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feedbacks within the disease
system itself

(epidemiological processes that
depend on the current or past
state of the system > immunity;
control measures)

Climate variability

Ocean regions that act as global
drivers of regional climate
variability

Spatial heterogeneity in
vulnerability

(in large urban environments of
the developing world)
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Limitation of ‘correlative’ approaches:

1 - Nonlinear responses to environmental forcing
Epidemiological models, extrinsic vs. intrinsic factors

2 — Spatial (and other forms) of population heterogeneity
ENSO, flooding and spatial disease dynamics

3 — Demographic stochasticity
Size distribution of outbreaks in epidemic regions
and forest fire models

Infectious disease dynamics:
‘natural’ oscillators / consumer-resource systems/ nonlinear systems

Recruitment

Proportion of population

Recovered
and immune

From Bryan Grenfell, Ottar Bjornstad (2004)
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when two cycles interact...

-\

Natural cycles of the

Seasonal transmission

disease
Chaos
Annual .
Biennial cycles Multiple
cycles e
or cycles of coexisting
longer period cycles

Climate variable

Model + statistical inference methods

Intrinsic dynamics

Extrinsic drivers

Koelle and Pascual (Am. Nat. 2004)
Koelle, Rodo, Pascual et al. (Nature 2005)




Cholera cases
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Matlab ASOND EI Tor Cholera and DJF SST
Rank Correlation 1983-2009

0 El Tor Cholera
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Dhaka ASOND EI Tor Cholera and DJF SST
Rank Correlation 1984-2007

SST data: HadSST1:
Rayner et al. 2003

Link between
cholera and ENSO

— Observed precipitation
enhanced following El Nifio

— Model captures much of the
observed empirical signal

Cash, Rodo and Kinter,
J. Climate 2008
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Matlab, Bangladesh, ICDDR, B
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Inference method: lonides et al. (PNAS 2006); King et al. Nature 2008

Likelihood maximization by iterated filtering (based on sequential Monte Carlo methods --
- particle filters)

can accommodate: « flexible model formulations ; continuous time
« unobserved variables (e.g. susceptibles)
« stochasticity , trends
* measurement error (under-reporting)

-~ particle cloud

%

See Laneri et al (PloS Comp. Biol.)
for inclusion of covariates

and

pseudo-code

correction

resampling

in a malaria example

prediction

%pa"}

From Z. Chen 2009

Inference method:

Log-likelihood
-3500

Lq

MIF iterations

Log-likelihood

Likelihood maximization by iterated filtering (based on sequential Monte Carlo methods --
- particle filter ; lonides and King PNAS 2006)
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ENSO and ‘self-limiting’ effect

without ENSO with ENSO

@, exponent «, exponent

= The model that includes ENSO in the force of infection better fits the data

= Also a ‘self-limiting” effect: without it, the epidemics are too explosive and lead

to too much extinction of the disease = a feedback mechanism curtailing this
explosiveness:

a rapid ‘depletion’ of susceptibles? (short immunity); ‘behavioral immunity’?;
phages?

Shrestha et al. , in prep.
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TABLE 1. Contingency Table of epidemic forecasts for 37 years (1973-2009). The epidemics
are defined as fall months with more than 150 reported cases.

Observed
Yes | No | Total
Yes | 11 | 6 17
Predicted | No 4 |16 20
Total | 15 | 22 37

; o~ - EL NINO, 1973-2009 LA NINA, 1973-2009 Lo

2 1 \: Observed Observed \_//__ s

E Yes | No [ Total Yes | No | Total

< YA Yes | 6 | 3 ] Yes | 1 | D 1 AN

= B Predicted [ No 2 1 3 Predicted [ No 0 9 9 -
Total | 8 1 12 Total | 1 9 10 2010
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Highly localized sensitivity to climate forcing drives
endemic cholera in a megacity

Robert C. Reiner, Jr.,", Aaron A. King™®, Michael Emch®, Mohammad Yunus®, A. §. G. Faruque®,
and Mercedes Pascual®

®University of Michigan, Ann Arbor, MI; ®Fogarty International Center, National Institutes of Health, Bethesda, MD 20892; “University of North Caroli
Chapel Hill, NC; and “International Centre for Diarrheal Disease Research, Dhaka 1000, Bangladesh

Image courtesy of hittpy

Motivation

= Spatial effects have not been considered before in the response
of cholera to climate variability. We may expect global climate

drivers such as ENSO to operate at regional scales.

