctic parasites, we set T0 = 15 °C. The inactivation thresholds of

development were set Ts
L = 2.5 °C and Ts

H = 32.5 °C, roughly cor-
responding to the development thresholds of O. gruehneri (B. Hoar,

unpublished data). The resulting thermal development window of

© 2012 Blackwell Publishing Ltd/CNRS
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Ts
H � Ts

L = 30 °C corresponds to the upper end of possible values

(Dixon et al. 2009), as expected for arctic species (Sunday et al. 2011).

The viability range Tl
H � Tl

L is usually larger than the development

window (van der Have 2002), so we set the mortality thresholds 5 °C
below and above Ts

L and Ts
H, respectively, as Tl

L = �2.5 °C and

Tl
H = 37.5 °C. These thresholds are in agreement with an observed

sharp increase in O. gruehneri mortality between 35 °C and 40 °C, and
also capture the inability of O. gruehneri eggs to survive prolonged

freezing (B. Hoar, unpublished data; Fig. 2). For the inactivation ener-

gies Es
L and Es

H, the literature provides little guidance, except that

generally Es << Es
L, Es

H (Kooijman 2010). We thus arbitrarily chose

Es
L = Es

H = El
L = El

H = 5Es = 3.25 eV, with the multiplier 5

roughly in the range reported by Schoolfield et al. (1981), van der

Have (2002) and Kooijman (2010). The scaling factors s0 and l0
(development time and instantaneous mortality at T0) were set

s0 = 29.6 d and l0 = 0.056 d�1, as observed in O. gruehneri (Fig. 2).

For the parasite uptake rate q0H, we consider two scenarios as both

q0 (parasite ingestion rate by hosts) and H (host abundance) can vary

substantially, geographically as well as temporally, both within and

between host species (e.g. Stien et al. 2002). Specifically, we set

q0H = 0.01 d�1 and q0H = 1 d�1 to represent parasite populations

experiencing low and high uptake rates, respectively. All parameter

estimates are summarised in Table 2.

Naturally, some or all parameters may differ between species. To

illustrate the generality of our results and explore quantitative and

qualitative sensitivities of R0(T ), we varied all parameters systemati-

cally within broad boundaries. Specifically, we varied Es and El

between 0.2 eV and 1.2 eV, encompassing the interspecific range of

activation energies (Irlich et al. 2009; Munch & Salinas 2009). Fol-

lowing Metabolic Theory’s prediction of Es = El, we first varied

these parameters in conjunction, but then also relaxed the equality

constraint to explore consequences for cases where this assumption

is violated. All other parameters were varied within +/�50% of

their baseline values. For development time, we hereby varied its

reciprocal, development rate (sL
�1), to facilitate sensitivity compari-

sons with the mortality rate lL (Table 2).

For the seasonal model, we defined a baseline climate with t0 = 121

(May 1), mean annual temperature cK = 0 °C and temperature ampli-

tude dK = 20 °C (eqn 6). We then simulated climatic impacts by either

increasing the annual temperature mean (cK = 0 °C, 5 °C, 10 °C, 15 °
C) or the temperature range (dK = 20 °C, 25 °C, 30 °C, 35 °C). This
broad range of scenarios was chosen in an attempt to illustrate the full

range of possible climatic impacts across a broad geographical range,

encompassing a variety of locations with potentially differing baseline

temperatures and climate change scenarios.

RESULTS

Using the predetermined parameter estimates outlined above, and in

particular Metabolic Theory’s prediction that Es = El = 0.65 eV,

both the Van’t Hoff–Arrhenius and Sharpe–Schoolfield models

capture the observed temperature dependence in O. gruehneri devel-

opment and mortality for most of the temperature range (Fig. 2a,b

– note that the models were not fitted to these data, but rather

superimposed on them to illustrate the prediction accuracy of the

metabolic approach). The Van’t Hoff–Arrhenius model, however,

fails to predict the lower and upper development thresholds, the

high mortality of frozen O. gruehneri eggs, or the observed sharp

increase in mortality above 35 °C (Fig. 2a,b). Moreover, combining

the exponential temperature-dependencies of the Van’t Hoff–Arrhe-
nius relation into predictions of R0(T ) leads to monotonically

decreasing estimates of R0(T ) within the biologically relevant tem-

perature range (�40 °C to 40 °C) (Fig. 2c,d). This decreasing pat-

tern is observed for a broad range of parameter values (not shown),

making the unmodified Van’t Hoff–Arrhenius model unsuitable for

realistic predictions of R0(T ), especially at the lower and upper tem-

perature extremes.

