Scattering off of Black Holes, Isomonodromy and Painlevé

Fábio Novaes

International Institute of Physics Federal University of Rio Grande do Norte

February 5, 2015

Based on F.N. and Cunha JHEP 07 (2014) 132

Fábio Novaes (IIP, UFRN)

3rd Dutch-Brazil School

February 5, 2015 1 / 19

Importance of Scattering Theory

- Astrophysical phenomena: detection of gravitational waves
- Stability criteria of gravitational solutions
- AdS/CFT applications: quark-gluon plasma and condensed matter systems
- Quantum description of black holes

12 N 4 12 N

Scalar Field Perturbation

• Non-minimally coupled massless scalar field $\phi(x)$

$$(\nabla^2 + \xi R)\phi(x) = 0, \quad \nabla^2 \phi \equiv \frac{1}{\sqrt{-g}}\partial_a(\sqrt{-g}g^{ab}\partial_b\phi)$$

• Radial and Angular equations for Kerr-NUT-(A)dS metric

$$\partial_r (P_r(r)\partial_r \phi_{\omega\ell m}) - Q_r(r)\phi_{\omega\ell m} = 0$$
$$\partial_\theta (P_\theta(\theta)\partial_\theta S_{\omega\ell m}) - Q_\theta(\theta)S_{\omega\ell m} = 0$$

• Angular eigenvalues from (A)dS-spheroidal harmonics

Fábio Novaes (IIP, UFRN)

Complex ODEs and Monodromy

Radial equation

$$\partial_z (U(z)\partial_z \phi(z)) - V(z)\phi(z) = 0, \quad z \in \mathbb{CP}^1$$

• Ingoing and outgoing solutions

$$\phi_i^{\pm}(z) = (z - z_i)^{\pm \theta_i/2} \left(1 + \mathcal{O}(z - z_i) \right)$$

● Singular points = Branch points ⇒ Monodromy

$$\phi_i^{\pm}(ze^{2\pi i}) = e^{\pm i\pi\theta_i}\phi_i^{\pm}(z)$$

international Institute of Physics

4 E

Monodromies and Gauge Connection

• Gauge connection formulation

$$(\partial_z - A(z))\Phi(z) = 0 ,$$

$$A(z) = \begin{pmatrix} 0 & U^{-1} \\ V & 0 \end{pmatrix} \quad , \quad \Phi(z) = \begin{pmatrix} \phi_1 & \phi_2 \\ U \partial_z \phi_1 & U \partial_z \phi_2 \end{pmatrix}$$

• Monodromy matrix

$$\Phi_{\gamma}(z) = \mathcal{P} \exp\left(\oint_{\gamma} A\right) \Phi(z) =: \Phi(z)M_{\gamma}$$

-

Fábio Novaes (IIP, UFRN)

February 5, 2015 5 / 19

4 E

Monodromies and Frobenius solutions

- Loop around only one pole $z=z_i \ \Rightarrow \ \Phi_{\gamma_i}=\Phi M_i$
- Loop enclosing all poles gives monodromy identity

 $M_1M_2...M_n=\mathbb{1}$

Monodromy matrix in arbitrary basis

$$M_i = g_i^{-1} \left(\begin{array}{cc} e^{i\pi\theta_i} & 0\\ 0 & e^{-i\pi\theta_i} \end{array} \right) g_i$$

イロト 不得下 イヨト イヨト

Scattering Amplitudes and Connection Matrix

• Change of basis matrix = Connection matrix

$$\mathcal{M}_{i \to j} = \Phi_i^{-1} \Phi_j = g_i g_j^{-1}$$

• For purely imaginary $\theta_i \notin i\mathbb{Z}$

$$\mathcal{M}_{i \to j} = \begin{pmatrix} \frac{1}{\mathcal{T}} & \frac{\mathcal{R}}{\mathcal{T}} \\ \frac{\mathcal{R}^*}{\mathcal{T}^*} & \frac{1}{\mathcal{T}^*} \end{pmatrix} , \qquad |\mathcal{R}|^2 + |\mathcal{T}|^2 = 1$$