= We still have a poor understanding of proximal mechanisms
that mediate the effect of global climate drivers in urban
environments

= Statistical models in the literature cannot be used effectively for
prediction because of their short lead times (ranging from Oto 1
months )
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Data Description

e Dhaka, the capital of Bangladesh,
contains more than 14 million people
(almost tripled in last 25 years, pro-
jected to double in next 25).

e The data we analyze is the number of
cases of cholera of the O1 El Tor bio-
type over 14 years (1995-2008), broken
down by thana (i.e. administrative re-
gion).
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Probabilistic model ( discrete state Markov chain model): probabilities a function
of group , season, neighbors’ states, and climate covariates.

Model Description
Markov Chain Model
¢ We start with a simple Markov Chain
0 1 2 model to describe the data.
0/p(0,0) p(0,1) p(0,2)
1p(1,0) p(1,1) p(1,2) ‘ ,
2 p(2, 0) p(2, 1) p(2, 2) ¢ This model assumes the only differ-

ence between any two observations is
what the value of the thanas were the
month before.

13
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Model Description

Multiple Markov Chain Model
e We add complexity by allow-
ing the transition matrices to
be different depending on the
Older Newer area of the city where the thana

0 1 2 0 1 2 is located.
0/ p(0,0) | p(0,1) | p(0,2) 0/ p(0,0)|p(0,1) ] p(0,2)

1[p(1,0) [ p(1,1) [ p(1,2) 11p(1,0) [p(L,1) [ p(L,2)
2[p(2,0)[p(2,1) [P(2,2) 2[p(2,0)[p(2,1)[p(2,2)
¢ There are several ways to iden-
tify which thana should be in
which area, but eyeballing the
timeseries worked well for this
problem.
Model Description
Older Newer
o 1 2 o 1 2
T 0 Poo | Pox | Poa 0| Poo | Pos | Pos Multi-Dimensional Markov Chain Model
% 1|pio| Py | P12 1] pio| Py | P12
2| Pao | Pa1| Pas 2| Pao|Par|Pas e To account for local spatial effects,
we expand the model to allow for a
Older Newer different transition matrix depending
0] 1 ]2 0] 1]z

on the maximum state of the nearest

<)

-
I 0|poo [ poa | Poa Poo | Poa | Po2
P10 | P11 | P12 1] pio| Py | P12 l'lElghb()l‘S of that thana.
2| Pap | P2 | Paa P2o | P21 | P2

NN
-

(X}

Older Newer
o 0| 1] 2 0] 1] 2 e All thanas must now be simultane-
z 2 Z“*“ i“" 2“ cl' ﬁ“ﬂ :”-l i“ ously tracked, hence we now have a
Z 1,0 [ Pri | P12 1,0 | Pra | P12 . . .
2| pao | Pas | Paa 2 2o | Pas | Pz multi-dimensional model (21 dimen-

sions, one for each thana).
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Model Description
Spring Summer

Older Newer Older Newer
o 0 1 2 0 1 2 - 0 1 2 0 1 2
2 01 Poo | Pos | Poa 0] Poo | Poa | Poa 2 0| Poo | Pot | Poa 0] Poo | Poa | Poa
1|{po|pa|pa 1|{po|p1a|pa Z 1| po|p1a|ma 1{pio|p1a | pa
2| P20 | P21 | P22 2| P2o | P21 | P22 2] P20 | P21 | P22 2| P20 | P21 | P22

