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Motivation: what is noise?

   = SI model:                               + f(t) + “noise”  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Demographic noise

• SI model 
 
means  
 
but dI = 0,1,2, ... !

• What is going on at microscopic scale? 
Gas of individuals randomly bumping 
into each other and transmitting the 
disease
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Simplest case: Poisson process

• Infection (I→I+1) event occurs in any interval [t, t+dt) 
independently with probability rdt (r>0) 
 
 
 

• How to simulate? 
1 fix dt small 
2 draw a uniform random variable X=rand()  
3 event occurs in [t, t+dt) if X<rdt 
4 advance time t → t+dt, go back to 2

t
[t, t+dt)

I(t)



This is ok in theory  
but in practice...

• If dt is too large more than one event can occur 
in [t, t+dt) → dt has to be small!

• If dt is very small, most of the time there is no 
event in [t, t+dt). Simulation is very slow!!

• Can we find a more clever way to simulate?!

• How much should I wait for the next event?

ttw



Waiting time distribution
• P0(t,t+s)=probability that no event occur in [t,t+s)!

• P0(t,t+s)=F(s) does not depend on t!

• Waiting time: tw!

• F(s1+s2)=F(s1)F(s2) for all s1, s2 > 0!

• pdf of tw: 

• A random variable with this pdf is obtained as  

F (s) = P{tw > s} =

Z 1

s
f(s)ds

! F (s) = e�rs

f(s) = �dF (s)

ds
= re�rs

tw = � log(rand())/r



Draw directly the times when 
events will occur!

• At time t!

• draw a waiting time tw!

• advance time to t+tw!

• repeat

t

t
tw

t t
tw

t
tw tw

t

This is exact!



Fixed dt simulations

• Pk(u)=probability of k events in [t,t+u)  
 
 
 
 

• Draw k from Pk(u)

t
dt dt dt

P1(⌧) =

Z ⌧

0
P0(s)rdsP0(⌧ � s� ds) ⇠=

Z ⌧

0
P0(s)rdsP0(⌧ � s)

...

Pk(⌧) =

Z ⌧

0
Pk�1(s)rdsP0(t� s) =

(r⌧)k

k!
e�r⌧



Note: Poisson process  
“has no memory”

• The average time between events is 1/r!

• If I start looking at the process at time t, how 
much should I wait on average? 
 
 

• If I know that the last event occurred at time  
t-s, what is the probability that the next event 
will occur after time t+s’?

tt-s t+s’



From one to N processes: 
e.g. individual based SI model

• N individuals, i=1,2,...,N!

• Each can be either S (xi=0) or I (xi=1)!

• In [t,t+dt): 
each xi=0 can become xi=1 with P(S⇾I)=ridt 
each xi=1 can become xi=0 with P(I⇾S)=ridt

S
I

... ... ...

1!
2!
!

N

ri=(1-xi)𝛽S/N+ɣxi



How to make a simulation?

• At time time t, for each process i=1,...,N draw a waiting 
time tw,i from the exponential pdf with rate ri!

• Find the process which occurs next, i*=argmin{tw,i}!

• Do process i* and advance time to t+ tw,i*!

• Note:  
- exact 
- need to find the minimum of N variables, O(log N)  
- no need to re-draw waiting times for i ≠ i* ! 

... ... ...
t



We can do better if we first draw the time to 
the next event and then find which event is it

first draw twi*

then i*



In practice:  
(this is also called the Gillespie algorithm)

1.Find the probability of the combined process  
 
 
 
 
 
i.e. draw twi*!

2.Compute the probability that i*=i

R =
NX

i=1

ri

P{i⇤ = i} = P{tw,i < tw,j 8j 6= i} =

Z 1

0
dtirie

�rit
Y

j 6=i

e�rjt

=
ri
R

= � log(rand())/R

P{tw,i⇤ > t} = P{tw,1 > t, tw,1 > t, . . . , tw,N > t}
= P{tw,1 > t}P{tw,1 > t} · · ·P{tw,N > t}
= e�r1te�r1t · erN t = e�

P
i rit

= e�Rt



Back to the SI model
• At time t 
 
 

• Draw waiting time for next event: 
 

• Draw i* ...!

