
Chapter 2

Introduction To Simple Epidemic
Models

The process of modelling in epidemiology has, at its heart, the same underlying philosophy
and goals as ecological modelling. Both endeavours share the ultimate aim of attempting
to understand the prevalence and distribution of a species, together with the factors that
determine incidence, spread and persistence (Anderson & May 1979; May & Anderson
1979; Earn et al. 1998, Shea 1998, Bascompte & Rodriguez-Trelles 1998). While in ecology
the precise abundance of a species is often of great interest, establishing or predicting the
exact number of, for example, virus particles in a population (or even within an individual)
is both daunting and infeasible.1 Instead, modellers concentrate on the simpler task of
categorising individuals in the “host” population according to their infection status. As
such, these epidemiological models can be compared to the metapopulation models used in
ecology (Levins 1969; Hanski & Gilpin 1997), where each individual host is considered as a
patch of resource for the pathogen, with transmission and recovery analogous to dispersal
and extinction (Nee 1994; Rohani et al. 2002).

There is a long and distinguished history of mathematical modelling in epidemiology, go-
ing back to the 18th century (Bernoulli 1760). However, it was not until the early 1900s
that the increasingly popular dynamical systems approaches were applied to epidemiology.
Since then, theoretical epidemiology has witnessed numerous significant conceptual and
technical developments. While these historical advances are both interesting and impor-
tant, we will side-step a detailed account of these progressions and instead refer interested
readers to the lucid texts by Bailey (1975), Anderson & May (1991), Daley & Gani (1999)
and Hethcote (2000).

1A clear exception to this is the study of macro-parasitic infections (such helminthic worms) where the
worm “burden” is of great interest since it can substantially affect both host and parasite demography.
In this book, we do not deal with such systems and refer interested readers to Anderson & May’s (1991)
thorough treatment of the subject.
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In this chapter, we start with the simplest epidemiological models and consider both in-
fections that are strongly immunising as well as those which do not give rise to immunity.
In either case, the underlying philosophy is to assume individuals are either susceptible to
infection, currently infectious or recovered (previously infected and consequently immune).
While the progress between these classes could be presented as a verbal argument, to make
quantitative predictions we must translate these verb rules to mathematical models. This
chapter presents the mathematical equations describing these models, together with the
kinds of model analyses that have proved useful to epidemiologists. These approaches
encompass both deterministic and probabilistic frameworks. The preliminary models will,
of necessity, be somewhat primitive and will ignore a number of well-known and important
heterogeneities, such as differential susceptibility to infection, contact networks, variation
in the immunological response and transmissibility. Many of these complexities are ad-
dressed in the subsequent chapters.

1. FORMULATING THE DETERMINISTIC SIR MODEL.
In order to develop a model, we first need to discuss terminology. Infectious diseases are
typically categorised as either acute or chronic. The term acute refers to “fast” infections,
where relatively rapid immune response removes pathogens after a short period of time
(days or weeks). Examples of acute infections include influenza, distemper, rabies, chick-
enpox, and rubella. Chronic infections, on the other hand, last for much longer periods
(months or years) and examples include herpes and chlamydia. We start the development
of models by focusing on acute infections, assuming the pathogen causes illness for a pe-
riod of time followed by (typically life-long) immunity. This scenario is mathematically
best described by the so-called S-I-R models (Dietz 1967). This formalism which was
initially studied in depth by Kermack & McKendrick (1927), it categorises hosts within a
population as Susceptible (if previously unexposed to the disease), Infected (if currently
colonised by the pathogen) and Recovered (if they had successfully cleared the infection).

Now that we know how many categories there are and how these categories are defined,
the question becomes how individuals move from one to the other. In the simplest case
(ignoring population demography – births, deaths and migration), we only have the tran-
sitions S → I and I → R. The second of these is easier, so we deal with it first. Those
infected can only move to the recovered class once they have fought off the infection. For
acute infections, it is generally observed that the amount of time spent in the infectious
class (the “infectious period”) is distributed around some mean value, which can be often
estimated accurately from clinical data. From a modelling perspective, this translates into
the probability of an individual moving from I to R being dependent on how long they
have been in the I class. However, modellers often make the simplifying assumption that
the recovery rate γ (which is the inverse of the infectious period) is constant; this leads
to far more straightforward equations and exponentially distributed infectious periods.
In Chapter 3(section 3) we deal with the dynamical consequences of alternative, more
realistic formulations of the infectious period.

