In search of general relativity

or: How I learned to stop worrying and understood that not everything is what it seems to be

Luís Pires

IMAPP, Radboud University, Nijmegen, Netherlands

Mostly based on: R.Loll, and L.P.: Phys.Rev. D90 (2014) 12, 124050

ICTP, 3rd joint Dutch-Brazil school on theoretical physics February 04, 2015

Context and ADM decomposition

Context: quantum gravity (QG)

- ullet A standalone theory of gravity in 3+1 dimensions, valid at all scales.
- Particular candidate: Hořava-Lifshitz gravity^a:
 - Built from anisotropic UV fixed point, defined s.t. $[g_N] = 1$,
 - EFT point of view is then applicable,
 - "IR limit" is different from Einstein-Hilbert action.
 - \implies searching for GR in this limit.

^aP. Hořava: Quantum gravity at a Lifshitz point, arXiv:0901.3775v2 [hep-th];

Context and ADM decomposition

Context: quantum gravity (QG)

- ullet A standalone theory of gravity in 3+1 dimensions, valid at all scales.
- Particular candidate: Hořava-Lifshitz gravity^a:
 - Built from anisotropic UV fixed point, defined s.t. $[g_N] = 1$,
 - EFT point of view is then applicable,
 - "IR limit" is different from Einstein-Hilbert action.

 \implies searching for GR in this limit.

^aP. Hořava: Quantum gravity at a Lifshitz point, arXiv:0901.3775v2 [hep-th];

Ingredients: ADM decomposition

3+1 decomposition of the metric,

$$g_{ij} \equiv^{(4)} g_{ij}, \qquad N \equiv \left(-^{(4)} g^{00}\right)^{-1/2}, \qquad N_i \equiv^{(4)} g_{0i}.$$

• All time derivatives encoded in the extrinsic curvature.

$$K_{ij} = \frac{1}{2N} (\dot{g}_{ij} - \nabla_i N_i - \nabla_j N_i).$$

GR revisited

Action + Wheeler-DeWitt metric

• The 3 + 1 version of the Einstein-Hilbert action,

$$\begin{split} S &= \int dt \int d^3x \, \sqrt{g} \, N \, \left(K_{ij} K^{ij} - K^2 + R - 2 \Lambda \right) \\ &= \int dt \int d^3x \, \sqrt{g} \, N \, \left(K_{ij} G^{ijkl} K_{kl} + R - 2 \Lambda \right), \end{split}$$

G^{ijkl} is the Wheeler-DeWitt metric,

$$G^{ijkl} = \frac{1}{2} \left(g^{ik} g^{jl} + g^{il} g^{jk} \right) - g^{ij} g^{jk},$$

GR revisited

Action + Wheeler-DeWitt metric

• The 3 + 1 version of the Einstein-Hilbert action,

$$\begin{split} S &= \int dt \int d^3x \, \sqrt{g} \, N \, \left(K_{ij} K^{ij} - K^2 + R - 2 \Lambda \right) \\ &= \int dt \int d^3x \, \sqrt{g} \, N \, \left(K_{ij} G^{ijkl} \, K_{kl} + R - 2 \Lambda \right), \end{split}$$

G^{ijkl} is the Wheeler-DeWitt metric,

$$G^{ijkl} = \frac{1}{2} \left(g^{ik} g^{jl} + g^{il} g^{jk} \right) - g^{ij} g^{jk},$$

Total Hamiltonian and constraints

Performing the Legendre transformation yields the Hamiltonian,

$$H = \int d^3x \left(N\mathcal{H} + N^i \mathcal{H}_i + \alpha \phi + \alpha^i \phi_i \right)$$

GR revisited

Action + Wheeler-DeWitt metric

• The 3 + 1 version of the Einstein-Hilbert action,

$$\begin{split} S &= \int dt \int d^3x \, \sqrt{g} \, N \, \left(K_{ij} K^{ij} - K^2 + R - 2 \Lambda \right) \\ &= \int dt \int d^3x \, \sqrt{g} \, N \, \left(K_{ij} G^{ijkl} K_{kl} + R - 2 \Lambda \right), \end{split}$$

• Gijkl is the Wheeler-DeWitt metric,

$$G^{ijkl} = \frac{1}{2} \left(g^{ik} g^{jl} + g^{il} g^{jk} \right) - g^{ij} g^{jk},$$

Total Hamiltonian and constraints

Performing the Legendre transformation yields the Hamiltonian,

$$H = \int d^3x \left(N\mathcal{H} + N^i \mathcal{H}_i + \alpha \phi + \alpha^i \phi_i \right)$$

ullet \mathcal{H} and \mathcal{H}_i denote the Hamiltonian and momentum constraints,

$$\mathcal{H}=rac{\pi^{ij}G_{ijkl}\pi^{kl}}{\sqrt{g}}-\sqrt{g}\left(R-2\Lambda
ight).$$

• Imposing $(\dot{\phi}, \dot{\phi}_i) = (0,0)$ yields $(\mathcal{H}, \mathcal{H}_i) \approx (0,0)$ and no new constraints arise.