The Sharpe–Schoolfield development model and our analogous

mortality model, in contrast, capture the threshold behaviour of

development and mortality, and predict unimodal functions for both

these parameters and R0(T ) (Fig. 2). The optimal temperature for

development (here, at Topt
s = 29.0 °C; Fig. 2a) usually differs from

Table 2 Parameter definitions and values relating development time and mortality to temperature (eqns 2 and 3). For ease of interpretation, we report all temperature val-

ues in degrees Celsius (°C) here; for application in the models, these values are transformed into degrees Kelvin (°K) by adding 273.15 degrees

Parameter Definition Value Units

Sensitivity analyses

boundaries Source

s0 Time from birth to infectivity at standardisation

temperature T0

29.6 d 19.7–59.2 d Based on O. gruehneri (B. Hoar, unpublished

data; cf. Fig. 2)

l0 Instantaneous mortality of free-living parasites at

standardisation temperature T0

0.056 d�1 0.028–0.084 d�1 Based on O. gruehneri (B. Hoar, unpublished

data; cf. Fig. 2)

Es; El Activation energies regarding parasite development

and mortality respectively

0.65 eV 0.2–1.2 eV (Gillooly et al. 2001; Brown et al. 2004;

Downs et al. 2008; McCoy & Gillooly 2008;

Irlich et al. 2009; Munch & Salinas 2009)

Es
L; Es

H; El
L; El

H Low (L) and high (H) temperature inactivation

energies for parasite development (s) and
mortality (l)

3.25 eV 1.63–4.88 eV Arbitrary choice based on data from

(Schoolfield et al. 1981; van der Have 2002;

Kooijman 2010), cf. text for details

T0 Standardisation temperature 15 °C – Arbitrary choice at intermediate value of

thermal development window (based on

O. gruehneri, cf. text)

Ts
L; Ts

H Low and high temperature inactivation thresholds

for development

2.5; 32.5 °C – Based on O. gruehneri (B. M. Hoar,

unpublished data; cf. Fig. 2)

Tl
L; Tl

H Low and high temperature mortality thresholds �2.5; 37.5 °C – Arbitrary choice, 5 °C below and above

Ts
L and Ts

H, respectively (cf. text)

k Boltzmann’s constant 8.62 9 10-5 eV K�1 – (Gillooly et al. 2001)
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the optimal temperature for survival (here, Topt
l = 0.3 °C; Fig. 2b).

Consequently, optimal fitness (R0) is predicted for an intermediate

temperature between these two optima, here, at Topt = 7.8 °C and

Topt = 13.6 °C for the low and high parasite uptake scenarios

respectively (Fig. 2c,d).

The link between temperature, physiology and fitness allows a

first approximation of potential climate change impacts. First, by

specifying the temperature range where R0(T ) is expected to exceed

one (or equivalently, where R0(T )/C � 1/C ), the model makes a

prediction for the thermal conditions that allow parasite establish-

ment (i.e. the fundamental niche). Second, the magnitude of the

predicted R0(T ) can provide a first indicator of the potential sever-

ity of parasite infections as a function of temperature. Third, the

unimodality of R0(T ) implies temperature ranges where climate

warming would increase or decrease parasite fitness (at temperatures

below and above Topt respectively). Although the unimodality of

R0(T ) is universal, that is, always predicted irrespective of the

model parameter values, the location of Topt [i.e. the skewness of

R0(T )], the magnitude of R0(T ), and related predictions such as the

range where R0(T ) � 1, can vary with the model parameters.