Older Newer Older Newer
- 0 1 2 0 1 2 - 0 1 2 0 1 2
2 0| Poo| Poi | Po2 0| Poo | Pot | Poz 3 0] Poo | Pos | Po2 0| Poo | Po1 | Poz
Z 1| po|pa|P2 1P| P1a| P12 Z 1| po|pa| P 1[po|P1a | P12
2| P20 | P21 | P22 2| P20 | P21 | P22 2| P20 | P21 | Pa2 2| P20 | P21 | P22

Older Newer Older Newer
. 0 1 2 0 1 2 - 0 1 2 0 1 2
2 0| Poo|Poi|Poa 0| Poo | Poa | Poa 2 0| Poo | Poi|Poa 0| Poo | Poa | Poa
Z 1| po|pa|Pa 1[Puo| P1a | P13 Z 1| po| P | P13 1[Po | P1a | P12
2| Pao | P2 Paa 2| Pao | P2 | Paa 2] P20 | P2a | P22 2] P20 [ Poa [ Paa

Multi-Dimensional Inhomogeneous Markov Chain (MDIMC) Model

e Allowing the transitions to vary by season, our model is no longer temporally homoge-
neous, but allows for the known two-peak-per-year dynamics to emerge. Unfortunately
there are way too many variables in this model. Only Spring and Summer are shown here
in a four season model. One could imagine a different set of matrices for each month.

PENSO(i1 J) — P(I, J)*[1+ f(SSTanom)]

f(SSTapom)

P(XM = Xp i1 =1 i Xii—1=v,ENSO =5
N (k)

=P; i k) % Neigh(i, j,v, D(k)) x Seas(i, 7,t, D(k)) x Nino(j, s, D(k))

15
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Pidke :f(ﬁr.zk.: xNino(f - 1_'[)(@))_

where the El Nino function has the sigmoidal form

(Iu ENSO(r - Ill))
tan v

Nino(t,d) = 1 + Ay

P _ (] P ) Piokt
ikt = | =Pligge )] ————
Pioks T Pitky

]7"”’\ . (]_‘P! 2k ) Pilks
JdagE T N o -
B ' Pi0ks T Piks

Spatial heterogeneity: the dynamics between groups are significantly
different (p-value=0.0001)

Local effect: the state of neighboring districts matters (p-value =0.01) but
a weaker effect

Interaction between spatial structure and climate forcing: the parameters
governing the effect of ENSO are significantly different between the groups
(p-value= 0.03); and similarly for flooding (p-value= 0.015)

> ENSO is a significant covariate (p=value < 0.0001); lag
of 11 months for the spring months and 9 months for
the fall ones.

> Flooding is also significant (p-value < 0.0001)
> Flooding still significant when tested in the presence

of ENSO (p-value = 0.008) and vice-versa (p-value <
0.0001)

Reiner et al. (PNAS 2012)
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Summary so far:

Climate change
El Nifio / floods

frequency and
/ intensity?
» Cholera outbreaks in Dhaka (and Bangladesh) are strongly driven by
climate variability (ENSO and flooding). The effect of El Nifio is partly

through precipitation and associated flooding. Urban population

growth:
access to clean

» Population susceptibility shows pronounced geographic variation water and sanitation
within Dhaka, with a part of the city acting as a susceptible core,

in a way that highlights the key role of sanitary and associated

socio-economic conditions.

§.STEVEN FOHNSON §

bestsclling authior of EVERTTHING 8AD

In 1864, Dr John Snow became
the first to link cholera to drinking
water, when he plotted the
proximity of victims’ homes to
drinking wells in London THE

IGHOST MAP}

The Story of London’s
Most Terrifying Epidemic—
and How It Changed Science, §

Cities, and the Modern World

John Snow ‘revisited’ but in the
context of climate forcing and a

megacity of the developing world.

18
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Matlab ASOND EI Tor Cholera and DJF SST
Rank Correlation 1983-2009

Matlab

Different
diarrheal
diseases:
El Tor Cholera
Similar
responses to
forcing

but
different
epidemiology? ‘ 120 150
~mm— | [ !

