Umbral Moonshine and K3 surfaces

Francesca Ferrari

Universiteit van Amsterdam

Joint Dutch-Brazil School

Francesca Ferrari (UvA)

Umbral Moonshine

Joint Dutch-Brazil School 1 / 8

Monstrous Moonshine

Around 1978 a group of mathematicians, Mckay, Thompson, Conway and Norton, started to speculate on the **Monstrous Moonshine**. The subject was addressed as Moonshine because of the apparently illogical realtion between the **Monster** group and modular functions.

The sense of illicitness of the subject suggested to Conway, the image of American mountaineers producing illegally distilled spirits.

Niemeier Lattices & Finite groups

[Niemeier(1973)]

The **Niemeier lattices** are the unique 24-dimensional even self-dual lattices with total rank 24. They are uniquely determined by their root systems, *X*.

To each Niemeier lattice of type X it is possible to associate an **Umbral group** G^X , defined as the quotient of the automorphism group of the lattice by the Weyl group of X.

$$G^X = \frac{Aut(X)}{W(X)}$$

 \cap

Niemeier Lattices & Finite groups

[Niemeier(1973)]

The **Niemeier lattices** are the unique 24-dimensional even self-dual lattices with total rank 24. They are uniquely determined by their root systems, *X*.

To each Niemeier lattice of type X it is possible to associate an **Umbral group** G^X , defined as the quotient of the automorphism group of the lattice by the Weyl group of X.

$$G^X = \frac{Aut(X)}{W(X)}$$

 \cap

Partition function & Elliptic genus

[Witten (1987)] The **partition function** for a bosonic string theory

$$Z(\tau) = Tr_{\mathcal{H}}(q^{L_0-c/24}\bar{q}^{L_0-c/24})$$

where $q = e^{2\pi i \tau}$, $\tau \in \mathbb{H}$, depends on the Dedekind eta function,

$$\eta(q) = q^{1/24} \prod_{n=1}^{\infty} (1-q^n).$$

 $Z(\tau)$ turns out to be invariant under the **modular transformations**, $SL(2,\mathbb{Z})$.

The elliptic genus for an $\mathcal{N}=(2,2)$ superconformal theory is defined as

$$EG(\tau, z) = Tr_{\mathcal{H}_{\mathcal{R}_{\mathcal{R}}}}((-1)^F y^{J_0} q^{L_0 - c/24} \bar{q}^{-\bar{L}_0 - \bar{c}/24})$$

where $y = e^{2\pi i z}$, $z \in \mathbb{C}$ and $F = F_L - F_R$. It is a topological invariant and it transforms nicely under $SL(2,\mathbb{Z})$ transformations.

Francesca Ferrari (UvA)

Umbral Moonshine

5 / 8

Partition function & Elliptic genus

[Witten (1987)] The **partition function** for a bosonic string theory

$$Z(\tau) = Tr_{\mathcal{H}}(q^{L_0-c/24}\bar{q}^{L_0-c/24})$$

where $q = e^{2\pi i \tau}$, $\tau \in \mathbb{H}$, depends on the Dedekind eta function,

$$\eta(q) = q^{1/24} \prod_{n=1}^{\infty} (1-q^n).$$

 $Z(\tau)$ turns out to be invariant under the **modular transformations**, $SL(2,\mathbb{Z})$.

The elliptic genus for an $\mathcal{N}=(2,2)$ superconformal theory is defined as

$$EG(\tau, z) = Tr_{\mathcal{H}_{\mathcal{R}_{\mathcal{R}}}}((-1)^{F}y^{J_{0}}q^{L_{0}-c/24}\bar{q}^{-\bar{L}_{0}-\bar{c}/24})$$

where $y = e^{2\pi i z}$, $z \in \mathbb{C}$ and $F = F_L - F_R$. It is a topological invariant and it transforms nicely under $SL(2,\mathbb{Z})$ transformations.

Francesca Ferrari (UvA)

Elliptic genus of a K3 surface

[Eguchi, Ooguri, Taormina, Yang (1988)]

Decomposing the **elliptic genus of a K3 surface** into irreducible characters of the $\mathcal{N} = 4$ superconformal algebra a *q*-series arises

$$\mathsf{EG}(\tau, z; \mathsf{K3}) = \frac{\theta_1(\tau, z)^2}{\eta^3(\tau)} \Big\{ 24\mu(\tau, z) + 2q^{-1/8}(-1 + 45q + 231q^2 + 770q^3 + \dots) \Big\},$$

where μ is the Appell-Lerch sum, while the second term coincides with the **mock modular form** defined by the root system $X = A_1^{24}$

$$H(\tau) = 2q^{-1/8}(-1 + 45q + 231q^2 + 770q^3 + \dots).$$

The striking feature of Moonshine is that the first coefficients in the *q*-series coincide with irreducible representations of the Umbral group M_{24} .

Francesca Ferrari (UvA)

1

Elliptic genus of a K3 surface

[Eguchi, Ooguri, Taormina, Yang (1988)]

Decomposing the elliptic genus of a K3 surface into irreducible characters of the N = 4 superconformal algebra a *q*-series arises

$$\mathsf{EG}(\tau, z; \mathsf{K3}) = \frac{\theta_1(\tau, z)^2}{\eta^3(\tau)} \Big\{ 24\mu(\tau, z) + 2q^{-1/8}(-1 + 45q + 231q^2 + 770q^3 + \dots) \Big\},$$

where μ is the Appell-Lerch sum, while the second term coincides with the **mock** modular form defined by the root system $X = A_1^{24}$

$$H(\tau) = 2q^{-1/8}(-1 + 45q + 231q^2 + 770q^3 + \dots).$$

The striking feature of Moonshine is that the first coefficients in the q-series coincide with irreducible representations of the Umbral group M_{24} .

Francesca Ferrari (UvA)

A question to be solved

What is the relation between Umbral moonshine and K3 surfaces?

[Mukai (1988), Kondo (1998)] The geometric symmetries (symplectic automorphisms) of a K3 surface are a subgroup of $M_{23} \subset M_{24}$.

[Gaberdiel, Hohenegger, Volpato (2011)] The supersymmetry-preserving automorphisms of any non-linear sigma-model on K3 are a subgroup of Co_1 , the Conway group.

7 / 8

Conclusion

• [Taormina, Wendland (2013)]

The geometric groups of symmetries of different K3 surfaces can be combined constructing an "overarching" symmetry map on the moduli space of complex structure of K3 surfaces.

• [Cheng, Harrison (2013)]

Through a uniform construction, the 23 cases of Umbral moonshine are built from the ADE-singularities classification of K3 surfaces.

With M. Cheng, S. Harrison, and N. Paquette, we are extending the analysis of K3 symmetries to other cases of umbral moonshine.

Thank you!

Francesca Ferrari (UvA)

Conclusion

• [Taormina, Wendland (2013)]

The geometric groups of symmetries of different K3 surfaces can be combined constructing an "overarching" symmetry map on the moduli space of complex structure of K3 surfaces.

• [Cheng, Harrison (2013)]

Through a uniform construction, the 23 cases of Umbral moonshine are built from the ADE-singularities classification of K3 surfaces.

With M. Cheng, S. Harrison, and N. Paquette, we are extending the analysis of K3 symmetries to other cases of umbral moonshine.

Thank you!

Francesca Ferrari (UvA)

Umbral Moonshine