

S.Klimenko, University of Florida

August 3-9, 2015, IFT-UNESP / ICTP-SAIFR, Brazil

1

Stages of search pipeline: ETG

Event Trigger Generator (ETG): search preprocessor which uses basic signal processing algorithms with the goal to prepare data, produce intermediate data products (triggers), reduce complexity and processing time

Instrumental/Environmental Noise

- regression: target s[n] can be predicted if there is a linear association with witness channel w[n].
- find A = {a[0],...,a[K]} by minimization of residual

$$\sum_{n=0}^{n=N} e^{2}[n] = \sum_{n=0}^{n=N} \left| s[n] - \sum_{k=0}^{k=K} a[k]w[i-k] \right|^{2}$$

• N – filter training length, K – filter length

S.Klimenko, University of Florida

4

$$\begin{bmatrix} r_{ww}[0] & r_{ww}[1] & \dots & r_{ww}[K] \\ \dots & \dots & \dots & \dots \\ r_{ww}[K] & r_{ww}[K-1] & \dots & r_{ww}[0] \end{bmatrix} \begin{bmatrix} a[0] \\ \dots \\ a[K] \end{bmatrix} = \begin{bmatrix} c_{sw}[0] \\ \dots \\ c_{sw}[K] \\ c_{sw}[K] \end{bmatrix}$$
$$R \cdot A = C$$

 R is (Hermitian) Toeplitz matrix constructed from autocorrelation of w and C is a x-correlation function between s and w

$$r_{ww}[k] = \sum_{n=0}^{n=N} w[n]w[n-k] \qquad c_{sw}[k] = \sum_{n=0}^{n=N} s[n]w[n-k]$$

- Complexity: to capture noise spectral features with the resolution df in a sampled (rate fs) LIGO signal need a filter with ~2 (fs/df) coefficients A. K~8000 for fs=4kHz
 - solved by using efficient Levinson-Durbin algorithm [1]

• What if w=s? – predict s by using past (or future) samples

Forward prediction (lattice prediction)
$$x[n] = \sum_{k=1}^{K} a[k]s[n-k]$$

$$x[n-K] = \sum_{k=0}^{K-1} a[K-k]s[n-k]$$

$$x[n-K] = \sum_{k=0}^{K-1} a[K-k]s[n-k]$$

$$a[0] = 0 \rightarrow \begin{bmatrix} r_{ww}[0] & r_{ww}[1] & \dots & r_{ww}[K-1] \\ \dots & \dots & \dots & \dots \\ r_{ww}[K-1] & r_{ww}[K-1] & \dots & r_{ww}[0] \end{bmatrix} \begin{bmatrix} a[1] \\ \dots \\ a[K] \end{bmatrix} = \begin{bmatrix} r_{sw}[1] \\ \dots \\ r_{sw}[K] \end{bmatrix}$$

Efficient tool to remove spectral lines (power, violin, ...)
 Filter should be significantly longer than the GW transient duration T → K >> T*f_s, f_s - data sampling rate

- Simple case: remove first 15 harmonics of power lines
 - re-sample data down to 1000Hz
 - select filter length: Ko ~ 1000Hz/0.1Hz = 10000
 - estimate auto&cross correlation functions on selected data segment
 - solve Weiner-Hopf equations, find & apply filter

• Problems:

- invert 10000 x 10000 matrix and find 10000 filter coefficients, while only ~30 parameters are relevant
- 30 line parameters are spread among 10000 filter coefficients and masked by other interfering spectral features in 0-1000Hz band
- Solution: band-pass data into multiple (M) time series and construct individual WK filter for each one
 - Filter length: Ko → Ko/M, solve 15 WH equations of size 10000/M
 → significantly reduce complexity and interference

 For practical filter applications need an efficient & invertible transformation, which band-pass data into multiple time series in the analysis (TF) domain

Power Lines

10⁻⁸

170

175

- coupling, particularly broad-band
- How to identify and remove nonlinear coupling?

