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Still very preliminary




Three parts to the talk:
Climate change versus land use change

Metabolic theory of climate change -
predicting impacts on free-living infective
stages.

Caribou and parasitoids ~ population
cycles and host migration?




3 key questions (Rohr et al. 2011)

Can a theoretical framework be developed
that allows predicting the response of any
host-parasite system to climate change?

At which geographical locations will climate
change have the greatest impacts?

Which host-parasite systems are most
sensitive to climate change?

How?

Where?

Who?
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Changes In indirect drivers
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Pasture and cropland in million sq.
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-u”‘” Climate and Land-use Change

Climate Change

. . Model: Image 2.2
Adaptmg Mosaic 2100 (Strengers et al 2005)
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Il“” Climate and Land-use Change

‘Climate Change
- Landuse Change

Order from Strength, 2100 St o
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 Distribution ranges of all 9,754 species, geo-
registered to known projection

 Following analysis:
 polygon ranges resampled to 0.5° grid (259,200 guadrats)

« 11,418,435 quadrat records
« Excluded 838 freshwater, marine and pelagic species
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l“” Latitude, Range Size and Type of Change
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Im”” Latitude and Proportional Range Loss
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Il“” Latitude and Proportional Range Loss

OS 2100
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The thermal range of species will vary with latitude
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Species will be adapted to different ranges
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Species will be adapted to different ranges

No longer within
natural range
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INTEGR. COMP. BIOL.. 44:140-151 (2004)
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Keeping Pace with Fast Climate Change: Can Arctic Life Count on Evolution?!

DOMINIQUE BERTEAUX.2* DENIS REALE.T ANDREW G. MCADAM.T AND STAN BOUTINE

*Canada Research Chair in Conservation of Northern Ecosystems, Université du Québec a Rimouski, 300 allée des Ursulines,
Rimouski, Queébec G3L 341, Canada
TCanada Research Chair in Behavioural Ecalt;g, Université du Québec a Montréal, Case postale 8888, Succursale Centre-Tille,
niréal, Québec H3C 3PS, Canada
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FiG. 1. Past, cumrent, and predicted surface air temperature increas-
es m the Canadian Arctic and Northern Hemusphere, expressed over
a period of 100 years. Past increase calculated over the peniod 800
to 2000 from Mann-Bradlev-Hughe: multiproxy reconstuction of
Northern Hemisphere annmal temperatures {data from Fig. 3 in Esper
er al., 2002). Cwrent mmerease caleulated over the period 1900 to
2000 from surface awr temperatures o the Arctic (data from Fig. la
in Motz et al., 2002). Predicted increaze calculated over the pennod
2000-2100 for the Arctic from the general circulation models com-
bining the effects of projected greenhouse gas and sulphate aerosol
inereases—Canadian meodsl (data from Fiz. 6 m Hengeveld, 20007,
Shaded area reprezents mcertitnde of model predictions.
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Ecological Dynamics Across the Arctic
Associated with Recent Climate Change
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Ecological Dynamics Across the Arctic Associated
with Recent Climate Change
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Response of pathogen growth rate to annual temperature

and 1.5 degree average warming
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Fig. 2. The influence of an average 1.5° rise in temperature on the basic reproduc-
tive number R, of a hypothetical pathogen. When R, is above 1, a pathogen will
increase. The lower blue line illustrates the average weekly temperature before
climate change; the upper red line illustrates average weekly temperature after an
average 1.5° temperature increase. The lower green line corresponds to R, = 1;
below this temperature the pathogen declines in abundance. The pathogen increas-
es at temperatures above this, and we assume that disease problems become
severe when temperature exceeds the pink line and epidemic above the purple line.
The figure illustrates that increases in temperature not only allow the peak value
of R, to increase, but also lead to an increased annual duration of the period during
which the pathogen is a problem.

Climate Warming and Disease Risks for Terrestrial and Marine Biota

C. Drew Harvell et al.
Science 296, 2158 (2002);
DOIl: 10.1126/science.1063699

APD - suggested and drew this figure..!
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How can the response of ecosystems be predicted with
confidence if they have never been observed under

future conditions?



"
Ecological Impacts of Climate Change

Predictive framework needed



"
Bioenergetic (mechanistic) approach

(the laws of thermodynamics will NOT change)

Understand bioenergetic
mechanisms driving
ecosystems

\ Predictive
\ models

Models can be

tested with
<+ —» empirical data
under current

conditions

Mathematical
models
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|. Metabolic Theory of Ecology (MTE)

* Physiological rates scale with temperature according to
Arrhenius relationship and with activation energies E = 0.65 eV

Metabolic rate
E
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Development rate

™(T) = Toe_%(%_%o)

Field data for fish

y=-=068x+ 2415
-17 rf=0.82, n= 140

Ln (Body mass-corrected development rate

=3
s
o,
Y Brown et al. 2004
38 40 42
Temperature (1/kT)

Mortality rate
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McCoy & Gillooly 2008
4 o 1 2 3 4

AR,
kT T

wcs

Population growth, carrying capacity, species diversity,...