05 -05 -04 03 02

Matlab ASOND Flex. Shigellosis and DJF SST
Rank Correlation 1983-2009

Shigellosis
(S. flexneri)

SST data: HadSST1: , i
Rayner et al. 2003 - _ § (Cash etal., in prep.)

Search algorithms to identify ‘groups ‘ of locations with similar dynamics ...

Bayesian approach to classify
districts based on a dynamical
model and time series data:

There are &5 =

Baskerville et al. 2011. Spatial Guilds in the
Serengeti Food Web Revealed by a Bayesian
Group Model. PloS Computational Biology 7(12)
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With Francisco Javier Perez , E. zzo, A. Rinaldi (EPFL)

A Compact and Practical Handy-Book.

EPIDEMIC CHOLERA:

IT8 MISSION AND MYSTERY, HAUNTS AND
HAVOCS, PATHOLOGY AND TREATMENT.

- -

e T T

Wi Recig.on e Gusion of opllo, e Tt of Pou, s0d
Hurrled and Delayed Intermenta,

BY A FORMER SURGEON IN THR SERVICE OF THE
HONORABLE EAST INDIA COMPANY,

1866

www.wildlandfire.com
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idemics and Critical Phenomena (1

letters to nature
Nature 381, 600 - 602 (13 June 1996): doi-10.1038/3816000

Power laws governing epidemics in isolated
populations

C. J. RHODES & R. M. ANDERSON

Centre for the Epidemiology of Infectious Disease, Department of Zoology, University of Oxford, South Parks Road, Ox
0OX1 3PS, UK

TEMPORAL changes in the incidence of measles virus infection within large
urban communities in the developed world have been the focus of much
discussion in the context of the identification and analysis of nonlinear and
chaotic patterns in biological time series! 11, In contrast, the measles records
for small isolated island populations are highly irregular, because of frequent
. . 2 sy 15 .
fade-outs of infection!*~14, and traditional mmlysmh does not yvield useful
insight. Here we use measurements of the distribution of epidemic sizes and
duration to show that regularities in the dynamics of such systems do become

Epidemic Dynamics and Critical Pheno

Measles cases ‘in a small

fairly isolated population
in East Anglia, UK’ 1944-

1968

M. Keeling 2005

Grenfell et al. Nature 2001

1/12/2015
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Epidemic Dynamics and Critical Phenomena (3)

Ouibreak size
Vaccine uptake

1996 1997 1998 ) 2001

Frequency

oL

1995 1906 1897 1998 1999 2000 2001 2002
Year CQutbreak size

8 AUGUST 2002 VOL 301 SCIENCE

Epidemics and Critical Phenomena (4): Forest
Fire Model (Drossel Schwabl) SOC

Figure 16. Lightning strikes at random positions in the forest fire model, starting fires that wipe out the entire cluster to which
a struck tree belongs.

From M. Newman
Contemporary Physics 2005
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Cholera Deaths

Cholera Deaths

INDIAN EMPIRE & CEYLON
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Vincent Smith’s — India in the British Period, Oxford,
Clarendon Press, 1920

Historical cholera: epidemic dynamic

Nowogong (Assam)
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Fire: Western Taiga Shield
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holera in Africa: WHO weekly reports
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Forest-Fire Model: Richard Zinck et al. (Am. Nat. 2011)

‘lighting’ or
immigration of
infection

Regrowth: birth or loss
of immunity

rate p

f<< p << o=A/p

Birth-death
process:
transmission or
recovery
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Predicted size distributions for different ‘ROs’ > 1
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Conclusions and Implications

Heavy-tailed distributions in epidemic size distributions are a more general
pattern than previously appreciated

A simple, generic, forest-fire model can explain the observed patterns
We can classify epidemic dynamics into subcritical and supercritical behavior;
this indicates which mechanism controls epidemic dynamics:

a poor propagation or the local depletion of susceptibles

The model can also be used to estimate a lower bound for the local RO

Conclusions and Implications

Cholera epidemics appear primarily limited by the local depletion of
susceptibles

Explicit ‘space’” matters (the dynamics are distributed in space orin a
network)

27
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