

Coherent Network Analysis

- Inverse problem for bursts
- Likelihood analysis
- Detection statistics
- Astrophysical and network constraints

S.Klimenko, University of Florida

S.Klimenko, University of Florida

1

• Lecture 2 describes networks of detectors

- > detector & network response
- Fundamental network parameters and how they affect detection and reconstruction
- polarization patterns
- sky localization
- Lecture 3 describes analysis of a single detector
 - data conditioning & regression
 - time-frequency transformations
 - multi-resolution analysis
 - selection of excess power samples & clustering
- In this lecture we combine all this together in the framework of the coherent network analysis

$X = F \times H + N$

data = network x wave + noise

Data analysis questions:1.Detection: Is GW signal present in X?2.Reconstruction: What can we learn about H from X?

known	unknown
ExtTrig	all-time
ExtTrig	all-sky
template	unmodeled

August 3-9, 2015, IFT-UNESP / ICTP-SAIFR, Brazil

DA scenarios:
arrival time τ
arrival direction (θ,φ)
GW waveforms

heta, arphi

- Likelihood ratio (global fit to GW data):
- Noise model: usually multivariate Gaussian noise

$$\Lambda = \frac{p(X \mid h)}{p(X \mid 0)}$$

signal model (defined by detector response)

 $p(X \mid 0) \propto \exp[-X\Sigma^{-1}X^{T}] \qquad \Sigma \text{-noise covariance matrix}$ $\vec{\xi}[i] = h_{+}[i]\vec{F}_{+} + h_{\times}[i]\vec{F}_{\times}, \quad h_{+}(\Omega), h_{\times}(\Omega), \quad \Omega - \text{signal model}$ $p(X \mid h) \propto \exp[-(X - \xi)\Sigma^{-1}(X - \xi)^{T}]$

- find GW polarizations (h_{+}, h_{x}) at maximum of Λ
- find source sky location by variation of Λ over θ and φ
- Ambiguity due to a large number of free parameters
 S.Klimenko, University of Florida
 August 3-9, 2015, IFT-UNESP / ICTP-SAIFR, Brazil

4

Guersel&Tinto, 1998

Finn, 2001

lanagan & Hughes, 199

$$L = 2\ln\Lambda = 2\sum_{i} \left(\vec{X}[i] \cdot \vec{\xi}[i,h]\right) - \sum_{i} \left(\vec{\xi}[i,h] \cdot \vec{\xi}[i,h]\right)$$

modeled(Inspiral)

- ξ is calculated from theoretical waveforms h_+h_x described by source parameters Ω
- Parameter space Ω is constrained by the model
- Sample Ω with templates (explicit template banks)
- Find τ, θ, φ, Ω (thus ξ) from best matching template
- Increase Ω by expanding models: spin, eccentricity, etc

un-modeled(burst)

- Amplitudes h₊[i], h_x[i] are free source parameters
- Parameter space is constrained by signal duration and bandwidth
- Search through parameter space analytically.
- Find τ , θ , ϕ , ξ at maximum of L
- Decrease parameter space by adding astrophysical constraints

conceptually the same method, but approaches is radically different

Standard likelihood solution for inspirals

"forward" approach

- Select source model
 - for example, non-spinning, non-eccentric BHs
- Select parameter space
 - range of total masses
 - range of mass ratios
 - ... other parameters for more complex models
- Construct template bank of detector responses covering the source parameter space, inclination angles and sky locations. Make sure there are no cracks in the coverage – overlap > 0.98 between nearby templates
- Find matching template (and thus source parameters) at max likelihood
 - Find nearby templates to estimate errors
- Practical inspiral algorithms do not really work this way
 - detection and reconstruction algorithms are quite different
 - > optimal placement of templates is very non-trivial
 - To make sure that astrophysical sources (NSNS,NSBH,BHBH) are not missed template bank should be expanded to cover the whole parameter space (17par)

Consider a GW event consisting of I TF samples

$$\begin{bmatrix} \xi[1] \\ \xi[2] \\ \dots \\ \xi[I] \end{bmatrix} = \begin{bmatrix} f[1] & 0 & \dots & 0 \\ 0 & f[2] & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & f[I] \end{bmatrix} \begin{bmatrix} h[1] \\ h[2] \\ \dots \\ h[I] \end{bmatrix}$$

$\Xi = F H$

- $\succ \Xi$ network response to a GW event
- F network matrix
- H GW amplitudes
- Network event X, where N is network noise.

$$X = F H + N$$

- Template search: events are matching waveforms in the bank
- Burst search: How do we define a network event?

 after conditioning detector data is transformed into WDM domain, whitened, excess power (above Gaussian noise) data samples are selected.