Castro et al arxiv:1304.3781

4 E

Transmission between Two Regular Singular Points

Let $g_i \in SL(2, \mathbb{C})$ and one of the M_i be diagonal. If we write

$$m_{ij} = \operatorname{Tr} M_i M_j = 2 \cos \pi \sigma_{ij}$$

then

$$|\mathcal{T}|^2 = \frac{\sin \pi \theta_i \sin \pi \theta_j}{\sin \frac{\pi}{2} (\sigma_{ij} + \theta_i - \theta_j) \sin \frac{\pi}{2} (\sigma_{ij} - \theta_i + \theta_j)}$$

Fábio Novaes (IIP, UFRN)

D = 4 Kerr-(A)dS Black Hole

$$\begin{split} ds^2 &= -\frac{Q(r)}{r^2 + p^2} (dt + p^2 d\phi)^2 + \frac{P(p)}{r^2 + p^2} (dt - r^2 d\phi)^2 \\ &+ \frac{r^2 + p^2}{Q(r)} dr^2 + \frac{r^2 + p^2}{P(p)} dp^2 \end{split}$$

$$P(p) = -\frac{\Lambda}{3}p^4 - \epsilon p^2 + k$$
$$Q(r) = -\frac{\Lambda}{3}r^4 + \epsilon r^2 - 2Mr + k$$

イロト イヨト イヨト イヨト

Separation of Variables in KG equation

• Radial equation (5 regular singular points)

$$\partial_r (Q(r)\partial_r R(r)) + \left(-4\Lambda\xi r^2 + \frac{(\Psi_0 r^2 + \Psi_1)^2}{Q(r)}\right)R(r) = C_\ell R$$

 \bullet Conformally Coupled Case $\xi=1/6$

$$y'' + \left(\frac{1-\theta_0}{z} + \frac{1-\theta_1}{z-1} + \frac{1-\theta_{t_0}}{z-t_0}\right)y' + \left(\frac{1+\theta_\infty}{z(z-1)} - \frac{t_0(t_0-1)K_0}{z(z-1)(z-t_0)}\right)y = 0$$

Heun equation (4 regular singular points)

4 3 5 4 3

Separation of Variables in KG equation

• Radial equation (5 regular singular points)

$$\partial_r (Q(r)\partial_r R(r)) + \left(-4\Lambda\xi r^2 + \frac{(\Psi_0 r^2 + \Psi_1)^2}{Q(r)}\right)R(r) = C_\ell R$$

 \bullet Conformally Coupled Case $\xi=1/6$

$$y'' + \left(\frac{1-\theta_0}{z} + \frac{1-\theta_1}{z-1} + \frac{1-\theta_{t_0}}{z-t_0}\right)y' + \left(\frac{1+\theta_\infty}{z(z-1)} - \frac{t_0(t_0-1)K_0}{z(z-1)(z-t_0)}\right)y = 0$$

Heun equation (4 regular singular points)

How to find
$$\sigma_{ij}$$
 ?

ELE DOG

4 3 5 4 3

Deformed Heun and Apparent Singularity

• Deformed Heun equation with one apparent singularity

$$\begin{split} \partial_z^2 y + \left(\frac{1-\theta_0}{z} + \frac{1-\theta_1}{z-1} + \frac{1-\theta_t}{z-t} - \frac{1}{z-\lambda}\right) \partial_z y \\ + \left(\frac{\kappa}{z(z-1)} - \frac{t(t-1)K}{z(z-1)(z-t)} + \frac{\lambda(\lambda-1)\mu}{z(z-1)(z-\lambda)}\right) y = 0 \end{split}$$

• Initial condition for our Heun

$$\lambda(t_0) = t_0, \quad \mu_0 = -\frac{K_0}{\theta_t}$$

and $\theta_t \rightarrow \theta_t - 1$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Isomonodromic Hamiltonian System

• $z = \lambda$ is an apparent singularity if

$$K(\lambda,\mu,t) = \frac{1}{t(t-1)} [\lambda(\lambda-1)(\lambda-t)\mu^2 - \{\theta_0(\lambda-1)(\lambda-t) + \theta_1\lambda(\lambda-t) + (\theta_t-1)\lambda(\lambda-1)\}\mu + \kappa(\lambda-t)]$$