180

185

190 frequency, Hz

$$\sum_{n} \left| s[n] - \sum_{k} a_{w}[k] w[n-k] - \sum_{k} a_{u}[k] u[n-k] - \sum_{k} a_{v}[k] v[n-k] \right|^{2}$$

In general, s[n], w[n],u[n],[v[n] and filters A are complex

$$\begin{array}{cccc} R_{ww} & R_{wu} & R_{wv} \\ R_{ww} & R_{wu} & R_{wv} \\ R_{uw} & R_{uu} & R_{uv} \\ R_{vw} & R_{vu} & R_{vv} \end{array} \left[\begin{array}{c} A_{w} \\ A_{u} \\ A_{v} \end{array} \right] = \left[\begin{array}{c} c_{sw} \\ c_{su} \\ c_{sv} \end{array} \right] \\ \begin{array}{c} Rq_{k} = \lambda_{k}q_{k} \\ Q = \{q_{1}, \dots, q_{K}\} \\ \Lambda = diag\{\lambda_{1}, \dots, \lambda_{K}\} \\ A = Q^{T}\Lambda^{-1}QC \end{array} \right]$$

- Combine different monitors measuring noise sources at different locations, increase SNR and hence estimation of noise
- Significantly more complex problem
- Levinson-Durbin algorithm does not work not a big loss!
 - need to do a complete eigenvalue analysis anyway (LD not stable)
 - Formally WH always has a solution, but it fact it can be rand-deficient

- address rank deficiency of WH matrix
- for each filter (in a set) typically only few λ are significant example: regression of 60Hz with 10 MAGs only 2 first λ are relevant
- reduce filter noise, suppress irrelevant channels

- Interaction of mirror's magnets with ambient magnetic field from power mains and low frequency coil current (seismic).
- Construct artificial witness channels as
 BICO_XX_YY(t) = H0:PEM_COIL_MAGX(t) x H1:SUS-XX_COIL_YY(t)
- Use coils from ITMX, ETMX, RM, BS, MMT,...

Regression of PL bi-coherence

- 8 BICO(t) witnesses constructed from ITMX and ETMX coil channels and H0:PEM-BSC10_MAGX magnetometer
- first example of up-conversion noise removed from LIGO data
- useful not only in transient GW analysis, but also GW from pulsars

Approaches to Signal Processing

- textbook approach: $R \cdot A = C$ "solution exists" (but often useless)
- real-world approach always in context of a specific problem
 - identify analysis goals and select regression method
 - create analysis domain (WK filters can also be constructed in the Fourier domain)
 - obtain stable solutions (regularization)
 - create regression tool for conditioning and monitoring of GW data

time-frequency analysis

simultaneous analysis of time and frequency properties of data to identify and characterize transient events (speech, music, GWs,..)

• Objective

- identify (& visualize) transients as TF patterns (detection)
- from TF pattern characterize GW "ecological calls" (reconstruction)

Wigner(1932)-Villie(1948) Transform

$$N \times (u,\xi) = \int_{-\infty}^{+\infty} f\left(u + \frac{\tau}{2}\right) f^*\left(u - \frac{\tau}{2}\right) e^{-i\tau\xi} d\tau$$

symmetric w.r.t time and frequency

- being a great theoretical tool for analysis of TF structure of data, it has very limited practical use
 - ➢ localize TF energy → x-terms created by quadratic properties of WV transform
- What good TF transform should do 100 except to localize & display TF patterns?
 - provide convenient analysis domain for construction & application of data-processing filters & algorithms

Time-frequency atoms

describe data as a superposition of waveforms (atoms) with "minimal" TF spread to capture TF details

Gabor atoms, 1946 (windowed Fourier)

S.Klimenko, University of Florida

August 3-9, 2015, IFT-UNESP / ICTP-SAIFR, Brazil

- TF atoms are natural waveforms to describe transients but
 - how to select them?
 - \succ need sets of atoms \rightarrow organize TF atoms in frames or bases
 - > Linear (and preferably invertible) operator (transform) should be constructed
 - waveform shape itself could be important, but rarely a deciding factor