The progression from S to I clearly involves disease transmission, which is determined by
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three distinct factors: the infection prevalence, the underlying population contact structure
and probability of transmission given contact. For a directly transmitted pathogen, there
has to be contact between susceptible and infected individuals and the probability of this
happening is determined by the respective levels of S and I, as well as the inherent contact
structure of the host population. Finally, we need to take into account the likelihood that
a contact between a susceptible and an infectious person results in transmission.

These conceptual descriptions of the model can be represented by a flow diagram. The
flow diagram for the SIR model shows the movement between the S and I classes and the
I and R classes as black arrows. The fact that the level of infection influences the rate at
which a susceptible individual moves into the infected class is shown by the dotted grey
arrow. Throughout this book such flow diagrams will be used to illustrate the essential
epidemiological characterists. In general, demography will be ignored in these diagrams
to reduce the number of arrows and hence improve their clarity.

"• Flow diagrams provide a useful graphical method of illustrating the main
epidemiological assumptions underlying a model.

The above paragraphs makes the derivation of the transmission term seem relatively
straightforward. Unfortunately, the precise structure of the transmission term is plagued
by controversy and conflicting nomenclature. To explain some of these issues, we start
by defining the force of infection, λ, which is defined as the per capita rate at which
susceptible individuals contract the infection. Thus, the rate at which new infecteds are
produced is λX, where X is the number of individuals in class S. This force of infection is
intuitively proportional to the number of infectious individuals. For directly transmitted
pathogens, where transmission requires contact between infecteds and susceptibles, two
plausible possibilities exist depending on how we expect the contact structure to change
with population size: λ = βY/N and λ = βY (where Y is the number of infectious indi-
viduals, N is the total population size and β is a composite measure of contact rates and
transmission probability). The first of these formulations will be referred to as frequency
dependent (or mass action) transmission and the second as density dependent (or pseudo
mass action) transmission. (We note however that Hamer (1906) refers to λ = βI as mass-
action; this duality of nomenclature causes much confusion). A mechanistic derivation of
the transmission term is provided in Maths Box 2.1.

It is important to distinguish between these two basic assumptions in terms of the un-
derlying structure of contacts within the population. Frequency dependent transmission
reflects the situation where the number of contacts is independent of the population size.
At least as far as directly transmitted diseases are concerned, this agrees with our natural
intuition about human populations. We would not expect someone living in, for example,
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London (population 7 million) or New York (population 8 million) to transmit an infec-
tious disease over 50 times more than someone living in Cambridge, UK (population 130
thousand) or Cambridge, MA (population 100 thousand). The number of close contacts
that are likely to result in disease transmission will be determined by social constraints,
resulting in similar patterns of transmission in any large town or city. Indeed, estimates
of measles transmission rates in England & Wales demonstrate no relationship with pop-
ulation size (Bjornstad et al. 2002). In contrast, density dependent transmission assumes
that as the population size (or more accurately, as the density of individuals) increases,
so does the contact rate. The rationale is that if more individuals are crowded into a
given area (and individuals effectively move at random), then the contact rate will be
greatly increased. As a rule-of-thumb, frequency dependent (mass action) transmission is
considered appropriate for vector-borne pathogens and those with heterogeneous contact
structure. Density dependent (psuedo mass action) transmission, however, is generally
considered to be more applicable to plant and animal diseases, although care must be
taken in the distinction between number and density of organisms (For further discussion,
we refer interested readers to McCallum et al. 2001; Begon et al. 2002).