Parasite uptake rate, for example, influences both shape and mag-

nitude of R0(T ). Whereas low uptake (q0H = 0.01 d�1) yields a

right-skewed R0(T ), high uptake (q0H = 1 d�1) masks the influence

of physiological temperature-dependencies on R0(T ), leading to a

more symmetric R0(T ) with short tails at the temperature extremes

(Fig. 2c,d). This is because q0H/(lL(T ) + q0H ) in eqn 5, repre-

senting the proportion of infective larvae that enter a host,

approaches unity with increasing q0H, while the factor DL(T )

remains approximately constant over a wide temperature range.

Hence, we focus on the low uptake scenario from here on.

None of the physiological model parameters act completely inde-

pendently from each other (de Jong & van der Have 2008). Neverthe-

less, they mostly affect different characteristics of R0(T ) which can be

classified as follows. The baseline development time, s0, and mortality

rate, l0, affect the magnitude of R0(T ) over all temperatures, but not

the location of Topt (Figure S1a). For the current parameter set, R0(T )

is hereby more sensitive to changes in mortality than development.

The inactivation energies (Es
L, El

L, Es
H, El

H) in contrast, only

affect R0(T ) at the lower and upper ends of the temperature niche

(Figure S1b,c). Model predictions are comparatively insensitive to

these parameters, particularly at high temperatures. Further, R0(T ) is

qualitatively insensitive to temperature thresholds (Ts
L, Tl

L, Ts
H,

Tl
H) which only shift R0(T ) along the temperature axis.

The key parameters that affect both the qualitative shape and

magnitude of R0(T ) are the activation energies Es and El, which

specify the slopes of sL(T ) and lL(T ) respectively (Fig. 3a,b). If

varied in conjunction, they affect magnitude and kurtosis of R0(T ),

but maintain the right-skewed shape (Fig. 3e). However, increasing

Es from 0.2 eV to 1.2 eV, while fixing El = 0.65 eV, changes

R0(T ) from right-skewed to left-skewed for the current parameter

set. This change in skewness is due to the contrasting decrease and

increase of development time at high and low temperatures, respec-

tively, caused by the increasing slope of sL(T ). Increasing El from

0.2 eV to 1.2 eV, while fixing Es = 0.65 eV, acts in the opposite

direction, changing R0(T ) from left-skewed to right-skewed, for

analogous reasons (Fig. 3). These structural sensitivities may have

far-reaching implications, as the impacts of climate change on a par-

asite population depend fundamentally on the skewness of R0(T ) as

discussed below.

The effect of seasonality

One key limitation of the above analyses is the simplifying assump-

tion that temperature remains constant year-round. In a seasonal

environment, however, not all parasites are born equal, as their

expected lifetime reproductive output, R0, depends on the climate

that the free-living stages experience while developing, and hence

on parasite birth date. With the chosen parameters and a baseline

environment with mean annual temperature cK = 0 °C and tempera-

ture amplitude dK = 20 °C (Fig. 4, black lines), development rate

peaks around early-August, and is zero before early-May and after

mid-October (Fig. 4b). Mortality, in contrast, is lowest during the

intermediate temperatures of spring and fall (Fig. 4c), reflecting the

different optimality conditions of development and survival (Fig. 2a,

b). For most of the year, these contrasting effects approximately

balance out for the developmental stages, resulting in ~19% of para-

sites surviving from birth to infectivity between mid-May and early-

September (Fig. 4d). Nevertheless, the synthesised predictions for

R0 still show a slight mid-summer trough due to the increased,

high-temperature-induced mortality that parasites experience

between having reached infectivity and finding a host (Fig. 4e). R0

is zero for parasites born before early-April and after mid-Septem-

ber (Fig. 4e), reflecting the assumption of high mortality at low

temperatures (Fig. 4c, cf. also Fig. 2b).