• Hamiltonian System

$$\frac{d\lambda}{dt} = \frac{\partial K}{\partial \mu}, \quad \frac{d\mu}{dt} = -\frac{\partial K}{\partial \lambda}$$

generates isomonodromic flow $(\lambda(t), \mu(t), K(\lambda, \mu, t))$

• Second-order equation for $\lambda(t) = \text{Painlevé VI}$

Painlevé VI Asymptotics

• P_{VI} asymptotics for $0 < \, {\rm Re} \, \sigma_{ij} < 1$

$$\lambda(t) = \begin{cases} a_0 t^{1-\sigma_{0t}} (1+O(t^{\delta})), & |t| < r, \\ 1+a_1(1-t)^{1-\sigma_{t1}} (1+O((1-t)^{\delta}), & |t-1| < r, \\ a_{\infty} t^{\sigma_{01}} (1+O(t^{-\delta})), & |1/t| < r, \end{cases}$$

where $r, \delta > 0$ and a_i are functions of monodromy data

(日) (同) (三) (三)

Numerical Integration of P_{VI}

Numerical Integration of P_{VI} near t = 0

Kerr-dS Greybody Factor

$$\gamma_{\ell}(\omega,m) = \frac{\sinh(\frac{\omega - \Omega_H m}{2T_H})\sinh(\frac{\omega - \Omega_C m}{2T_C})}{\cosh\left(\frac{\omega - \Omega_H m}{2T_H} + \frac{\omega - \Omega_C m}{2T_C}\right) - \cosh(2\pi\nu_{HC})}$$

- ν_{HC} encodes all global information
- $\Omega_H m < \omega < \Omega_C m \Rightarrow$ superradiance

315

(3)

Image: Image:

Kerr-dS Greybody Factor

Conclusions

- Monodromy technique is the most powerful way to treat scattering problems
- General formula for scattering amplitudes between two regular singular points
- Conformally coupled case is easier
- Valid for higher-dimensional Kerr-NUT-(A)dS black holes
- Flat case can be recovered by confluence

E 6 4 E

Conclusions

- Monodromy technique is the most powerful way to treat scattering problems
- General formula for scattering amplitudes between two regular singular points
- Conformally coupled case is easier
- Valid for higher-dimensional Kerr-NUT-(A)dS black holes
- Flat case can be recovered by confluence

Thank you

E 5 4 E

Perspectives

- Higher-spin modes and gravitational stability
- Higher-dimensional Kerr-(A)dS and SUGRA backgrounds
- Recover literature via $\Lambda \rightarrow 0$ confluence. Irregular singular points (P_V and P_{III})
- Quasinormal modes and plasma thermalization
- CFT dual of extremal Kerr-(A)dS conformal modes?
- Twistorial and geometrical interpretation of isomonodromic hidden symmetry

イモトイモト

Acknowledgments

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Hidden Symmetry of Isomonodromic Flow

• Limit $t \rightarrow 1$ of Garnier ODE gives hypergeometric equation

$$\begin{split} \partial_z^2 y + \left(\frac{1-\theta_0}{z} + \frac{1-\theta_1 - \tilde{\theta}_t}{z-1}\right) \partial_z y \\ &+ \left(\frac{\kappa}{z(z-1)} + \frac{L_1}{z(z-1)^2}\right) y = 0 \end{split}$$

 Fixed point of isomonodromic flow corresponds to some (near-horizon) extremal black hole

Fábio Novaes (IIP, UFRN)

- 4 同 6 4 日 6 4 日 6

Hidden Symmetry of Isomonodromic Flow

• This suggests that scattering data of non-extremal black holes is equivalent in some sense to extremal black hole scattering