Climate Change and Parasites

Direct Effects:

Shorter generation

Parasite development rates [ times with warming?

Changing parasite survival

Transmission season length }

Indirect Effects:

Altered host ranges — new hosts, novel pathogens, host
switching?

Changing biodiversity — dilution / amplification effects?

New stresses on host populations

Predictive tools needed for disease management




Focus on direct thermal effects first
(development time, mortality)




Calculating RQ v
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Host dynamics H = constant

Free-living d

L
infective stages dt = ADLI,) (T)P(t —TL (T)) — pu,(T)L — pyLH
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Adult parasites  dP P P?ky+1

within host dt = puyDpLH(t — tp) — (p + by)P — ayH <ﬁ + H? Ky >

DP (T)DpA puH

R, (T) = .
o(T) ay +by +up pu (T)+ pyH
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What are parameters of R,?

» parasite development time

» parasite mortality
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One could go to the lab...

...and fit a

development/
e mortality
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Cohort data:

Pre-infective stages
Infective stage



Parasite Numbers

... to estimate development and survival as a function of
temperature...

Parasite Numbers
Parasite Numbers

Parasite Numbers
\
Parasite Numbers

140



... and we have done that.

=)
i I I I I I I I I I I
:-1 100 F
= O
S a0t o
=
o O
% 0 | ! ! ! | ¢ 0 {0 | |
= o I 8 10 15 20 Fid A0 35 4[]
"FIE I I I I I I I I I E I
';:J 0.a0
: O 5
B sk @
= .
= > -
§ 0 | | (I Q2 Y ¢ l ! % g
-5 I ] 10 e 20 25 40 33 4[]

Temperature [°C]

Unfeasible to do for all existing and emerging
parasites of humans and wildlife...
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MTE to the Rescue...

Development time Mortality rate
Byl L) L
T(T) = 19e kK\T To u(T) = poe *

with E, = E,, = 0.65 eV



Predictions using Metabolic Theory
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= ... resulting R, Is unrealistic at temperature extremes.
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Modification —
Sharpe-Schoolfield model for development

Assumes reversible inactivation of enzymes at temperature
extremes, slowing or stopping development:

Er(1 1 Ef/1 1 EH, 1 1
(T) = Toe?(T‘T—O) . (1 L ek (T_TL) n eT(_TJrﬁ))
A similar modification for mortality:



Predictions of modified model
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& survival thresholds
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Predictions of modified model
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& survival thresholds

= R, IS unimodal

= Optimal temperature
IS weighted mean of
development & survival
optima
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A geographical perspective
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* Impacts will vary
geographically

* Depending on
“baseline” temperature
climate change may
have positive or
negative effects

= Opportunity to predict
range shifts




A seasonal perspective
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A seasonal perspective
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A seasonal perspective
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A seasonal perspective

Development
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A seasonal perspective
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A seasonal perspective
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A seasonal perspective
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Response of pathogen growth rate to annual temperature

and 1.5 degree average warming
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Fig. 2. The influence of an average 1.5° rise in temperature on the basic reproduc-
tive number R, of a hypothetical pathogen. When R, is above 1, a pathogen will
increase. The lower blue line illustrates the average weekly temperature before
climate change; the upper red line illustrates average weekly temperature after an
average 1.5° temperature increase. The lower green line corresponds to R, = 1;
below this temperature the pathogen declines in abundance. The pathogen increas-
es at temperatures above this, and we assume that disease problems become
severe when temperature exceeds the pink line and epidemic above the purple line.
The figure illustrates that increases in temperature not only allow the peak value
of R, to increase, but also lead to an increased annual duration of the period during
which the pathogen is a problem.

Climate Warming and Disease Risks for Terrestrial and Marine Biota

C. Drew Harvell et al.
Science 296, 2158 (2002);
DOIl: 10.1126/science.1063699

APD - suggested and drew this figure..!



=
Some Conclusions

The framework allows...

= synthesizing (nonlinear) climate impacts on

. L . . ?
different life history components into single measure I
of fitness (contrast with degree-day models)

= straightforward extension to other host-parasite Who?
systems, parasite life cycles, environmental :
covariates (e.g., moisture), ...

= predicting temporal and geographical impacts of Where?

climate (fundamental niche)

= potential extensions to include indirect effects (realized niche)




So how about other species?

= Ry(T) unimodal regardless of parameter values

= Location of optimal temperature, skewness, temperature range
where R, > 1 insensitive to almost all model parameters

» Key parameters are the activation energies

0.1 : 0.z
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Metabolic Theory predicts E = E, = 0.65 eV
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Metabolic Theory needs to be tested further for parasites!