In warmer conditions, the summer trough in R0 becomes more

pronounced due to the expected increase in summer mortality

(Fig. 4a–e, blue and green lines). In more extreme conditions

(Fig. 4a–e, red lines), summer development may also slow down

due to enzyme inactivation or other processes that slow biochemi-

cal reactions (Fig. 4b) and summer mortality may further increase

to a point (Fig. 4c), where the majority of summer-born parasites

cannot survive to infectivity (Fig. 4d). Due to this, the model sug-

gests that climate warming may split a previously continuous

spring-to-fall transmission pulse into two separate transmission

pulses, a smaller one in spring, and a larger but shorter one in fall

(Fig. 4e). The fall peak is larger, because for spring-born larvae the

rising spring temperatures result in progressively increasing mortal-

ity rates for the period between having reached infectivity and find-

ing a host, whereas for fall-born larvae the opposite is true

(Fig. 4c). As this mortality source becomes less important with

increasing parasite uptake rates (cf. q0H in eqn 5), the magnitude

of the spring and fall peaks is approximately equal in a high uptake

scenario (Figure S2). The timing of the transmission pulses is also

expected to shift with climate warming, towards earlier in spring

and later in fall (Fig. 4e), potentially even wrapping around to allow

winter transmission (Figs. 4e, S2a, red lines). These phenological

changes are observed because milder spring and fall temperatures

would allow parasite development progressively earlier and later in

spring and fall, respectively (Fig. 4b), while simultaneously reducing

parasite mortality in these seasons (Fig. 4c,d). Whether the oppos-

ing effects of a decreasing R0 in summer and increasing R0 in

spring and fall lead to an overall increase or decrease in R0 can be

evaluated by averaging R0(t ) over the entire year (Heesterbeek &

Roberts 1995). However, such analyses are beyond the scope of

this study as the evaluation also depends on (species-specific)

parameters other than those quantified here (i.e. those incorporated

in C ).

The above results were based on climate scenarios where mean

annual temperature (cK) was varied but the annual temperature
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range, specified by dK in eqn 6, was held constant. However, tem-

perature range will vary between locations, particularly across latitu-

dinal gradients, and may also be affected by climate change. We

therefore illustrate the effect of temperature range on model out-

comes in a second set of climatic simulations, where we varied

range but kept annual mean temperature constant (Fig. 4f). Here,

an increasing range results in increasing summer temperatures as

before (Fig. 4f ), yielding similar patterns of summer development,

summer mortality and summer R0 as described above (Fig. 4g–j). In
contrast to the previous case where increasing mean temperatures

resulted in earlier spring and later fall transmission pulses, increasing

temperature variability now shifts the season that allows a positive

R0 towards later in the year, in both spring and fall (Fig. 4j). In

spring, these patterns arise because early-spring temperatures are

highest under the scenario with the lowest temperature range

(Fig. 4f, black line; note the ‘temperature switch-over’ between sce-

narios at t0 = 121) resulting in the lowest early-spring mortality for

this case (Fig. 4h). In fall, the latest transmission season is observed

with the highest temperature variability because the warmer fall

temperatures allow for development to be sufficiently fast to com-

pensate for increases in mortality (Fig. 4g–i). Changes in transmis-

sion season timing due to increasing temperature range are small

compared with the case with increasing mean temperatures, because

fall temperatures drop faster with increasing temperature range,

resulting in a faster increase in fall mortality and faster decrease in

development rate (compare Figs. 4b,c with 4g,h). These contrasting

patterns illustrate the necessity to consider changes both in mean

temperature and in temperature range and variability in climate-

linked host–parasite models.

All of the above conclusions hold when temperature-dependence

is also incorporated in parasite uptake rate, q(T )H. Even though a

highly temperature-sensitive q(T )H may affect the skewness of

R0(T ) in the simplified case of no seasonality (Figure S3), model

predictions regarding climate change impacts (in particular, concern-

ing phenological changes and the appearance of a summer fitness

trough) are qualitatively and quantitatively similar between the tem-

perature-independent and temperature-dependent uptake cases when

seasonality is considered (Figures S4, S5). The only notable differ-

ence between these two cases concerns the magnitude of the spring

and fall peaks, which are approximately equal when uptake rate is

described by the Van’t Hoff–Arrhenius relation or a temperature-

dependent unimodal model (cf. Appendix S1 for details).
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DISCUSSION

Predicting the impacts of climate change on the dynamics of host–
parasite systems is challenging due to the intrinsic complexity of

multi-species interactions and the numerous ways in which the envi-

ronment can influence such dynamics (Lafferty 2009; Rohr et al.