The distinction between these two transmission mechanisms becomes pronounced when
host population size varies, otherwise the 1/N term can be absorbed into the parameteri-
sation of β in the mass-action term. As a simplification to our notation it is convenient to
let S(= X/N) and I(= Y/N) to be the proportion of the population that are susceptible
or infectious respectively. In this new notation our mass-action (frequency dependent) as-
sumption becomes βSI which informs about the rate at which new infectious individuals
(as a proportion of the total population size) are infected.

"• In some instances, such as when we need to employ integer-valued stochastic
models (Chapter 6), variables need to reflect numbers rather than propor-
tions. To distinguish between these different approaches, in this book we will
consistently use X, Y and Z to represent the numbers in each class while S, I
and R to represent proportions.

"• The transmission term is generally described by frequency dependence βXY/N
(or βSI), or by density dependence βXY .

"• The differences between frequency and density dependent transmission be-
come important if the population size changes or we are trying to parameterise
disease models across a range of population sizes.

1.1 THE SIR MODEL WITHOUT DEMOGRAPHY

To introduce the model equations, it is easiest to consider a “closed population” without
demographics (no births, deaths or migration). The scenario we have in mind is a large
naive population into which a low level of infectious agent is introduced and where the re-
sulting epidemic occurs sufficiently quickly that demographic processes are not influential.
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We also assume homogeneous mixing, whereby intricacies affecting the pattern of contacts
are discarded, yielding βSI as the transmission term. Given the premise that underlying
epidemiological probabilities are constant, we get the following SIR equations:

dS

dt
= −βSI, (2.1)

dI

dt
= βSI − γI, (2.2)

dR

dt
= γI. (2.3)

The parameter γ is called the removal or recovery rate, though often we are more inter-
ested in its reciprocal (1/γ), which determines the average infectious period. For most
diseases, the infectious period can be estimated relatively precisely from epidemiological
data. Note that epidemiologists typically do not write the equation for the R class because
we know that S + I + R = 1, hence knowing S and I will allow us to calculate R. These
equations have the initial conditions S(0) > 0, I(0) > 0 and R(0) = 0. An example of
the epidemic progression generated from these equations is presented in figure (2.1); the
conversion of susceptible to infectious to recovered individuals is clear.
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FIGURE 2.1 The time-evolution of model variables, with an initially entirely sus-
ceptible population and a single infectious individual. The figure is plotted assuming
β = 520 per year (or 1.428 per day) and 1/γ = 7 days, giving R0 = 10. (See following
pages for a definition of the crucial parameter R0)

Despite its extreme simplicity, this model (equations 2.1 to 2.3) cannot be solved explicitly.
That is, we cannot obtain an exact analytical expression for the dynamics of S and I
though time, instead the model has to be solved numerically. Nevertheless, the model has
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Maths Box 2.1: The Transmission Term
Here, we derive from first principles the frequency dependent (mass action)
transmission term (also called proportionate mixing; Anderson & May 1992), which
is commonly used in epidemic models. It assumes homogenous mixing in the
population, which means everyone interacts with equal probability with everyone
else, discarding possible heterogeneities arising from age, space or behavioural
aspects (see chapters 3 and 7).

Consider a susceptible individual with an average of κ contacts per unit time. Of
these, a fraction I = Y/N are contacts with infected individuals (where Y is the
number of infectives and N is the total population size). Thus, during a small time
interval (from t to t + δt), the number of contacts with infecteds is (κY/N) × (δt).
If we define c as the probability of successful disease transmission following a
contact, then 1 − c is the probability that transmission does not take place. Then,
by independence of contacts, the probability (denoted 1 − δq) that a susceptible
individual escapes infection following (κY/N × δt) contacts is

1 − δq = (1 − c)(κY/N)δt.

Hence, the probability that the individual is infected following any of these contacts
is simply δq. We now define β = −κ log(1 − c) and substitute into the expression
for 1− δq, which allows us to rewrite the probability of transmission in a small time
interval δt as

δq = 1 − e−βY δt/N .