• ... or  

tw = � 1

R
log(rand()), R =


µ+ �

✓
1� I

N

◆�
I

I(t+ tw) =

⇢
I(t)� 1 with probability µI/R
I(t) + 1 else

I(t) =
NX

i=1

xi(t), S(t) = N � I(t)
ri =

⇢
�

I
N if xi = 0
µ if xi = 1



Let’s write a program:



Note: seasonality

• Seasonality: if rates ri(t) depend on t things get 
more complex …!

• Yet as long as ri(t) does not change significantly 
over times of order twi* one can consider ri as 
constant!

• twi* ~ 1/N so if dri/dt << N all is fine



Question: Why can’t I take a fixed dt? 

S
I
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I(t) =
NX

i=1

xi(t), S(t) = N � I(t)

ri =

⇢
�

I
N if xi = 0
µ if xi = 1



The Master equation
• P(I,t) = probability of I infected individuals!

• Two processes: I⇾I+1 or I⇾I-1

@P (I, t)

@t
= P (I � 1, t)w(I � 1 ! I) + P (I + 1, t)w(I + 1 ! I)

�P (I, t)w(I ! I + 1)� P (I, t)w(I ! I � 1)

0 1 2 N

I-1, I, I+1

w(I ! I + 1) = �I

✓
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N

◆
, w(I ! I � 1) = µI



Seasonality without seasons
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death processes A!d1E, B!d2E, and predator-prey interac-
tions AB!p1AA, AB!p2AE. Here (b, d1, d2, p1, p2) are rate
constants. The symbol E corresponds to what would be
available sites in a spatial model. In this nonspatial model,
the E’s are (N ! n!m) passive constituents of the sys-
tem, which are required for prey reproduction, and which
result in intraspecific prey competition. Note, the overall
number of A, B, and E constituents is fixed to be N. The
dynamics of the model can either be numerically simulated
or studied analytically using the formalism of master equa-
tions [5,6]. Simulations have been performed using two
different algorithms: the first consists of making small
increments in time (in our case !t " 0:05) and within
each increment choosing constituents at random and im-
plementing the rules given above; the second follows
Gillespie’s exact algorithm [7] in which one of the pro-
cesses is enacted according to its relative statistical weight,
and time is incremented by an amount drawn from the
appropriate exponential distribution. We have found ex-
cellent agreement between the results from both algo-
rithms. Gillespie’s algorithm is superior in that it is exact
and highly efficient. In constructing the master equation,
the transition rates T#n0; m0jn;m$ from the state (n;m) to
the state (n0; m0) are given by

T#n! 1; mjn;m$ " d1n;

T#n;m% 1jn;m$ " 2b
m
N
#N ! n!m$;

T#n;m! 1jn;m$ " 2p2
nm
N

% d2m;

T#n% 1; m! 1jn;m$ " 2p1
nm
N

; (1)

where the b and pi have been scaled by a factor of (N ! 1)
and the di by a factor of N. We have already given an
extensive discussion of this approach elsewhere in the
context of competition models [8], and we refer the reader
to this paper for a fuller discussion of the formalism.

The master equation for the probability that the system
consists of n predators and m prey at time t, P#n;m; t$, is

dP#n;m;t$
dt

"#Ex!1$&T#n!1;mjn;m$P#n;m;t$'

%#E!1
y !1$&T#n;m%1jn;m$P#n;m;t$'

%#Ey!1$&T#n;m!1jn;m$P#n;m;t$'
%#E!1

x Ey!1$&T#n%1;m!1jn;m$P#n;m;t$';
(2)

where the step operators E are defined by their actions on
functions of n and m by E(1

x f#n;m; t$ " f#n( 1; m; t$ and
E(1
y f#n;m; t$ " f#n;m( 1; t$.
The mean field limit of this ILM may be obtained by

multiplying (2) by n and m in turn, and subsequently
summing over all allowed values of m and n. This gives
equations for the mean values f1 " hni=N and f2 "

hmi=N in the limit N ! 1 if we ignore terms which are
1=N down on others and make the replacements hm2i !
hmi2 and hmni ! hmihni. This mean field theory, or PLM,
takes the form

df1
dt

" n#f2$f1 !"f1

df2
dt

" rf2

!