2011). Here, we have linked parasite physiology with parasite popu-

lation dynamics, an approach that allows integrating multiple nonlin-

ear temperature-dependencies within a single measure of fitness (R0)

to evaluate the net effect of positive and negative climate change

impacts on different aspects of parasite life history. Our model is

an advance over traditional approaches, such as degree-day models

(Kutz et al. 2005; Trudgill et al. 2005) or models using Q10 (Poulin

2006), which can only quantify temperature-dependent changes to a

single life history component, such as development, mortality or

fecundity, one at a time. Furthermore, our analyses have shown that

it is necessary to account for the frequently observed unimodal

shape of parasite development and mortality to realistically model

climate change impacts across the full range of possible baseline

temperatures. Consequently, we have chosen extensions of the stan-

dard Van’t Hoff–Arrhenius relation to include upper and lower

thermal thresholds for changes in development and mortality, and

the unimodal shape of these functions carries over to R0(T ). Ulti-

mately, our model embraces the idea that climate change can have

both positive and negative impacts on parasite fitness (Lafferty

2009), and explicitly derives this result from first principles.

In its current form, the framework focuses on the physiological

consequences of parasite exposure to different temperatures. As

such, it is suitable for determining the fundamental thermal niche

of a parasite under both current and novel environmental condi-

tions. An estimate for the geographical expanse of this niche can be

obtained by determining where temperatures are such that R0 � 1

(Rogers & Randolph 2006). For this, depending on the desired reso-

lution, one could use the simplified model without seasonality

(eqn 5) as a first approximation (but see Savage 2004 for limitations

of this approximation), or integrate over the season-dependent esti-
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mates of R0 that emerge from the sinusoidal temperature model (6)

(Heesterbeek & Roberts 1995; Caswell 2011). Incorporating daily

temperature fluctuations and stochasticity into eqn 6 – and assessing

the consequences for R0 – may hereby be another key step in fur-

ther increasing prediction accuracy, because larvae often cannot sur-

vive extremely high temperatures even for short periods (Fig. 2b),

and may thus be affected substantially by the predicted increase in

the frequency of extreme temperature events (IPCC 2007).

Geographical changes to the fundamental niche under future con-

ditions could be obtained by linking local climate predictions with

R0. For illustration, consider interpreting the unimodal R0(T ) of the

simplified model (Fig. 2c) geographically, with the left and right ends

of the x-axis corresponding to the high-latitude (low temperature)

and low-latitude (high temperature) edges of a hypothetical parasite

range. Uniform warming across this range would result in decreasing

parasite fitness in the southern parts of the range, and increasing fit-

ness in the northern parts (with the two impact regions roughly sepa-

rated by Topt). The shape of R0(T ) (together with predicted climate

maps) hereby determines whether the parasite would experience a

range contraction, a range shift, or whether it could theoretically

even expand its range based on its physiological constraints. With a

right-skewed R0(T ), a uniformly warmer climate would result in

decreasing parasite fitness over most of its range, implying a likely

range contraction. A left-skewed R0(T ) would indicate that climate

warming would likely increase the parasite’s potential to expand its

range, with range contractions at the southern range edge possibly

outweighed by range expansions at the northern edge.

One key limitation of the models in their current form is that

they do not include various abiotic and biotic factors, such as dis-

persal barriers, competition with other parasite species, and climate

or land use impacts on host ranges. Each of these factors may limit

or facilitate parasite range expansions. Consequently, our models

allow predicting negative climate change impacts on parasites, such

as where the habitat becomes unsuitable to support a given species,

but they cannot predict whether physiologically permissible range

expansions will actually occur (Dobson & Carper 1992; Lafferty

2009). Similarly, considering the effects of seasonality, and thus the

fundamental temporal niche of a parasite, it is likely that predictions

concerning seasonal reductions in R0 would be associated with less

uncertainty than predictions concerning expansions of the season

where R0 is positive (as the latter also requires host availability at

potentially unusual times of the year). In other words, the models

can predict changes to a parasite’s (geographical or temporal) funda-

mental niche, but not changes to its realised niche (Lafferty 2009).