((O))

Frames & Bases

- **Transform:** Linear time-frequency transform correlates signal with a family of time-frequency atoms
 - assorted collection of TF atoms is simply a template bank which is \succ hard to construct and use. Such banks are useless in the analysis, unless matched filters are constructed based on a source model.
 - all practical TF transforms rely on banks of TF atoms organized as \succ frames or bases
 - possible to construct & apply FIR filters in TF domain
 - \checkmark inverse exists \rightarrow reconstruction of filtered signal in time domain
- **Frames:** Duffin&Schaeffer a family of atoms ϕ_n that describes any **discrete** signal f from inner products $\langle f, \phi_n \rangle$ if for constant A>0 & B>0

$$A ||f||^2 \le \sum_{n \in \Gamma} |\langle f, \phi_n \rangle|^2 \le B ||f||^2$$

- **Bases:** A = B = 1
- Why do we need frames & bases? GW events are represented with several atoms that need to be processed and combined in a single event

- Windowed Fourier waveforms $g_{u,\xi}(t) = g(t-u) e^{i\xi t}$
 - > u translation in time, ξ translation in frequency
 - > uniform tiling of the TF plane: σ_t , σ_ω const.
- Not any set $\{g_{u_n,\xi_k}\}_{(n,k)\in\mathbb{Z}^2}$ is a frame (Daubechies)
- Balian-Low theorem: If $\{g_{u_n,\xi_k}\}_{(n,k)\in\mathbb{Z}^2}$ is a Fourier frame with differentiable window than $\int_{-\infty}^{+\infty} t^2 |g(t)|^2 dt = +\infty \quad or \quad \int_{-\infty}^{+\infty} \omega^2 |\hat{g}(\omega)|^2 d\omega = +\infty.$

- not possible to construct an orthonormal basis

 Good tool to display TF transients, does PSD estimation, but does not provide a convenient domain for construction of filters & application of signal processing algorithms

- TF tiling may not be uniform
 - project data x[n] onto time-shifted windowed sinusoids, with widths inversely proportional to their center freq.

$$X[m,k] = \sum_{n=0}^{N-1} x[n] e^{-i2\pi nk/N} w[m-n,k]$$

- great visualization tool, use FFT (fast)
- cumbersome analysis domain not a frame (not clear how to build filters)

Wavelet transforms

- Wavelet frames [4-7] are constructed by sampling the time translation (u) and scale dilation (s) parameters of a mother wavelet ψ

$$\psi_{u,s}(t) = \frac{1}{\sqrt{s}} \psi\left(\frac{t-u}{s}\right) \qquad \qquad Wf(u,s) = \int_{-\infty}^{+\infty} f(t) \frac{1}{\sqrt{s}} \psi^*\left(\frac{t-u}{s}\right) dt.$$

- Handful of wavelet bases have been constructed: Haar, Marr, Meyer, Daubechies, Symlet, biorthogonal, ...
- Transformation is performed in iterative steps with low/high pass filters

((O))

Discrete Wavelet Transforms

• Filter banks (S.Mallat, I.Daubechie)

slow compared to FFT

• Lifting (W.Swelden) - biorthogonal wavelets,..

Popular Wavelet Families

 Meyer [4-6] – Shennon-like wavelet constructed in F domain

$$\tilde{\phi}(\omega) \propto const, \ |\omega| < A, \quad v_n(x) = \frac{b(x;n,n)}{b(1;n,n)}$$

$$\tilde{\phi}(\omega) \propto \cos\left[v_n\left(\frac{|\omega|-A}{B}\right)\frac{\pi}{2}\right], \ A < |\omega| < A + B$$

- v_n(x) Meyers edge function constructed from incomplete Beta function b(x;n,m)
- Meyer's filter should be truncated (no compact support)
- Daubechies [5,7] first wavelets with compact support: φ(t)=0,t>|T|
 - asymmetric wavelet function frequency dependent LP/HP phase delay
 - Symlets more symmetric Daubechies wavelets