1! f2
K

"

! g#f2$f1:
(3)

The Eqs. (3) are frequently referred to as the Volterra
equations, to distinguish them from the Lotka-Volterra
equations which have no term in f2=K [5]. The constants
", r, and K are simply functions of the rate constants:

" " d1; r " 2b! d2; K " 1! d2
2b

; (4)

and the linear numerical and functional responses are given
by n#f2$ " 2p1f2 and g#f2$ " 2#p1 % p2 % b$f2.

As is well known [5], the analysis of this model shows a
complete absence of cycles. There is a single fixed point
for which the predators and prey have nonzero population
sizes. Denoting these stationary values by f#s$1 and f#s$2 , then
in terms of the original rate constants they are given by:

f#s$1 " #2bp1 ! bd1 ! p1d2$
2p1#p1 % p2 % b$ ; f#s$2 " d1

2p1
: (5)

The stability of this fixed point may be studied by perform-
ing linear stability analysis. This results in a stability
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FIG. 1. Predator and prey densities as a function of time. The
upper panel shows the predator density f1 for N " 3200. The
dashed line is calculated from numerical integration of the mean
field Volterra equations (3). The dotted line is the average of the
predator density time series from 10 000 replicates generated
from the ILM and is almost indistinguishable from the mean
field solution. The solid line is the predator density time series
for a single typical replicate. The lower panel is the equivalent
plot for the prey density f2. Parameter values are b " 0:1, d1 "
0:1, d2 " 0:0, p1 " 0:25, and p2 " 0:05.
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death processes A!d1E, B!d2E, and predator-prey interac-
tions AB!p1AA, AB!p2AE. Here (b, d1, d2, p1, p2) are rate
constants. The symbol E corresponds to what would be
available sites in a spatial model. In this nonspatial model,
the E’s are (N ! n!m) passive constituents of the sys-
tem, which are required for prey reproduction, and which
result in intraspecific prey competition. Note, the overall
number of A, B, and E constituents is fixed to be N. The
dynamics of the model can either be numerically simulated
or studied analytically using the formalism of master equa-
tions [5,6]. Simulations have been performed using two
different algorithms: the first consists of making small
increments in time (in our case !t " 0:05) and within
each increment choosing constituents at random and im-
plementing the rules given above; the second follows
Gillespie’s exact algorithm [7] in which one of the pro-
cesses is enacted according to its relative statistical weight,
and time is incremented by an amount drawn from the
appropriate exponential distribution. We have found ex-
cellent agreement between the results from both algo-
rithms. Gillespie’s algorithm is superior in that it is exact
and highly efficient. In constructing the master equation,
the transition rates T#n0; m0jn;m$ from the state (n;m) to
the state (n0; m0) are given by

T#n! 1; mjn;m$ " d1n;

T#n;m% 1jn;m$ " 2b
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N
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T#n;m! 1jn;m$ " 2p2
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; (1)

where the b and pi have been scaled by a factor of (N ! 1)
and the di by a factor of N. We have already given an
extensive discussion of this approach elsewhere in the
context of competition models [8], and we refer the reader
to this paper for a fuller discussion of the formalism.

The master equation for the probability that the system
consists of n predators and m prey at time t, P#n;m; t$, is

dP#n;m;t$
dt
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functions of n and m by E(1
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E(1
y f#n;m; t$ " f#n;m( 1; t$.
The mean field limit of this ILM may be obtained by

multiplying (2) by n and m in turn, and subsequently
summing over all allowed values of m and n. This gives
equations for the mean values f1 " hni=N and f2 "

hmi=N in the limit N ! 1 if we ignore terms which are
1=N down on others and make the replacements hm2i !
hmi2 and hmni ! hmihni. This mean field theory, or PLM,
takes the form
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The Eqs. (3) are frequently referred to as the Volterra
equations, to distinguish them from the Lotka-Volterra
equations which have no term in f2=K [5]. The constants
", r, and K are simply functions of the rate constants:

" " d1; r " 2b! d2; K " 1! d2
2b

; (4)

and the linear numerical and functional responses are given
by n#f2$ " 2p1f2 and g#f2$ " 2#p1 % p2 % b$f2.

