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Etiology of interepidemic periods of
mosquito-borne disease

Simon . Hay*', Monica F. Myers®, Donald S. BurkeS, David W. Vaughn?, Timothy Endy!, Nisalak Anandal,
G. Dennis Shanks!**, Robert W. Snow**¥, and David J. Rogers*

PNAS 2000

g

we discuss the potential causes of the interepidemic perieds in
dengue hemorrhagic fever in Bangkok and of Plasmodium falci-
parum malaria in a highland area of western Kenya. The alternative
causes are distinguished by a retrospective analysis of two unique
and contemporaneous 33-year time series of epidemiological and
associated meteorological data recorded at these two sites. We
conclude that intrinsic population dynamics offer the most parsi-
monious explanation for the observed interepidemic periods of
disease in these locations.
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The interaction of seasonal forcing and immunity and the
resonance dynamics of malaria
Dylan Z. Childs and Michael Boots

J. R. Soc. Interface 2010 7, doi: 10.1098/rsif.2009.0178 first published online 1 July 2009

Climate variable

epidemiological

system

Epidemiological model + statistical inference methods

Intrinsic dynamics

Extrinsic drivers

Koelle and Pascual (Am. Nat. 2004)
Koelle, Rodo, Pascual et al. (Nature 2005)
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» The effect of climate forcing will be most apparent where climate
factors act as strong limiting factors (at the edge of the spatial
distribution of the disease, in highland and semi-arid regions). But
here, by definition, transmission is low, and therefore, population
immunity, is most unlikely to play a strong dynamical role.

We will see that epidemiological processes matter but primarily at
seasonal scales.

The nonlinear feedbacks that matter most may be primarily the
result of ‘reactive control’.

At higher transmission, super-infection/complex processes
underlying immunity appear to modify the response to forcing in
fundamental ways

Long-term trends are unavoidable. This does not mean that fitted
models are no longer relevant to prediction.
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Epidemic malaria and rainfall variability in

Pakistan
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Laneri et al. PloS Computational Biology 2!




1/20/2015

reported malaria cases
rainfall (mm)

» does population immunity play a role in the
response to climate variability?

» how predictable is the size of outbreaks
based on transmission models driven by
climate?

reported malaria cases

o 100 300 0¢ 700 200

accumulated rainfall, 6 months

Force of infection:

a function of rainfall f(t)= ,:‘(—(tt))exp‘wseas + f.Rain(t) }Noise

mosquitoes

Novel statistical and computational method to mazimize likelihood (sequential Monte Carlo approach)
(lonides et al. PNAS 2006; King et al. Nature 2008).




1/20/2015

Force of

infection

iR

Disease status of

human  popula-

t1on

Latent force of infection Force of infection

=

Inference method: lonides et al. (PNAS 2006); King et al. Nature 2008

Likelihood maximization by iterated filtering (based on sequential Monte Carlo methods --
- particle filters)

can accommodate: « flexible model formulations ; continuous time
« unobserved variables (e.g. susceptibles)
« stochasticity , trends

» measurement error (under-reporting)

particle cloud
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. . \
See Laneri et al (PloS Comp. Biol.) / \
for inclusion of covariates Emy.,\xnlr\ g N comection
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From Z. Chen 2009
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Inference method:

Log-likelihood

Lq

MIF iterations

Log-likelihood

Likelihood maximization by iterated filtering (based on sequential Monte Carlo methods --
- particle filter ; lonides and King PNAS 2006)

= Clinical immunity is important at seasonal scales
= This model outperforms a ‘standard’ non-mechanistic, linear autoregressive, model that

includes rainfall
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Laneri et al. PloS Computational Biology 2010
Bhadra et al. J. American Statistical Association 2011
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Table S1. Table of log-likelihood (/) and AIC of the fitted models for Kutch and Barmer.

model p log-likelihood (/) AlC
Kutch Jarmer | Kutch | Barmer
VSEIRS model without rainfall 19 | -1275.0 | -984.1 2588.0 | 2006.2
VSEIRS model with rainfall 20 | -1265.0 | -978.6 | 2570.0 1997.2

V. S2E1? model without rainfall 24 | -1261.1 | -975.3 1998.6
VS2E1? model with rainfall 25 | -1251.0 | -970.5 1991.0
SARIMA (1.0,1) x (1,0, 1);2 without rainfall | 6 | -1329.0 -983.7 1979.4
SARIMA (1.0.1) % (1,0,1);2 with rainfall 7 |-1322.6 | -977.0 1968.0

In the table “p” denotes the munber of parameters for each model. AIC is computed by the formula
AIC = —2(+ 2p. The SARIMA model was fitted to the data on the log scale (see the supplement of [2
for a detailed description of this procedure).

Prediction skill = 0.89 for Kutch (and 0.92 for Barmer)
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Prediction performance: 4 months |

2008 "
skill = 1 — 1087 (Vi — )P wi

2006
Y istesr (Vi — 1)2Wi

@ w; inverse of the prediction variance for the year /

@ j; and y; are the predicted and observed cases, accumulated
over September to December for the year i

@ ;. 20 year mean of the observed cases accumulated between
September and December

skill — 1 Good Prediction
skill — 0 Bad Prediction

Prediction performance:

Barmer

skill; £ skill;  skills

1. VSEIRS with rainfall 0.798 —161.3 0.928 0.887
2. VSEIRS without rainfall —0.921 —176.2 0.747 0.596
3. Linear model 0619 —176.7 —0.004 0.405

4. Mixture negative 0.409 —167.3 0.826 0.613
binomial model

Subscripts 1 and 3 denote the model whose variances were used for the
calculation of the skill measure. ¢ is the prediction log likelihood as defined in
Text S1.

doi:10.1371/journal pcbi.1000898.t002
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Figure 5. Density plot of correlation between the accumulated rainfall from May to August and the
accumulated cases from September to December in 10,000 simulations from a set of 2,000 solutions for the
model with rainfall (black) and without rainfall (gray).
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Laneri K, Bhadra A, lonides EL, Bouma M, Dhiman RC, et al. (2010) Forcing Versus Feedback: Epidemic Malaria and Monsoon Rains in Northwest
India. PLoS Comput Biol 6(9): €1000898. doi:10.1371/journal.pchi.1000898
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’Prediction’ in the presence of non-stationarity
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http://127.0.0.1:8081/ploscompbiol/article?id=info:doi/10.1371/journal.pcbi.1000898

In this other district, we can see that the recent decrease i
cases can completely be explained by the lack of rains
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Malaria and control dynamics without environmental variability. The top panel
shows the time series of new infected individuals

Andres Baeza , Menno J. Bouma , Ramesh Dhiman , Mercedes Pascual. Acta Tropica 2013

Malaria control under unstable dynamics: Reactive vs. climate-based strategies
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Association of malaria dynamics with rainfall breaks down

along a land-use gradient

Irrigation

increases mosquito habitat

-
R

Improves socio-economic
conditions leading eventually to
elimination
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22 Talukas (sub-districts) from Gujarat State

Confirmed monthly cases of Plasmodium falciparum and P. vivax
[1997-2011]
IRS (Indoor Residual Spray) application (population covered) [2000-2010]
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Baeza et al. PNAS 2013
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Control (% population covered)
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Transitional phase can be long-lasting
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._vivax malaria : relapses, rainfall and treatment

MOSQUITO HUMAN
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Baird J K, Hoffman S L Clin Infect Dis. 2004;39:1336+1345
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“sustainable”
low risk

Inference on importance and duration of relapses from the population dynamics of

the disease?

Potential implications for treatment that focuses on this stage of the disease?
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Coupled mosquito-human transmission model
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