Wavelet tiling of TF plane

S.Klimenko, University of Florida

August 3-9, 2015, IFT-UNESP / ICTP-SAIFR, Brazil

Spectral Leakage

- x-talk between different frequency bands
 - limits wavelet performance as a band-pass filter (Haar worst leakage)

➤ need long wavelet filters to achieve good intrinsic frequency resolution (\Delta f = f / Nw) and get acceptable spectral leakage → significantly slow down the DWT and complicates the analysis ((Q))

S.Klimenko, University of Florida

August 3-9, 2015, IFT-UNESP / ICTP-SAIFR, Brazil

Windowed Fourier meets Wavelets

- Wilson [8] circumvented the Balian-Low theorem by introducing a general alternative to Gabor frames where each frequency band has its own window function.
- Daubechies [9] showed that one can build an orthonormal Wilson basis by using just one (mother) window function φ(t) and construct the basis functions in F domain as:

$$\begin{split} \tilde{g}_{n0}(\omega) &= e^{-in\omega T} \tilde{\phi}(\omega) \qquad \tilde{g}_{nm}(\omega) = rac{1}{\sqrt{2}} e^{-in\omega T/2} \tilde{\psi}_{nm}(\omega) \ \tilde{\psi}_{nm}(\omega) &= C^*_{m+n} \tilde{\phi}(\omega + m\Delta\Omega) + C_{m+n} \tilde{\phi}(\omega - m\Delta\Omega) \ , \ m > 0 \ \Delta\Omega &= 2\pi/T \ , \ C_{2k} = 1 \ , \ C_{2k+1} = i \ . \end{split}$$

- Meyer [6] constructed wavelet function with compact support in F domain used in Meyer's wavelet
 - satisfies Daubechies admissibility condition

$$\sum_{l \in \mathbb{Z}} \tilde{\phi}(\omega + 2\pi l) \tilde{\phi}(\omega + 2\pi l + 4\pi m) = (2\pi)^{-1} \delta_{m0}$$

• Necula, Klimenko, Mitselmakher [10] developed fast WDM transform applied in 2 steps: WDM (apply filter) & FFT

$$x[0M] \to WDM \to X_0(2M) \to FFT \to [w_0(M), \tilde{w}_0(M)]$$
$$x[1M] \to WDM \to X_1(2M) \to FFT \to [w_1(M), \tilde{w}_1(M)]$$
$$\dots$$

$$x[kM] \rightarrow WDM \rightarrow X_k(2M) \rightarrow FFT \rightarrow [w_k(M), \tilde{w}_k(M)]$$

- FWDM transforms x into two orthonormal bases which form a dual frame
 - *w* zero phase

 \succ

- \tilde{W} 90 degrees phase (quadrature)
- used for construction of Hermitian WK filters, reconstruction of GW polarizations and sparse TF analysis
- Complexity: N-# data points, M # freq.layers, Lfilter length, L/M~10 (defined by typical WDM precision of –log₁₀(P)=5 (float) and by K=fs/2B)

M+1 layers

frequency

dual stream

WDM TF tiling

time

 $C_{\rm FFT} = 2N \left[log_2 M + 1 \right]$

 $C_{\text{WDM}} = 2N \left| log_2 \ 2M + rac{L(K, M, P)}{M}
ight|$

Meyer's and WDM band-pass filters

 Wavelets and WDM split input time series into a set of downsampled and band-passed time series → perfect for construction and application of FIR (WK&TD) filters

0.7 ⊨

0.6

0.5

0.4 0.3

0.2

0.1⊟

٥Ë

0.5

0.4

0.3

0.2

0.1

0

10

20

30

40

50

) 60 Frequency [Hz]

- WDM frequency layers
 - "uniform" resolution in the whole frequency band
 - great alternative to WFT
 - Semi-analytical time-delay (TD) filters

- resolution depends on decomposition level
- hard to build TD filters
- hard to achieve segmentation of the frequency band as for WFT

PSD Estimators

 along with WFT, wavelets and WDM are excellent PSD estimators: double-sided S(ω) for each frequency layer k is estimated from the variance of the wavelet (WDM) coefficients in each frequency layers. Estimated variance is used to whiten data.

