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Polyakov Path Integral
I Using Polyakov formalism the String Theory partition function is:

Z =
∫
DgDX exp

(
−S[X; g]− µ0

∫
d2z
√
g

)
(1)

S[X; g] = 1
4π

∫
d2z gab∂aX

I∂bX
I (2)

XI are bosonic fields and I = 1, .., d

I Dg, DX are invariant under world-sheet diffeomorphism
transformations but not under Weyl tranformations such as:

gab → eσgab (3)

Under Weyl transformation the DgX transforms as

DeσgX = e
d

48πSL(σ)DgX (4)
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Liouville Action
I SL is the Liouville Action.

SL(σ) =
∫
d2z
√
g

(
1
2g

ab∂aσ∂bσ +Rσ + µeσ
)

(5)

I The metric’s integration measure Dg is also not- invariant under
Weyl transformations.

I To perform the integration with respect to the metric, we
decompose the fluctuation of the metric δgab into the
diffeomorphism ua,Weyl transformation σ and the moduli Y .

I Dividing the path integral measure by the gauge (diffeomorphism)
volume, we are left with the integration over the Weyl
transformation and the moduli.

I The Jacobian for this change of variables can be calculated via the
Fadeev-Popov method, introducing the ghost fields b, b, c, c.
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Critical String Case
I ∫

DbbDcc exp
(
−
∫
d2z
√
g
(
b∇c+ b∇c

))
(6)

and the transformation reads,

Deσg (bc) = e− 26
48πSL(σ)Dg (bc) (7)

I One can notice that in the case d = 26 the anomaly from DgX
cancels the one from Dg.

I The theory is Weyl invariant and we have the case of Bosonic
Critical String Theory.

I But we are interested in 2D String Theory (Non-Critical string
theory).

I In this case, by choosing the conformal gauge gab → eφĝab, the
string theory action takes the form:

Z =
∫
dYDeφĝφDeφĝbcDeφĝX exp (−S[X; ĝ]− S[bc; ĝ]) (8)
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Renormalised Liouville Action

I The Liouville mode measure is diffeomorphism invariant by
definition, thus it satisfies

‖δφ‖2
g =

∫
d2z (δφ)2 =

∫
d2z

√
ĝeφ (δφ)2 (9)

I One can notice that the measure is not Gaussian.

I We want to bring it into Gaussian form, hard to do it explicitly.
I We argue using locality, diffeomorphism invariance and conformal

invariance, that the form of the Renormalised Liouville Action
should be,

SRL = 1
4π

∫
d2z
√
g
(
gab∂aφ∂bφ+QRφ+ 4πµe2bφ) . (10)
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What is Q,b

I The theory should be invariant under ˆgab → eσ ˆgab and φ→ φ− σ
2b .

I Then the ctot = cφ + cX + cgh = 0⇒ cφ = 26− d.
I Using coulomb gas representation one can compute: cφ = 1 + 6Q2

where Q =
√

25−d
6 .

I For the theory to be conformal invariant e2bφ should be (1, 1) tensor
then ∆ = b(Q− b) = 1⇒ Q = b+ b−1.

I For the metric to be real cX ≤ 1, this can be seen by finding the
minimum dQ

db = 0⇒ b2 = 1⇒ Qmin = 2, so from expression
Q =

√
25−d

6 one can see that d ≤ 1, for b to be real, but d = cX .
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One- loop calculation of the partition function
I We calculate the 1-loop partition function of the c=1 Liouville theory

with a compactified target space with radius R.
I We can do the integration because we first integrate over the zero mode

of φ. Then the non-zero mode path integral becomes simply free. The
only contribution from the zero-mode is given by the Liouville volume, Vφ.

Zcircle =
∫
d[Y ]DXDφDbDc e−S0 (11)

Z (R) = −Vφ
1
2

∫
d2τ

(
|η (q)|4

2τ2

)(
2π
√

2τ2 |η (q)|2
)−1

Zbos (R, τ) (12)

I η (q) is the Dedekind eta function.
I τ2 is the imaginary part of the torus moduli.
I Vφ = − 1

2b logµ is the volume of the Liouville direction.
I q = e2πτ

I Zbos = R√
τ2|η(q)|2

∑∞
m,n=−∞

(
−πR

2|n−mτ |2
τ2

)
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One- loop calculation of the partition function

I The |η (q)|4 comes form the integration of the ghost
oscillators.

I The |η (q)|−2 comes from the integration of the Liouville
mode.

I The
(
2π
√

2τ2
)−1 is from the integration of the Liouville

momentum.

I After performing the integration of the torus moduli we find:

Zcircle = − 1
24

(
R+ 1

R

)
logµ (13)

I This result is in agreement with the one coming from the
matrix-model approach.
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The S1/Z2 orbifold
I If X is a smooth manifold with a discrete isometry group G.

We can form the quotient space X/G.
I If the manifold has not fixed points under the action of G

then X/G is a smooth manifold, otherwise it has conical
singularities at those points.

I Simplest example of an orbifold is the S1/Z2.
I That is a circle x ∼ x+ 2π, on which we made the following

identification x ∼ −x.
I This has transformed the circle to an interval, from [0, π],

with 0, π the two fixed points.
I Physical States on an orbifold:

I Untwisted are those that exist on X and are invariant under
the group G, Ψ = gΨ, g ∈ G.

I Twisted states are new closed-string states that appear after
orbifolding Xµ (σ + 2π) = −Xµ (σ)
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Liouville Theory on S1/Z2 orbifold
I The modular partition function has the following form:

Zorb (R, τ) = 1
2Zcir (R, τ) +

{∣∣∣∣ η (τ)
θ00 (0, τ)

∣∣∣∣+
∣∣∣∣ η (τ)
θ01 (0, τ)

∣∣∣∣+
∣∣∣∣ η (τ)
θ10 (0, τ)

∣∣∣∣}
(14)

I The full torus partition function comes from the coupling of the above
with the Liouville and the ghosts and integrating over the torus moduli τ .

Z (R) = −1
2

∫
d2 τ

(
|η (τ)|4

2τ2

)(
2π
√

2τ2 |η (τ)|2
)−1

Zorb (R, τ) (15)

I Performing the Integration and using the fact that
Zorb (R = 1, τ) = Zcir (R = 2, τ), one gets:

Zorb = − 1
48

(
R+ 1

R

)
logµ− 1

16 logµ (16)
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Outlook
I We are going to do the previous steps for cases of 0B and 0A

string theory.
I Perform the same computation using random matrices

approach and see if they match.
I Analytic continuation of the Euclidean time to Lorentzian

signature and interpretation of the results extracting
information for toy model cosmology???

Y. Nakayama, "Liouville Field Theory, A decade after the revolution", hep-th/0402009
N. Seiberg, "Notes on Quantum Liouville Theory and Quantum Gravity"
A. Zamolodchikov, A. Zamolodchikov, "Lectures on Liouville Theory and Matrix
Models"

Thank you!
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