Standard likelihood solution for bursts

"inverse" approach

- Select sky location (θ,φ)
 - calculate network matrix F for TF "event" {1,..,I}
 - Calculate data vector X by time-shifting data streams to synchronize detectors: X = {x[1],...,x[I]}
- Parameterize GW signal: $H = \{\vec{h}[1], ..., \vec{h}[[I]\}, h[i] = (h_{+}[i], h_{\times}[i])$
- Find likelihood and its derivatives

$$L = 2 \ln \Lambda = X^{T} (FH) + (FH)^{T} X - (FH)^{T} (FH)$$

- Solution for H is coherent combination of X
- Repeat for all-sky locations maximizing *L*(*H_s*)
- Find waveforms H_m and (θ_m, ϕ_m) at max{L}
- Confront waveforms with source models

does not work for practical networks – MP inverse may not exist

S.Klimenko, University of Florida

August 3-9, 2015, IFT-UNESP / ICTP-SAIFR, Brazil

Moore-Penrose inverse

f[1] $F = \begin{vmatrix} 0 & f[2] & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & f[I] \end{vmatrix}$

Г

$$F = \begin{bmatrix} f[1] & 0 & \dots & 0 \\ 0 & f[2] & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & f[I] \end{bmatrix} \quad \vec{\xi}[i] = [\vec{f}_{+}[i], \vec{f}_{\times}[i]]^{T} \begin{bmatrix} h_{+}[i] \\ h_{\times}[i] \end{bmatrix} = f[i] \cdot h[i]$$

i – is a single sample of network response • Multiply data $\vec{x} = \vec{\xi} + \vec{n}$ by the network pattern vectors (i is omitted) > DPF is assumed $(\vec{f}_+ \cdot \vec{f}_*) = 0$ - diagonalize network matrix

$$\begin{pmatrix} \vec{\xi} + \vec{n} \end{pmatrix} \cdot \vec{f}_{+} \\ (\vec{\xi} + \vec{n}) \cdot \vec{f}_{\times} \end{pmatrix} \longrightarrow \begin{bmatrix} \vec{x} \cdot \vec{f}_{+} \\ \vec{x} \cdot \vec{f}_{\times} \end{bmatrix} = \begin{bmatrix} \left| \vec{f}_{+} \right|^{2} & 0 \\ 0 & \left| \vec{f}_{\times} \right|^{2} \end{bmatrix} \begin{bmatrix} h_{+} \\ h_{\times} \end{bmatrix} + \begin{bmatrix} \vec{n} \cdot \vec{f}_{+} \\ \vec{n} \cdot \vec{f}_{\times} \end{bmatrix} \\ \frac{\partial L}{\partial h_{+}} = 0, \ \frac{\partial L}{\partial h_{\times}} = 0$$

- $|f_{\star}| \ll |f_{+}|$ (A<<1) hx can not be reconstructed from noisy data
- need regulators un-modeled constraints

Klimenko, et al (2005) Rakhmanov (2006)

S.Klimenko, University of Florida

August 3-9, 2015, IFT-UNESP / ICTP-SAIFR, Brazil

- To find detection statistic L_{max} we do not need explicit h₊ & h_x
- $L_{max} = L_+ + L_x$

$$L_{+} = \frac{\left(\vec{x} \cdot \vec{f}_{+}\right)^{2}}{|\vec{f}_{+}|^{2}} = X^{T} P_{+} X, \quad P_{+ij} = \frac{f_{+i} f_{+j}}{|f_{+}|^{2}} = e_{+i} e_{+j}$$

$$\left(\vec{x} \cdot \vec{f}_{+}\right)^{2}$$

$$L_{+} = \frac{(x \cdot f_{\times})}{|\vec{f}_{\times}|^{2}} = X^{T} P_{\times} X, \quad P_{\times ij} = \frac{f_{\times i} f_{\times j}}{|f_{\times}|^{2}} = e_{\times i} e_{\times j}$$

 Textbook detection: given L_{max} calculate probability to mimic it by noise (significance), declare discovery of GWs if significance >5σ

$$\begin{bmatrix} \vec{x} \cdot \vec{f}_{+} \\ \vec{x} \cdot \vec{f}_{\times} \end{bmatrix} = \begin{bmatrix} \left| \vec{f}_{+} \right|^{2} & 0 \\ 0 & \left| \vec{f}_{\times} \right|^{2} \end{bmatrix} \begin{bmatrix} h_{+} \\ h_{\times} \end{bmatrix}$$

Real-life Detection

- Data is non-stationary, non-gaussian and affected by artifacts
- Empirical background sample for estimation of FA probability
 - \succ constructed by time-shifting data \rightarrow may be biased wrt true background
 - need a massive background set (T observation x 10⁶)