As is well known [5], the analysis of this model shows a
complete absence of cycles. There is a single fixed point
for which the predators and prey have nonzero population
sizes. Denoting these stationary values by f#s$1 and f#s$2 , then
in terms of the original rate constants they are given by:

f#s$1 " #2bp1 ! bd1 ! p1d2$
2p1#p1 % p2 % b$ ; f#s$2 " d1

2p1
: (5)

The stability of this fixed point may be studied by perform-
ing linear stability analysis. This results in a stability
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FIG. 1. Predator and prey densities as a function of time. The
upper panel shows the predator density f1 for N " 3200. The
dashed line is calculated from numerical integration of the mean
field Volterra equations (3). The dotted line is the average of the
predator density time series from 10 000 replicates generated
from the ILM and is almost indistinguishable from the mean
field solution. The solid line is the predator density time series
for a single typical replicate. The lower panel is the equivalent
plot for the prey density f2. Parameter values are b " 0:1, d1 "
0:1, d2 " 0:0, p1 " 0:25, and p2 " 0:05.
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w[(n,m) ! (n0m0)] = T (n0m0|n,m)

n predators, m preys 
transition rates:

D. Alonso, A.J. McKane, M. Pascual Interface 2007

Epidemics: (open) SIR model



Lecture II Stochastic 
differential equations

Can we describe !
stochastic fluctuations!
with differential !
equations?

SIS model:!
deterministic dynamics vs 
numerical simulations with 
demographic noise

dI

dt
= �I

✓
1� I

N

◆
� µI + . . .



Summary
• Effect of noise = the accumulation of random shocks 
⇨ sums of random variables   
⇨ Central Limit Theorem!

• As a consequence, the “noise” that can be added to the 
differential equation has specific math properties 
(Wiener process), mainly: 
 

• This has consequences in how you deal with (stochastic) 
differential equations (e.g. demographic noise, random 
shocks, etc) and how you integrate them 

dW 2 = dt



Preliminary:  
random integrals and sums

• In order to give a meaning to this, I have to tell you how 
to compute a solution with y(t0)=y0  
 

• From integrals to sums

y(t) = y0 +

Z t

t0

{�y(t0) [1� y(t0)]� µy(t0)} dt0 +
Z t

t0

”noise”

dy = �y (1� y) dt� µydt+ ”noise”, y = I/N

Z t

t0

”noise” =

NX

i=1

Xi,

N = (t� t0)/dt, Xi =

Z ti+dt

ti

”noise”



The Central Limit Theorem

• If Xi are i.i.d. E[Xi] and the variance V[Xi]  is finite, then 
 
 

• In our case, N=(t-t0)/dt and E[Xi]=0, in order to define a 
continuum time limit                we need 
 

• Rescaling time: The Wiener process

dt ! 0

NX

i=1

Xi = NE[Xi] +
p

NV [Xi]Z, where p(z) =
1p
2⇡

e�z2/2

lim
dt!0

V [Xi]/dt finite

Xi =

Z ti+dt

ti

”noise” = dW (t) =
p
dtZ,

Z t

t0

dW = W (t)�W (t0) =
p
t� t0Z

(i.i.d. = independent and identically distributed)



If sums of random variables are appropriately 
rescaled, the result is independent of dt

Which has been generated with 
dt=10-3 and which with dt=10-4?

Z t

t0

”noise” =

NX

i=1

Xi,

N = (t� t0)/dt, Xi =

Z ti+dt

ti

”noise”



The Wiener process

• W(t) is continuous (a.s.)!