To translate this probability into the rate at which transmission occurs, first we
expand the exponential term (recalling that ex = 1 + x + x2

2! + +x3

3! . . .), divide both
sides by δt and take the limit of δq/δt as δt → 0. This gives:

dq

dt
= βY/N.

This gives the transmission rate per susceptible individual. In fact, this quantity is
often represented by λ and is referred to as the “force of infection” – it measures
the per capita probability of acquiring the infection (Anderson & May 1991). Then,
by extention, the total rate of transmission to the entire susceptible population is
given by

dX

dt
= −λX = −βXY/N,

where X is defined as the number of susceptibles in the population. If we rescale
the variables (by substituting S = X/N and I = Y/N) so that we are dealing with
fractions (or densities), the above equation becomes

dS

dt
= −βIS.
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been invaluable for highlighting at least two very important qualitative epidemiological
principles.

1.1.1 The Threshold Phenomenon
First, let us consider the initial stages after I(0) infectives are introduced into a population
consisting of S(0) susceptibles. What factors will determine whether an epidemic will occur
or if the infection will fail to invade? To answer this, we start by rewriting equation (2.2)
in the form

dI

dt
= I(βS − γ). (2.4)

We note that if the initial fraction of susceptibles (S(0)) is less than γ/β, then dI
dt < 0

and the infection “dies out”. This is a famous result due to Kermack & McKendrick
(1927) and is referred to as the “threshold phenomenon” because initially the proportion
of susceptibles in the population must exceed this critical threshold for an infection to
invade (see also Ransom 1880, 1881; Hamer 1897). Alternatively, we can interpret this
result as requiring γ/β, the relative removal rate, to be small enough to permit the disease
to spread. The inverse of the relative removal rate is called the basic reproductive ratio
(universally represented by the symbol R0) and is one of the most important quantities in
epidemiology. It is defined as:

the average number of secondary cases arising from an average primary case in an
entirely susceptible population

and essentially measures the maximum reproductive potential for an infection (Diekman
& Heesterbeek 2000). We can use R0 to re-express the threshold phenomenon; assuming
everyone in the population is initially susceptible (S(0) = 1), an infection can only invade
if R0 > 1. This makes very good sense since any infection which, on average, cannot
successfully transmit to more than one new host is not going to spread (Lloyd-Smith et
al. 2005). Some example diseases with their estimated R0s are presented in table 2.1; it
is worth noting that due to differences in contact structure different human populations
may be associated with different values of R0. R0 depends on both the disease and the
host population. Mathematically, we can calculate R0 as the rate at which new cases are
produced by an infectious individual (when the entire population is susceptible) multiplied
by the average infectious period:

"• For an infection with an average infectious period given by 1/γ and a trans-
mission rate β, its basic reproductive ratio R0 is determined by β/γ.

"• In a closed population, an infection with a specified R0 can only invade if
there is threshold fraction of susceptibles greater than 1/R0.



Keeling & Rohani, Chapter 2 8

Table 2.1: Some estimated Basic Reproductive Ratios.
Disease Host Estimated R0 Reference
FIV domestic cats 1.1-1.5 Smith (2001)
Rabies dogs (Kenya) 2.44 Kitala et al. (2002)
Phocine Distemper seals 2 - 3 Swinton et al. (1998)
Tuberculosis cattle 2.6 Goodchild &

Clifton-Hadley (2001)
Influenza human 3 - 4 Murray (1989)
Foot and Mouth Disease livestock farms (UK) 3.5 - 4.5 Ferguson et al. (2001b)
Smallpox human 3.5 - 6 Gani & Leach (2001)
Rubella human (UK) 6 - 7 Anderson & May (1991)
Chickenpox human (UK) 10 - 12 Anderson & May (1991)
Measles human (UK) 16 - 18 Anderson & May (1982)
Whooping Cough human (UK) 16 - 18 Anderson & May (1982)

1.1.2 Epidemic Burn Out
The above observations are informative about the initial stages, after an infectious agent
has been introduced. Another important lesson to be learned from this simple SIR model
concerns the long term (or “asymptotic”) state. Let us first divide equation (2.1) by
equation (2.3):

dS

dR
= −βS

γ
,

= −SR0. (2.5)

