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Motivation: what is noise?

Data: ¢ s

London

4-4
—
9)
o
-
p—
—

2 4

0- '
1950 1955 1960 1965
Year

dl 1 .
I JE i a0 teitild « )
ST mode i BS il f(t) + “noise



Demographic noise
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but dI = 0,1,2, ...

e What is going on at microscopic scale?
Gas of individuals randomly bumping
into each other and transmitting the

disease \

y t+dt



Simplest case: Poisson process

e Infection (I—=Il+1) event occurs in any interval {t, t+dt)
independently with probability rdt (r>0)
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e How to simulate?
1 fix dt small
2 draw a uniform random variable X=rand ()
3 event occurs in [t, t+dt) if X<rdt
4 advance time t — t+dt, go back to 2



This is ok in theory
but in practice...
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e If dt is too large more than one event can occur
in {t, t+dt) — dt has to be small

o If dt is very small, most of the time there is no
event in {t, t+dt). Simulation is very slow!

e Can we find a more clever way to simulate?

e How much should I wait for the next event?



Waiting time distribution

o P.(t,t+s)=probability that no event occur in {t,t+s)
o P.(t,t+s)=F(s) does not depend on t

o Waiting time: ty  F(s) = P{ty, > s} = /Oo f(s)ds
o F(s;+s,)=F(sPF(s,) for all s;, s,>0 — F(s) =e™"*

e pdf of ty: dF (s)

fls) =~ 2 = rers

e A random variable with this pdf is obtained as

tw = —log(rand())/r



Draw directly the times when
events will occur!
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e At time t
® draw a waiting time ty
e advance time to t+ty

This is exact!

® repeat



Fixed dt simulations
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Note: Poisson process
“has no memory”

e The average time between events is 1/r

o If I start looking at the process at time t, how
much should I wait on average?’
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e [f I know that the last event occurred at time

t-s, what is the probability that the next event
will occur after time t+s’?



From one to N processes:
e.g. individual based SI model

e N individuals, i=1,2,...,N ® © }

e Each can be either S (xi=0) or I (xi=1) ° ® SQ

e In [t,t+dt):
each x;=0 can become x;=1 with P(S—1)=r;dt

each x;=1 can become x;=0 with P(I—+S)=r;dt 1;=(1x) BS/N+yx;
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How to make a simulation?

XX XXEXX

LRI ER

t
e At time time t, for each process i=1,...,N draw a waiting
time tw; from the exponential pdf with rate r;
e Find the process which occurs next, i*=argmin{ty,}

e Do process i* and advance time to t+ ty*

e Note:
- exact
- need to find the minimum of N variables, O(log IN)

- no need to re-draw waiting times for i # i* !



We can do better if we first draw the time to
the next event and then find which event is it
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In practice:
(this is also called the Gillespie algorithm)

I.Find the probability of the combined process

P{twji* >t} s P{tw’1 >t,tw,1 >t,...,tw,N >t}
e P{tw,1 > t}P{tw’l > t} - P{thV > t}
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l.e. draw typ = — 10g(rand())/R

2.Compute the probability that i*=i

P{i* =i} = P{ty, < tw, Vj #i} = / dtirie= T e
0 i
JF#i

it
R



Back to the SI model

e At time t
N it
It) =Y z:(t),  S(t)=N-I() L By Hz=0
i=1 i I e e
e Draw waiting time for next event:
1 I
fl = iy log(rand()), R = [M + (1 i N)] I
e Draw i* ...
® ...Or

| I(t) =1 with probability ul/R
o) = { I(t)+1 else



N=1000
I=10
beta=3.0
mu=1.0
t=0.0
R=(mu+beta*(1-float(I)/N))*I
dt=-1og(ran2(idum))/R
t=t+dt
print *,t,I
if (ran2(idum).lt.mu*I/R) then
I=I-1
else
I=I+1
end if
print *,t,I
if (I.gt.0.and.t.1t.100) go to 10
end




Note: seasonality

e Seasonal

ity: if rates ri(t) depend on t things get

more complex ...

e Yet as long as ri(t) does not change significantly
over times of order twi* one can consider r; as
constant

® t.i+ - I/N so if dr;/dt << N all is fine



Question: Why can’t I take a fixed dt?
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The Master equation

e P(I,t) = probability of I infected individuals

* 'Iwo processes: I»1+1 or I+1-1

w(I—>I—|—1):BI(1—%>, w(l -1 —-1)=pul
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_P(I,w(I > I+1)— P(I,wl —>1-1)




Seasonality without seasons

n predators, m preys
transition rates:

Epidemics: (open) SIR model
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L.ecture II Stochastic
differential equations

Can we describe
stochastic fluctuations
with differential

equations?
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Summary

e Effect of noise = the accumulation of random shocks
—> sums of random variables