• True GW signal should be in the f_{+}, f_{x} plane

Likelihood quadratic form

$$L_{\max} = X^T P X, \quad P_{nm} = e_{+n} e_{+m} + e_{\times n} e_{\times m}$$
$$L = \sum_{i} \sum_{n,m} x_n [i] x_m [i] P_{nm} [i] = L_{i=j} + L_{i\neq j}$$
$$L \text{ matrix incoherent coherent}$$

- Detection statistics
 - event ranking: characterize event strength, preferable if ~SNR
 - > event consistency: significant null stream can be indication of a noise artifact

- no null space (any unconstrained event is admitted as GW!)
- A << 1 for significant fraction of the sky
- L=const(θ , ϕ)

$$\xi_1 = x_1, \quad \xi_2 = x_2 \quad L_+ + L_* = \langle x_1 x_1 \rangle + \langle x_2 x_2 \rangle$$

- Two detector paradox (Mohanty et al, CQG 21 S1831 (2004))
 - > no x-correlation term in the likelihood matrix! $P_{12} = 0!$
 - contradict to the case of two co-aligned detectors where

$$\xi_{1} = \xi_{2} = \frac{x_{1} + x_{2}}{2}, \quad L_{+} + L_{\times} = \frac{1}{2} \left[\left\langle x_{1} x_{1} \right\rangle + \left\langle x_{2} x_{2} \right\rangle + 2 \left\langle x_{1} x_{2} \right\rangle \right]$$
power cross-correlation

• What is meaning of coherent energy?

X

$$\begin{split} L_{+} &= \sum_{i,j} x_{i} x_{j} P_{ij,+} = E_{+(i=j)} + C_{+(i\neq j)} \\ L_{\times} &= \sum_{i,j} x_{i} x_{j} P_{ij,\times} = E_{\times(i=j)} + C_{\times(i\neq j)} \end{split}$$

- quadratic forms $C_+ \& C_x$ depend on time delays between detectors and carry information about θ, ϕ – sensitive to source coordinates
- properties of the likelihood quadratic forms

arbitrary network

2 detector network

 $C_{+} + C_{\times} = 0$

 $E_{\perp} + E_{\perp} = x_1^2 + x_2^2$

$$\operatorname{cov}(L_{+}L_{\times}) = 0$$

$$\operatorname{cov}(C_{+}C_{\times}) = -\sum e_{+i}^{2} e_{\times i}^{2}$$

$$\operatorname{cov}(E_{+}E_{\times}) = \sum e_{+i}^{2} e_{\times i}^{2}$$

- E+, Ex, C+, Cx are dependent
- How should we calculate "generalized" network x-correlation?

S.Klimenko, University of Florida

August 3-9, 2015, IFT-UNESP / ICTP-SAIFR, Brazil

• Construction of the projection operator

$$P_{nm} = \mathbf{e}_{+n}\mathbf{e}_{+m} + \mathbf{e}_{\times n}\mathbf{e}_{\times m}$$

is ambiguous: $e_+e_+ \rightarrow rotation \rightarrow e'_+e'_+$

$$L_{\max} = X^T P \ X = X^T P' \ X$$

- incoherent & coherent terms are not invariant
- Select the projection operator as

$$P_{nm} = u_n u_m$$

(solves two-detector paradox)

coherent/incoherent energies

$$C = X^T P_u(n \neq m) X \qquad E_I = X^T P_u(n = m) X$$

S.Klimenko, University of Florida

Two detectors

Χ

 \vec{e}'_{+}

NULL space

 \vec{e}_{x}

 \vec{f}_{x}

- Reconstructed network response $\vec{\xi} = (\vec{x} \cdot \vec{u}) \vec{u}$
- Total signal energy

$$L_{\max} = (x \,|\, \xi) = \sum_{i} (\vec{x}[i] \cdot \vec{u}[i])^2$$

Lets consider the case when x=ξ

$$L_{\max} = \sum_{i} |\vec{\xi}[i]|^{2} \cdot (\vec{u}[i] \cdot \vec{u}[i])^{2}$$
$$= \sum_{i} |\vec{\xi}[i]|^{2} \sum_{nm} u_{n}^{2}[i] u_{m}^{2}[i]$$

• Coherent energy $C = \sum_{i} |\vec{\xi}[i]|^2 \left[1 - \sum_{n} u_n^4[i]\right]$

Response Index

$$\mathbf{I}_r = \sum_k u^4[k] \quad \vec{\mathbf{u}} = \vec{\xi} / \left| \vec{\xi} \right|$$

- 1/I_r effective number of detectors contributing to total network SNR: distributed between 1 and K
- For GW signals response index correlates with network index
- For noise and glitches there is no correlation
- Describes how similar (coherent) are responses in individual detectors
- Great tool to distinguish signal from glitches