Relation with Fuchsian Equation

• Fuchsian ODE normal form with n finite singular points

$$\psi''(z) + T(z)\psi(z) = 0, \quad T(z) = \sum_{i=1}^{n} \left(\frac{\delta_i}{(z-z_i)^2} + \frac{c_i}{z-z_i}\right),$$

$$\sum_{i=1}^{n} c_i = 0 , \quad \sum_{i=1}^{n} (c_i z_i + \delta_i) = 0 , \quad \sum_{i=1}^{n} (c_i z_i^2 + 2\delta_i z_i) = 0$$

- Local monodromies: $\delta_i = (1 \theta_i^2)/4$
- Accessory parameters c_i have global properties
- 2(n-3) independent parameters: (c_i, z_i)

(日) (周) (三) (三) (三) (三) (○)

Symplectic Structure of Flat $SL(2, \mathbb{C})$ Connections

- $\bullet\,$ Moduli space of flat connections $A\sim$ moduli space of monodromy group
- Atiyah-Bott symplectic structure

$$\Omega = \sum_{i=1}^{n-3} dc_i \wedge dz_i = \sum_{i=1}^{n-3} d\nu_i \wedge d\mu_i$$

where (ν_i, μ_i) are trace coordinates (Nekrasov et al 2011)

- Canonical transformation connects both set of coordinates
- Suggests analytical approach to find composite monodromies
- Relation with classical conformal blocks of 2D CFT

Recurrence Relations

• Taylor solution $y(z) = \sum_{n=0}^{\infty} g_n z^{n/2}$, |z| < 1

$$-(Q_0 + q)g_0 + R_0g_1 = 0,$$

$$P_ng_{n-1} - (Q_n + q)g_n + R_ng_{n+1} = 0, \quad (n > 0)$$

$$P_n = (n - 1 + \alpha_+)(n - 1 + \alpha_-),$$

$$Q_n = n((t+1)(n - 1 + \gamma) + t\delta + \epsilon),$$

$$R_n = t(n+1)(n+\gamma)$$

• Solved using Leaver's continued-fraction method (Leaver 1985, Berti, Cardoso and Will (2006))

Fábio Novaes (IIP, UFRN)

Continued-fraction Method

 \bullet Augmented convergence for $|z|\geq 1$ if

$$\lim_{n \to \infty} \left| \frac{g_{n+1}}{g_n} \right| = |t|^{-1} = \hat{a}^2 \implies a < L$$

• Recurrence relation in terms of $v_n = g_{n+1}/g_n$

$$v_{n-1} = \frac{P_n}{(Q_n+q) - R_n v_n}$$

• Equivalent to continued-fraction

$$(Q_0 + q) - \frac{R_0 P_1}{(Q_1 + q) -} \frac{R_1 P_2}{(Q_2 + q) -} \dots = 0$$

• Solve numerically with $v_N = \hat{a}^2$ for some large integer N

Schlesinger System Asymptotics

• Near t = 0

$$A_0 \approx t^\Lambda A_0^0 t^{-\Lambda}$$
 and $A_t \approx t^\Lambda A_t^0 t^{-\Lambda}$, where $\Lambda = A_0^0 + A_t^0$

• Schlesinger system degenerates to two hypergeometric connections

$$\frac{dY_0}{dz} = \left(\frac{\Lambda}{z} + \frac{A_1^0}{z - 1}\right)Y_0, \quad \frac{dY_1}{dz} = \left(\frac{A_0^0}{z} + \frac{A_t^0}{z - 1}\right)Y_1$$

・同ト (ヨト (ヨト ヨヨ) の()

Schlesinger System Asymptotics

• Using that
$$\det A_i^0 = -\theta_i^2/4$$
 and $\det \Lambda = -\sigma_{0t}^2/4$

$$\Lambda + \frac{1}{2}\sigma\mathbb{1} = \frac{1}{4\theta_{\infty}} \left(\begin{smallmatrix} (-\theta_{\infty} - \theta_1 + \sigma)(\theta_{\infty} - \theta_1 - \sigma) & (-\theta_{\infty} - \theta_1 + \sigma)(\theta_{\infty} + \theta_1 + \sigma) \\ (\theta_{\infty} - \theta_1 + \sigma)(\theta_{\infty} - \theta_1 - \sigma) & (\theta_{\infty} - \theta_1 + \sigma)(\theta_{\infty} + \theta_1 + \sigma) \end{smallmatrix} \right)$$