—> Central Limit Theorem

e As a consequence, the “noise” that can be added to the
differential equation has specific math properties
(Wiener process), mainly:

dW? = dt

e This has consequences in how you deal with (stochastic)
differential equations (e.g. demographic noise, random
shocks, etc) and how you integrate them



Preliminary:

random integrals and sums

dy = By (1 — y) dt — pydt + "noise”, y=1/N

e In order to give a meaning to this, I have to tell you how
to compute a solution with y(t,)=yo

o) = w0+ [ {BUE) L= y(0)] - ()} d + / noise”

006 6 [X| Gnuplot

e From integrals to sums

t N
/”noise” T E 1

to i=1

simulation - determ. eq.

ti+dt
N = (t —tg)/dt, = / ”noise”
t;

time
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The Central Limit Theorem

e If X; are i.i.d. E{X;l and the variance VIX;l is finite, then

1 )
ZX NE[X;]++/NV[X;]Z, where p(z)= eyt 2
V2T

e In our case, N=(t-t,)/dt and E[X;]=0, in order to define a
continuum time limit dt — 0 we need

lim V[X;]/dt finite

dt—0

e Rescaling time: The Wiener process

ti+dt t
= / ?noise” = dW (t) = VdtZ, / dW =W (t) — W(ty) = vVt —toZ
t;

to

(i.i.d. = independent and identically distributed)



If sums of random variables are appropriately
rescaled, the result is independent of dt

t N
/ "noise” = E Kt
to i=1

N2 (¢ ko) fde, | X

read *,dt,idum

N=1.d0@/dt
Sum=0
do i=1,N
X=ran2(idum)-0.5
Sum=Sum+X
print *,i*dt,sqrt(dt)*Sum
end do

end
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The Wiener process

t/dt
Wi(t) = Z VdtZ;, Z; iid. Gaussian with E[Z;] =0 V[Z;] =1
i=1

e W (t) is continuous (a.s.)

p=3 p=3 f=3

‘ i=3 + f=3 + <
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e W(t) has independent

: |
Increments Mu

= B[W ()W (t2)] = min{t, t>} _},M .

e W (t) is nowhere differentiable

1
AW ~ Vdt = bl

dt Vb



Stochastic differential equations

dy = a(y,t)dt + b(y, t)dW

e This means
t

P / a(y(t)), )t + / b(y(t'), ¢)dW (¢

to to

Lebesgue integral stochastic integral
il
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The stochastic integral depends on how
the midpoint is chosen

e Stochastic integrals are random variables

( /t t G AW (') — Y)

e Stochastic integral depends on the choice of the
midpoint. Example: G()=W (t)

t
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W(t")dW (t') = lim > W(m)dW;
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to
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T = oty + (1 — Oé)ti_l
¢
— 1 IA] { W(t’)dW(t’)] = aft — tp)

to



Need a prescription

e Ito prescription: a =0, 7, =1;_1
New term appears in integrals, e.g.
i W) - W2(te)  t—to

t W) dW (t') = 5 ;

because
1
df(W) = f(W)dW + 5 f7(W)dt
Differential equations have to be integrated as in Euler scheme
2t + dt) = 2(2) + alz(t), t]dt + bz(t), dW (1)

dW (t) independent of x(t)

e Under other prescriptions (e.g. @ = 1/2) the rules of
integration and differentiation change



Ito formula: dW=dt

e Change of variables: y=f(x)
dr = a(x,t)dt + b(x,t)dW

dy = f(z +dz) - f(ﬂf)1
= |[f'(z)a(z,t) + §f” (2)b°(z,t) | dt + f/(z)b(z, t)dW



Examples of SDE

o dx=a(t)dt+b(t)d W
o dx=xdW
o dx=kxdt+s dW



Back to SIS model: what are a and b?

I(t) = Ny(t) =) z(t), =dl=> dz; = NE[dz;]+/NV[dz]Z

(E==11 ==
| Central Limit

. 2 Theorem
1 with prob. B+ (1 — x;)dt
dr; = ¢ —1 with prob. px;dt
0 else I I I
Vidz;] = Eldz?] — E[dz]?
Lttt ] 1t 2
= BN (1 N) dt+,uth+O(dt)

Therefore:

dy:[5(1—y>—mydw%ﬁmu—y)wym




T\ D11 iy ,-, Ak Al Ly ~
FORTRAN t MNeans:

read *,dt,idum
N=1000
y=0.01

beta=3.0
mu=1.0

t=0.0

dW=sqgrt(dt)*gasdev(idum)
y=y+(beta*(1-y)-mu)*y*dt+sgrt((beta*(1-y)+mu)*y/N)*dW
t=t+dt

print *,t,y

if (y.gt.0.and.t.1t.100) go to 10

end




Van Kampen’s system size

(or small noise) expansion
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dy = yo(t)dt + Tdyl (t) + O(1/N) :
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