• W(t) has independent  
increments  
 

• W(t) is nowhere differentiable 

W (t) =

t/dtX

i=1

p
dtZi, Zi i.i.d. Gaussian with E[Zi] = 0 V [Zi] = 1

) E[W (t1)W (t2)] = min{t1, t2}

dW ⇠
p
dt ) dW

dt
⇠ 1p

dt



Stochastic differential equations

• This means

dy = a(y, t)dt+ b(y, t)dW

y(t) = y(t0) +

Z t

t0

a(y(t0), t0)dt0 +

Z t

t0

b(y(t0), t0)dW (t0)

Lebesgue integral

Z t

t0

a(y(t0), t0)dt0 = lim
N!1

NX

i=1

a(y(⌧i), ⌧i)dti

t0 < t1 < . . . < tN = t, dti = ti � ti�1

ti�1  ⌧i  ti

stochastic integral
?

Z t

t0

b(y(t0), t0)dW (t0) = lim
N!1

NX

i=1

b(y(⌧i), ⌧i)dWi

t0 < t1 < . . . < tN = t, dWi = W (ti)�W (ti�1)

ti�1  ⌧i  ti



The stochastic integral depends on how 
the midpoint is chosen

• Stochastic integrals are random variables 
 

• Stochastic integral depends on the choice of the 
midpoint. Example: G(t)=W(t)

Z t

t0

G(t0)dW (t0) = Y , E

"✓Z t

t0

G(t0)dW (t0)� Y

◆2
#
= 0

Z t

t0

W (t0)dW (t0) = lim
N!1

NX

i=1

W (⌧i)dWi

t0 < t1 < . . . < tN = t, dWi = W (ti)�W (ti�1)

⌧i = ↵ti + (1� ↵)ti�1

) E

Z t

t0

W (t0)dW (t0)

�
= ↵(t� t0)



Need a prescription
• Ito prescription: 

New term appears in integrals, e.g. 
 
 
 
because 
 
 
Differential equations have to be integrated as in Euler scheme 
 
 

• Under other prescriptions (e.g.             ) the rules of 
integration and differentiation change 

↵ = 0, ⌧i = ti�1

↵ = 1/2

x(t+ dt) = x(t) + a[x(t), t]dt+ b[x(t), t]dW (t)

dW (t) independent of x(t)

df(W ) = f 0(W )dW +
1

2
f”(W )dt

Z t

t0

W (t0)dW (t0) =
W 2(t)�W 2(t0)

2
� t� t0

2



Ito formula: dW =dt
• Change of variables: y=f(x)

2

dx = a(x, t)dt+ b(x, t)dW

dy = f(x+ dx)� f(x)

=


[f 0(x)a(x, t) +

1

2
f”(x)b2(x, t)

�
dt+ f

0(x)b(x, t)dW



Examples of SDE

• dx=a(t)dt+b(t)dW!

• dx=xdW!

• dx=-kxdt+s dW!

• ...



Back to SIS model: what are a and b?

I(t) = Ny(t) =
NX

i=1

xi(t), ) dI =
NX

i=1

dxi
⇠= NE[dxi] +

p
NV [dxi]Z

dxi =

8
<

:

1 with prob. �

I
N (1� xi)dt

�1 with prob. µxidt

0 else

E[dxi] = �

I

N

✓
1� I

N

◆
dt� µ

I

N

dt

V [dxi] = E[dx2]� E[dx]2

= �
I

N

✓
1� I

N

◆
dt+ µ

I

N
dt+O(dt2)

dy = [� (1� y)� µ] ydt+
1p
N

p
[� (1� y) + µ] ydW

Therefore:

Central Limit 
Theorem



In FORTRAN this means:



Van Kampen’s system size  
(or small noise) expansion

dy = [� (1� y)� µ] ydt+
1p
N

p
[� (1� y) + µ] ydW

dy0
dt

= [� (1� y0)� µ] y0

dy = y0(t)dt+
1p
N

dy1(t) +O(1/N)

dy1 =
@a(y, t)

@y

����
y0(t)

y1(t)dt+
b(y0, t)p

N
dW

= �[µ+ �(2y0 � 1)]yidt+

p
[�(1� y0) + µ]y0p

N
dW
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