However, Metabolic Theory and related theories, such as Dynamic

Energy Budget Theory, have been successful in quantifying patterns

and processes across all levels of biological organisation (Nisbet

et al. 2000; Brown et al. 2004; Kearney et al. 2010). Moreover, the

ideas of Metabolic Theory have also been applied to explain dynam-

ical interactions, for example in herbivore-plant systems (O’Connor

et al. 2011), predator–prey systems (Vasseur & McCann 2005) and

carbon cycling (Allen et al. 2005). Thus, it may be possible to

extend our framework to include population-, community- and

ecosystem-level processes within parasite models of different com-

plexity to also aid the prediction of realised niches.

Another advantage of parameterising parasite models using Meta-

bolic Theory is that this allows first approximate estimates of the

temperature-dependence and magnitude of all model parameters,

and thus the likely qualitative shape of R0(T ). Given the practical

impossibility of determining climate change impacts on all existing

and emerging parasites separately, this property could be used for

broad-scale risk analyses, and would be particularly useful in species

where little to no data exist. Using Metabolic Theory as a predictive

tool across parasite species necessitates confronting, validating and

possibly modifying the theory with extensive parasite data first, as

has been done for free-living species (Brown et al. 2004; Dell et al.

2011). To determine climate change impacts on R0(T ), it is, for

example, key to accurately quantify the activation energies Es and

El a priori (Fig. 3). Estimating these activation energies can be

accomplished in various ways, but might be easiest by fitting eqns 2

or 3 to temperature-dependent development/mortality data, obtained

from cohorts of larvae reared at a range of different temperatures (e.

g. see Schoolfield et al. (1981), Smith et al. (1986) and Smith (1990)

for computationally simple nonlinear regression approaches, and

Régnière et al. (2012) for more precise maximum-likelihood meth-

ods). Although Metabolic Theory predicts that Es and El would lie

between 0.6 eV and 0.7 eV in most cases, a broader range for these

parameters, approximately spanning 0.2 eV to 1.2 eV, has also been

suggested (Downs et al. 2008; Irlich et al. 2009). Within this range,

R0(T ) may change from right-skewed to left-skewed (Fig. 3), a

switch with fundamental implications as outlined above.

To date, it remains unclear whether parasites follow the same

metabolic ‘rules’ as free-living species (Rohr et al. 2011), although it

seems probable that this would hold at least for free-living stages.

In O. gruehneri, the predicted activation energies Es = El = 0.65 eV

explain the temperature-dependence of development and mortality

extremely well (Fig. 2). Moreover, the resulting predictions of a

summer trough in development, survival and R0 (Fig. 4) qualita-

tively correspond with field and experimental warming data of this

species (Hoar et al. 2012). Although these results are encouraging, it

remains difficult to determine whether similar activation energies

also apply to other species, as few standardised descriptions of para-

site development and mortality exist (e.g. some studies define devel-

opment time as ‘time until appearance of first infective larva’ while

others report the ‘time when 50% of eggs have developed to infec-

tivity’; moreover, mortality and development are seldom separated

out in such studies; e.g. Young et al. 1980; Kutz et al. 2001). Never-

theless, preliminary analyses of development (n = 6) and mortality

(n = 13) data on the free-living stages of parasitic nematodes

support the hypothesis that the thermal component of Metabolic

Theory holds as in free-living species (Fig. 5). Although these analy-

ses are not intended to be exhaustive, and may also be affected by

protocol differences between source studies, they are encouraging.

The median and mean activation energies for both development

(median: 0.67 eV, mean: 0.62 eV) and mortality (median: 0.67 eV,

mean: 0.70 eV) closely correspond to the predicted 0.65 eV. Fur-

ther, the majority of estimates fall in or near the narrow 0.6–0.7 eV

range, and all estimates are well within the wider expected 0.2–
1.2 eV range (Fig. 5). Regarding the second component of Meta-

bolic Theory – the allometric scaling of metabolic rates with body

mass – even less information is available for parasites. Indeed, the

standard theory may have to be modified to account for additional

covariates, processes and species interactions, such as humidity, host

immune reactions or trophic level (Hechinger et al. 2011). Finally, it

remains unclear whether variation in other model components, such

as threshold temperatures or inactivation energies, could also be

described using Metabolic Theory. These questions delineate fruitful

lines for further investigation.
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Although we expect Metabolic Theory to be particularly useful for