$$S(\omega_k) = \sigma^2(\omega_k) / f$$

August 3-9, 2015, IFT-UNESP / ICTP-SAIFR, Brazil

((O))

TF localization

- Determined by
 - spread (σ_t, σ_ω) of atomic waveforms
 - spectral leakage (important for data with large dynamic range)
 - symmetry of atomic waveforms (const phase delay)

TF power of GW signal from 10 + 10 Mo binarv black holes

cluster \rightarrow TF area with high occupancy of hot pixels (defines an event)

positive core negative

- identification apply pattern recognition & clustering algorithms
- de-noising construct and apply TF filters: WK, ...
- characterization measure cluster parameters: size, t, f, Δ t, Δ f, ...
- reconstruction apply Likelihood & other methods, extract signal parameters

Optimal Resolution

• How to select optimal resolution when transient duration and bandwidth are not known? \rightarrow produce several TF maps and select the "optimal" one.

WDM frames

Problem: real GW signals may not have "optimal" TF domain.
 For example, GWs from binary sources: inspiral requires good frequency resolution and merger requires good time resolution

10+10 Mo binary black holes with eccentric orbit at 4 different WDM resolutions

 Several WDM TF maps (bases) can be combined together to form a frame

NS-NS cluster with pixel amplitude > $1.4\sigma_n$ at 4 different WDM resolutions

 Several WDM TF maps (bases) can be combined together to form a frame

S.Klimenko, University of Florida

 More sparse representation (wrt individual TF resolutions) can be obtained by extraction of principle components of the signal as a superposition of pixels from different resolutions

NS-NS in aLIGO noise

Mc can be estimated from TF data without detail knowledge of the waveforms.

S.Klimenko, University of Florida

(((0)))

Periodic table of TF transforms

property	WFT	Q	Haar	Meyer	Daub	WDM
visualization	good	good	bad	fair	bad	fair
TF localization	good	good	bad	fair	bad	good
frame/base	some	no	yes	yes	yes	yes
compact support	no	no	yes	no	yes	no
invertible	some	no	yes	yes	yes	yes
energy conservation	no	no	yes	yes	yes	yes
critical sampling	no	no	yes	yes	yes	yes
PSD estimation	good	no	bad	fair	bad	good
data resampling	no	no	yes	yes	yes	no
performance	fast	fair	fast	slow	slow	fast

- What transform to use depends on practical application
 - Q visualization & detector characterization
 - Meyer, bi-orthogonal wavelets resampling
 - WDM data conditioning, TF filters & network analysis

- [0] L.Wainstein and V.Zubakov, Extraction of signals from noise, ISBN 0-486-62625-3 Statistical theory of optimal linear filtering
- [1] P. Delsarte and Y. Genin. On the splitting of classical algorithms in linear prediction theory. IEEE, ASSP-35(5), 1987.
- [2] Klimenko S, Yakushin I, Mercer A and Mitselmakher G 2008 Class. Quantum Grav. 25 114029 application of LPR in burst analysis by cWB & Ω
- [3] RSI, 83, 024501 (2012) active noise cncellation in suspended interferometers
- [4] S.Mallat, A wavelet tour of signal processing, ISBN 978-0123743701 Probably the best overwiew of TF analysis
- [5] B.Vidacovic, Statistical modeling by wavelets, 1999, ISBN 0-471-29365-2 Wavelets and their applications
- [6] Meyer Y 1992 Wavelets and Operators (Cambridge: Cambridge University Press)
- [7] Daubechies I 1992 Ten Lectures on Wavelets (Philadelphia, PA: SIAM)
- [8] Wilson K G, preprint, Cornell University
- [9] Daubechies I, Jaffard S and Journ e J L 1991 J. Math. Anal. 22 pp 554-673
- [10] V Necula et al 2012 J. Phys.: Conf. Ser. 363 012032
 Construction and properties of fast Wilson-Daubechies-Meyer transform