$$A_1^0 + \frac{1}{2}\theta_1 \mathbb{1} = \frac{1}{4\theta_\infty} \left(\begin{smallmatrix} -(\theta_\infty - \theta_1)^2 + \sigma^2 & (\theta_\infty + \theta_1)^2 - \sigma^2 \\ -(\theta_\infty - \theta_1)^2 + \sigma^2 & (\theta_\infty + \theta_1)^2 - \sigma^2 \end{smallmatrix} \right)$$

$$A_0^0 + \frac{1}{2}\theta_0 \mathbb{I} = G_1 \frac{1}{4\sigma} \left(\begin{smallmatrix} (\theta_0 - \theta_t + \sigma)(\theta_0 + \theta_t + \sigma) & (\theta_0 - \theta_t + \sigma)(-\theta_0 - \theta_t + \sigma) \\ (\theta_0 - \theta_t - \sigma)(\theta_0 + \theta_t + \sigma) & (\theta_0 - \theta_t - \sigma)(-\theta_0 - \theta_t + \sigma) \end{smallmatrix} \right) G_1^{-1}$$

$$A_{t}^{0} + \frac{1}{2}\theta_{t}\mathbb{I} = G_{1}\frac{1}{4\sigma} \begin{pmatrix} (\theta_{t}+\sigma)^{2} - \theta_{0} & -(\theta_{t}-\sigma)^{2} + \theta_{0}^{2} \\ (\theta_{t}+\sigma)^{2} - \theta_{0} & -(\theta_{t}-\sigma)^{2} + \theta_{0}^{2} \end{pmatrix} G_{1}^{-1}.$$

Fábio Novaes (IIP, UFRN)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Quasinormal Modes

- $\bullet\,$ Modes purely ingoing at r_H and purely outgoing at r_C
- Possible only for complex ω
- In this case,

$$\mathcal{M}_{C \to H} = \begin{pmatrix} \frac{1}{\mathcal{T}} & \frac{\mathcal{R}}{\mathcal{T}} \\ \frac{\mathcal{R}'}{\mathcal{T}'} & \frac{1}{\mathcal{T}'} \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & \frac{1}{\mathcal{T}'} \end{pmatrix}$$

• Poles of transcendental equation

$$\nu_{HC}(\omega,\ell,m) = \frac{\omega - \Omega_H m}{2T_H} + \frac{\omega - \Omega_C m}{2T_C} + 2\pi i n, \qquad n \in \mathbb{Z}$$

315

E 5 4 E

< 🗇 🕨

Properties of Greybody Factor

• Conjectured scattering regimes

$$\begin{cases} \omega > \Omega_H m \quad \text{or} \quad \Omega_C m > \omega & \text{Normal scattering} \\ \Omega_H m > \omega > \Omega_C m & \text{Superradiant scattering} \end{cases}$$

• Poles of scattering matrix (resonances)

$$\omega = \begin{cases} m\Omega_H - 2\pi i nT_H \\ m\Omega_C + 2\pi i nT_C \end{cases} \quad (n \in \mathbb{Z}^+)$$

We expect that

 $\gamma_l(\omega) \to 1, \qquad \qquad \text{as} \quad \omega \to \infty$

 $\gamma_l(\omega) \to 0 \text{ or constant}$ as $\omega \to 0$

(日) (周) (三) (三) (三) (三) (○)

Superradiant Scattering

- Superradiance = wave analog of Penrose process
- \bullet In terms of the classical impact parameter $b=\mathcal{L}/\mathcal{E}\sim\ell/\omega$

$$\frac{\omega}{m} = \frac{\omega}{\ell} \frac{\ell}{m} \sim \frac{1}{b} \frac{\mathcal{L}}{\mathcal{L}_z}$$

- Problem: Greybody factor pole even for real ω in the superradiant range! Meaning?
- Perturbative analysis of ν_{HC} might shed some light

イロト 不得下 イヨト イヨト