HL: signal with random polarization

Detection statistics: coherent – null energy

• coherent energy: sum of the off-diagonal elements of L matrix

$$E_{coherent} = \sum_{i \neq j} L_{ij}$$

null energy *null*: energy of the reconstructed detector noise

- Coherent statistics
 - Network correlation coefficient cc rejection of glitches
 - > network correlated amplitude η event ranking statistic

- Likelihood formalism is easily generalized for the dual data stream analysis
 - > quadrature data stream contains the same information as x
 - > network response can be presented as pairs of vectors $\vec{\xi}, \vec{\tilde{\xi}}$

Phase transform

 Apply phase transform to projections (don't care about projections out of plane)

$$\xi = \xi' \cos(\lambda) + \tilde{\xi}' \sin(\lambda)$$
$$\tilde{\xi} = \tilde{\xi}' \cos(\lambda) - \xi' \sin(\lambda)$$

• With appropriate phase transformation S.Klime**the** polarization pattern is revealed August 3

August 3-9, 2015, IFT-UNESP / ICTP-SAIFR, Brazil

22

- For existing LHV networks the standard projection is rarely an optimal solution
- Network regulators → construct P by guessing orientation of the projection
 vector u (Klimenko et al, 2005)
 - hard regulator:

 $\vec{\xi} \rightarrow \vec{\xi}_{+}, \ \vec{\tilde{\xi}} \rightarrow 0$

gives optimal solution for closely aligned networks

> soft regulator:
$$\vec{\xi} \rightarrow \vec{\xi}_{+}, \quad \vec{\xi} \rightarrow \vec{\xi}$$

network
plane
$$\vec{f}_{+}$$

 $\vec{\xi}$
 \vec{f}_{\times}

NULL

after polarization phase transform

Polarization Constraints

August 3-9, 2015, IFT-UNESP / ICTP-SAIFR, Brazil

 In addition to relatively simple network and polarization constraints, additional source models, even not accurate can be used to constrain the likelihood functional

$$L' = X^{T} (Fh) + (Fh)^{T} X - (Fh)^{T} (Fh) + \lambda g(X,h), \quad g(X,h) = 0$$

$$\uparrow$$

> g(X,h)=0 is a constraint condition

Lagrange multiplier

Conceptually simple, but could be very hard to solve – in most cases there is no analytical solution.

probability map: obtained from the likelihood sky distribution

PSM shows how consistent are reconstructed waveforms and time delays as function of θ , ϕ . Source location is at PSM max.

Error Regions

- Source location is characterized by a spot in the sky (error region) rather than by a single (θ, ϕ) direction
 - x% error region a sky area with the cumulative probability of x%
- The coverage of error regions has to be validated with MonteCarlo

 Error regions can be reported for optical/radio followup → multimessenger observations

- Understand benefits and shortcomings of detector networks to detect sources and optimally capture science.
- Combine measurements from several detectors
 - confident detection; elimination of instrumental/environmental artifacts
 - reconstruction of GW polarizations
 - reconstruction of source coordinates
 - reconstruction of GW waveforms
- CAN is a unified approach to handle
 - > arbitrary number of detectors at different locations and arm's orientations
 - variability of detector responses as function of source coordinates
 - > differences in the strain sensitivity of detectors
- Extraction of source parameters
 - > confront measured waveforms with source models or include models

- LIGO/Virgo publications on burst searches: https://www.lsc-group.phys.uwm.edu/ppcomm/Papers.html
- Guersel, Tinto, PRD 40 v12, 1989
 - reconstruction of GW signal for a network of three misaligned detectors
- Likelihood analysis: Flanagan, Hughes, PRD57 4577 (1998)
 - likelihood analysis for a network of misaligned detectors
- Two detector paradox: Mohanty et al, CQG 21 S1831 (2004)
 - state a problem within standard likelihood analysis
- Semi-coherent burst search. Klimenko S and Mitselmakher CQG 21 S1819 (2004)
- Constraint likelihood: Klimenko et al, PRD 72, 122002 (2005)
 - > address problem of ill-conditioned network response matrix (rank deficiency)
 - first introduction of likelihood constraints/regulators
- Penalized likelihood: Mohanty et al, CQG 23 4799 (2006).
- Rank deficiency of network matrix: Rakhmanov, CQG 23 S673 (2006)
- GW signal consistency: Chatterji et al, PRD 74 082005(2006)
- Coherent Burst search: S. Klimenko et al., Class. Quantum Grav. 25, 114029 (2008)
- Sky localization with advanced network. S. Klimenko et al. PRD 83, 102001 (2011).
- Three figures of merit..., B.Schutz, CQG **28** 125023(2011)