The λ -R model

Action + generalized Wheeler-DeWitt metric

ullet Breaking Diff(\mathcal{M}), a new dimensionless coupling appears,

$$\begin{split} S &= \int dt \int d^3x \, \sqrt{g} \, N \, \left(K_{ij} K^{ij} - \lambda K^2 + R - 2 \Lambda \right) \\ &= \int dt \int d^3x \, \sqrt{g} \, N \, \left(K_{ij} \, G_\lambda^{ijkl} \, K_{kl} + R - 2 \Lambda \right), \end{split}$$

• G_{λ}^{ijkl} is the generalized Wheeler-DeWitt metric,

$$G_{\lambda}^{ijkl} = \frac{1}{2} \left(g^{ik} g^{jl} + g^{il} g^{jk} \right) - \lambda g^{ij} g^{jk},$$

Total Hamiltonian and constraints

Performing the Legendre transformation yields the Hamiltonian,

$$H = \int d^3x \left(N\mathcal{H}_{\lambda} + N^i \mathcal{H}_i + \alpha \phi + \alpha^i \phi_i \right)$$

• \mathcal{H}_i and its algebra remain unchanged, with λ present in \mathcal{H}_{λ} ,

$$\mathcal{H}_{\lambda} = rac{\pi^{ij} G_{ijkl}^{\lambda} \pi^{kl}}{\sqrt{g}} - \sqrt{g} (R - 2\Lambda).$$

• While $(\mathcal{H}_{\lambda}, \mathcal{H}_{i}) \approx (0,0)$, $\dot{\mathcal{H}}_{\lambda} \approx 0$ is not trivial.

The tertiary constraint

Tertiary constraint \sim gauge fixing

- General solution: $\nabla_i \pi \approx 0$.
- Asymptotically flat spaces: $\pi = 0^a$
 - ullet GR in the maximal slicing gauge $(\pi=0)$ is recovered.
- For compact spaces: $\frac{\pi}{\sqrt{g}} = a(t)$ (CMC gauge condition),
 - \bullet at first glance, the $\lambda\text{-dependance}$ remains.
- ^aJ. Bellorin, and A. Restuccia: http://arxiv.org/abs/1004.0055;

The tertiary constraint

Tertiary constraint \sim gauge fixing

- General solution: $\nabla_i \pi \approx 0$.
- Asymptotically flat spaces: $\pi = 0^a$
 - ullet GR in the maximal slicing gauge $(\pi=0)$ is recovered.
- For compact spaces: $\frac{\pi}{\sqrt{g}} = a(t)$ (CMC gauge condition),
 - ullet at first glance, the λ -dependance remains.
- ^aJ. Bellorin, and A. Restuccia: http://arxiv.org/abs/1004.0055;

More on the compact case

- Time preservation of tertiary constraint yield two more equations:
 - λ -dependent N (denoted by $\mathcal{A} \approx$ 0) and α fixing equations.
- 1st and 2nd class classification of constraints yields 2 d.o.f.,
 - 2nd class constraints: $(A, \phi, \mathcal{H}_{\lambda}, \pi a\sqrt{g})$
 - 1st class constraints: $(\dot{\phi}_i, \mathcal{H}_i)$.

Outlook and references

- Originally, we worked with $\dot{a}=0$, new results soon with fully general $a(t)=\frac{1}{V}\int d^3x\pi$.
 - Using York's conformal methods, it seems to be possible to prove equivalence with CMC general relativity for $\lambda > 1/3$,
 - \bullet Proof of Solution of Lichnerowicz-York does not seem to generalize for $\lambda < 1/3.$
- Would also be interesting to:
 - Check spaces with different boundary conditions,
 - Include (possibly as a perturbation) the term $\nabla_i \log N \nabla^i \log N$.

Outlook and references

- Originally, we worked with $\dot{a}=0$, new results soon with fully general $a(t)=\frac{1}{V}\int d^3x\pi$.
 - Using York's conformal methods, it seems to be possible to prove equivalence with CMC general relativity for $\lambda > 1/3$,
 - \bullet Proof of Solution of Lichnerowicz-York does not seem to generalize for $\lambda < 1/3.$
- Would also be interesting to:
 - Check spaces with different boundary conditions,
 - Include (possibly as a perturbation) the term $\nabla_i \log N \nabla^i \log N$.

Financial support from FCT, Portugal, SFRH/BD/76630/2011. is acknowledged. Bibliography:

- P. Hořava: arXiv:0901.3775v2 [hep-th];
- D. Giulini, and C. Kiefer: http://arxiv.org/abs/gr-qc/9405040;
- J. Bellorin, and A. Restuccia: http://arxiv.org/abs/1004.0055;
- R.Loll, and L.P.: Phys.Rev. D90 (2014) 12, 124050.

Thank you!