Quo vadis,
parasite?
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Persistence / Establishment
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Application to Specific Systems
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Climate Change Impacts on Hosts?

Climate may affect...

= host condition (immunity)
» host survival / reproduction
» host density

» host ranges

= community composition / biodiversity DEBs more
appropriate

Each of these can be treated (endotherms /

within energetic framework

supply-side
problems)






Circumpolar distribution of reindeer and caribou

Beringia













Barren-Ground Caribou Herds

% Central Arctic = Bluenose-West % Dolphin-Union
1% Porcupine Bluenose-East || National Park
“'! Cape Bathurst % Bathurst

=







Relative herd sizes
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Dynamics of large herbivores in deserts: kangaroos and caribou

Graeme Caughley and Anne Gunn

{al Plart growth response

Rate of increase
of plants

Rainfall = Zx

L Rainfall = x ~

Rate of increase
of herbivores

lch Herbivore feeding response

Food intake
per day
per herbivore

Biomass of plants

Fig. 1. A possible configuration of response functions of a
plant-herbivore system, each of which is graphed against the
biomass of available forage per unit area.
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Relative herd sizes
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The timing and departure rate of larvae of the warble fly Hypoderma
(= Oedemagena) tavandi (L.) and the nose bot fly Cephenemyia trompe
(Modeer) (Diptera: Qestridae) from reindeer

Arne C. Nilssen & Rolf E. Haugerud

Zoology Department, Tromsp Museum, N-9006 Tromsg, Norway

Remaining larvae (%)
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40 19538 Fig. 2. The «collection cape technique» was used in
: 1988 and 1989 o collect H. tarandi larvae. The
collection cape consisted of a nylon mesh fastened
20 - over the back of each animal. The mesh made a
transparent bag into which the larvae collected
when they emerged. The arrow points at one

0 T | | | dropped larva.
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Fig. 3. Larvae of H. tavandi remaining in the host as a funcrion of dace from 5 years of investigation. (Sample sizes, see

Table 1

). 100 % is based on counting of larval scars at autopsy.
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The timing and departure rate of larvae of the warble fly Hypoderma
(= Oedemagena) tavandi (L.) and the nose bot fly Cephenemyia trompe
(Modeer) (Diptera: Qestridae) from reindeer

Arne C. Nilssen & Rolf E. Haugerud
Zoology Department, Tromsp Museum, N-9006 Tromsg, Norway
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Fig. 1. Summary of published records of dropping periods of larvae of H. tarandi and C. trompe. Thicker portions of the
lines denote mass departure of larvae. *: End of dropping not given. The number after each line refers to: 1.
Bergmann 1917 (Sweden). 2: Hadwen & Palmer 1922 {Alaska). 3: Palmer 1929 (Alaska). 4: Sdobnikov 1935
(Russia, Alaska). 5: Breyev & Karazeeva 1954 (NW Soviet Union). 6: Gomoyunova 1976 {Tsjuktsjer peninsula
in Russia). 7: Solopov 1989 (various parts of norchern Russia). 8: Nordkvise 1960 (Sweden).
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significant impacts on host




Males have heavier burden then females & Not very aggregated
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Dynamical aspects of host-parasite associations:
| Crofton’s model revisited

ROBERT M. MAY
Biology Department, Princeton University, Princeton 08540, New Jersey

(Received 2 May 1977)

EUMMARY

Although superseded by more recent and biologically realistic studies,
Crofton’s (1%715) model of host—parasite associations remains of interest
as the simplest model which captures the essentials. Even if its simplify-
ing assumptions are all accepted, Crofton’s model has two defects: the
first is that its general conclusions are drawn from numerical simulations
for a very restricted range of parameter values; the second is that the
probability for a parasite transmission stage to succeed in establishing
itself in a host is not constrained to be less than unity, as biologically it
must be. The present paper remedies these two defects, by giving analy-
tical results valid for all values of the parameters, and by demanding that
the parasite transmission factor indeed saturates to unity. Some of
Crofton’s conclusions remain intact, others are significantly altered.
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Basic May-Crofton Model
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H, = AH, [1+m, (- f)/k]
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Add age-structure to Caribou
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Life table for caribou
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Basic Crofton May with Predators on free-living stages
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Age-structured Crofton May with predator attack on free-living stages
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STUDIES IN POLAR RESEARCH

Reindeer
on South Georgia

N. LEADER-WILLIAMS
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1. Hard to design an
experiment to remove bots
and warble flies from
thousands of caribou...

All populations of caribou
with bot-flies / warbles
show evidence of long-
term cycles

Reindeer introduced to
South Georgia and Iceland
over 100 years ago, show
no evidence of cycles and
there are no Bots nor
warbles there.






Ecological Dynamics Across the Arctic
Associated with Recent Climate Change
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