broad-scale analyses, the simultaneous development of tactical models

(species-specific models with much biological detail; e.g. Grenfell

et al. 1987; Mangal et al. 2008) will be key for furthering theory and

for improving prediction accuracy in selected systems. For this, the

presented approach could still serve as a framework, and offers great

flexibility for assessing a wide range of temperature responses both

within and between species, as the models allow accounting for any

combination of activation energies, inactivation energies and tempera-

ture thresholds in development, mortality and other life history com-

ponents. Where needed, Metabolic Theory could still reduce data

requirements, but tactical models would ideally be parameterised with

species-specific laboratory or field data. Such data could reveal addi-

tional covariates necessary to determine physiological rates, such as

humidity or soil conditions (O’Connor et al. 2006), and it would be

straightforward to include such predictors in our models. Additional

species-specific life history details (e.g. time-/temperature-dependent

egg production, hypobiosis, differing mortality rates between different

developmental stages) may also be incorporated and could outline

further sensitivities to climate. Ostertagia gruehneri egg production, for

example, is seasonal, peaking in summer and dropping dramatically in

fall (Stien et al. 2002), and this could interplay with climate warming-

induced increases in summer mortality (Fig. 4) to disproportionately

affect the species’ ability to persist in future environments. Similarly,

tactical models may include biological details to evaluate indirect cli-

mate change impacts, for instance, through changes in biodiversity,

host range, or host immunity (Thieltges et al. 2008; Dobson 2009; Al-

tizer et al. 2011). For instance, in the O. gruehneri-caribou system, phe-

nological mismatches may arise between parasite and host availability

due to seasonal changes in parasite viability (Fig. 4) and changes to

host migration (Sharma et al. 2009). Ultimately, model complexity will

depend on data availability and the model objectives, and may be

determined using model selection tools (Burnham & Anderson 2002).

A recent review by Rohr et al. (2011) highlights three key,

unresolved, questions to understanding climate change impacts on

host–parasite systems. It remains unclear (1) at which geographical

locations climate change will have the greatest impact, (2) which host

–parasite systems might be most sensitive to climate change and (3)

theory is needed that allows predicting the outcome of specific host–
parasite interactions as a function of climate. The presented

approach provides opportunities to address each of these questions,

and thus a potential means for understanding and predicting climate

change impacts on host–parasite systems worldwide. Metabolic mod-

els could, for example, generate R0-maps for current and predicted

climate scenarios as discussed above, thus quantifying the potential

of given parasite species to establish and/or persist in certain

regions. Such maps would be similar to maps arising from

approaches like ‘climate envelope modelling’ (Pearson & Dawson

2003) – though potentially more informative due to their mechanistic

underpinning (Mangal et al. 2008; Kearney & Porter 2009; Buckley

et al. 2010) – and could outline likely areas of high impact. Tradition-

ally, climate change is assumed to affect temperate and polar systems

more than tropical ones due to the larger temperature increase at

high latitudes (Dobson et al. 2008). However, some studies contend

that tropical systems might be affected equally or more due to the

narrower temperature tolerance of tropical ectotherms (Deutsch et al.

2008) or the larger absolute shift in metabolism for temperature

changes at high relative to low baseline temperatures (Dillon et al.

2010). Although both these effects are easily quantified within our

models, the predicted R0(T ), and thus climate change impacts, will

significantly depend on the model parameters, and particularly the

activation energies (Fig. 3). These and other parameters, such as TL

and TH, might systematically vary with latitude and other covariates

(Clarke 2003; Irlich et al. 2009; Sunday et al. 2011), further emphasis-

ing the necessity to determine them for a broad range of parasites.

Similarly, our approach can be extended to other host–parasite
systems, offering novel opportunities to assess which systems

might be most sensitive to climate change. With ectotherm hosts,

for example, temperature would not only affect the development

and mortality of free-living stages but also host movement and

parasite uptake rate, as well as the development, mortality and

fecundity of hosts and parasites within hosts. Although these com-

plexities may alter shape, magnitude and seasonality of R0, the

temperature-dependencies of all parameters may still be determined

using Metabolic Theory (Brown et al. 2004; Dell et al. 2011).

Extending these arguments further to different parasite groups,

such as vector-transmitted parasites or parasites utilising intermedi-

ate hosts, could for example help addressing whether parasites with

a direct or indirect life cycle are more sensitive to climate change

(Rohr et al. 2011).

Finally, while our analyses have focused on parasite fitness and

implications for parasite establishment and persistence, Metabolic

Theory can be applied in similar ways to assess climatic impacts on

other characteristics of host–parasite systems, such as transient

dynamics, the stability of stationary states or the average parasite bur-

den and prevalence in a host population (e.g. with burden, m, and

prevalence, q, given by mðT Þ ¼ kDPaH�1kNB
�1 � ðR0ðT Þ=C � 1=C Þ

and qðT Þ ¼ 1� ð1þ mðT Þ=kNBÞ�kNB in a non-seasonal environ-

ment, Mangal et al. 2008). However, such analyses may depend sub-

stantially on model parameters other than those quantified here (e.g.

the aggregation parameter kNB; Grenfell et al. 1987), and may further
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Figure 5 Activation energies for development to infectivity (Es) and mortality of

free-living infective larvae (El), obtained by fitting eqns 2a and 2b to

temperature-dependent development and mortality data of parasitic nematodes

(see Table S1 for data sources). The horizontal lines show the mean activation

energies predicted by Metabolic Theory, Es = El = 0.65 eV, and the 0.6–0.7 eV

range (cf. text).
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be affected in complex ways by parameters determining the timing of

reproduction when seasonality is incorporated (e.g., the maturation

delay sP or the presence/absence of hypobiosis), so we defer these

assessments to future work.

Beyond host–parasite systems, the framework remains applicable

because R0 can be considered a measure of fitness in any species

(de-Camino-Beck & Lewis 2008). With appropriate modification of

eqns 1 and/or 7–9, our methods could thus complement non-sea-

sonal metabolic population models that were developed for non-

parasitic species and use alternate measures of fitness, such as the

intrinsic growth rate, rm (Amarasekare & Savage 2012). In sum, the

generality of the approach suggests applications in a much broader

context than examined here, for instance, for evaluating and/or pre-

dicting climate change impacts on the conservation of endangered

species (Wikelski & Cooke 2006), or for proactively designing man-

agement strategies for expected, climate change-mediated, biological

invasions (Walther et al. 2009).
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Györi, I. & Eller, J. (1981). Compartmental systems with pipes. Math. Biosci., 53,

223–247.
Harvell, C.D., Mitchell, C.E., Ward, J.R., Altizer, S., Dobson, A.P., Ostfeld, R.S.

et al. (2002). Climate warming and disease risks for terrestrial and marine

biota. Science, 296, 2158–2162.
van der Have, T.M. (2002). A proximate model for thermal tolerance in

ectotherms. Oikos, 98, 141–155.
Hechinger, R.F., Lafferty, K.D., Dobson, A.P., Brown, J.H. & Kuris, A.M.

(2011). A common scaling rule for abundance, energetics, and production of

parasitic and free-living species. Science, 333, 445–448.
Heesterbeek, J.A.P. & Roberts, M.G. (1995). Threshold quantities for helminth

infections. J. Math. Biol., 33, 415–434.
Hoar, B.M., Ruckstuhl, K. & Kutz, S. (2012). Development and availability of

the free-living stages of Ostertagia gruehneri, an abomasal parasite of

barrenground caribou (Rangifer tarandus groenlandicus ), on the Canadian tundra.

Parasitology, 139, 1093–1100.
Hoberg, E.P., Polley, L., Jenkins, E.J., Kutz, S.J., Veitch, A.M. & Elkin, B.T.

(2008). Integrated approaches and empirical models for investigation of

parasitic diseases in northern wildlife. Emerg. Infect. Dis., 14, 10–17.
Huey, R.B., Deutsch, C.A., Tewksbury, J.J., Vitt, L.J., Hertz, P.E., Álvarez Pérez,
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