Upon integrating with respect to R, we obtain

S(t) = S(0)e−R(t)R0 . (2.6)

assuming R(0) = 0. So, as the epidemics develops, the number of susceptibles declines
and therefore, with a delay to take the infectious period into account, the number of re-
covereds increases. We note that S always remains above zero as e−RR0 is always positive;
in fact given that R ≤ 1, S must remain above e−R0 . Therefore, there will always be some
susceptibles in the population who escape infection. This leads to the another important
and rather counter-intuitive conclusion that emerges from this simple model:

"• The chain of transmission eventually breaks due to the decline in infectives
not due to a complete lack of susceptibles.

This approach to model analysis can also shed some light on the fraction of the population
who eventually contract an infection (Kermack and McKendrick 1927, Waltmann 1974).
As shown in the steps leading to equation (2.6), it is possible to remove the variable I from
the system by the division of equation (2.1) by equation (2.3), which (after integrating)
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gave an expression for S in terms of R. Bearing in mind that by definition S + I + R = 1,
and that the epidemic ends when I = 0, we can re-write the long term behaviour of
equation (2.6):

S(∞) = 1 − R(∞) = S(0)e−R(∞)R0

⇒ 1 − R∞ − S(0)e−R∞R0 = 0. (2.7)

where R∞ is the final proportion of recovered individuals, which is equal to the total pro-
portion of the population that gets infected.
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FIGURE 2.2 The total fraction of the population infected as a function of disease
R0. The curve is obtained by solving equation (2.7) using the Newton-Raphson
method, and assuming that initially the entire population is susceptible, S(0) = 1,
which generates the largest epidemic size.

This equation is transcendental and hence an exact solution is not possible. However, by
noting that when R∞ = 0, equation (2.7) is positive, while if R∞ = 1 then the equation
is negative, we know that at some point in between the value must be zero and a solution
exists. Using standard methods, such as the Newton-Raphson (Press et al. 1988), or even
by trial-and-error, it is possible to obtain an approximate numerical solution for equation
(2.7); this is shown for the standard assumption of S(0) = 1 in figure (2.2). This figure
reinforces the message that if R0 < 1, then no epidemic occurs. It also demonstrates the
principle that whenever an infection has a sufficiently large basic reproductive ratio (R0

larger than approximately 5), essentially everyone (> 99%) in a well-mixed population is
likely to contract the infection eventually.

Note that the expression derived in equation (2.7) is not specifically dependent on the
structure of the SIR model. It can be alternatively derived from a probabilistic argu-
ment as follows: if a single individual has been infected, then assuming the rest of the
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population are susceptible, they will on average infect R0 others. Therefore, the prob-
ability of a randomly selected individual escaping infection and remaining susceptible
is exp(−R0/N). Now, if Z individuals have been infected, then the probability of an
individual escaping infection is exp(−ZR0/N). If at the end of the epidemic we let a
proportion R∞ = Z/N have been infected, then probability of remaining susceptible is
clearly S∞ = exp(−R∞R0), which again must be equal to 1 − R∞. Therefore we once
again find that: 1 − R∞ = exp(−R∞R0), which is independent of the exact structure of
the model.
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FIGURE 2.3 The epidemic curve. The filled circles represent weekly deaths from
plague in Bombay from December 17 1905 to July 21 1906. The solid line is Kermack
& McKendrick’s approximate solution given by dR/dt = 890 sech2(0.2t − 3.4).

As we mentioned above, an exact solution of the SIR model (equations 2.1 to 2.3) is
not feasible due to the non-linear transmission term, βSI. It is possible, however, to
obtain an approximate solution for the “epidemic curve”, which is defined as the number
of new cases per time interval (Waltmann 1974; Hethcote 2000). A classic example of
the epidemic curve is provided in figure 2.3 which shows the number of deaths per week
from the plague in Bombay during 1905-1906. Assuming new cases are identified once an
individual exhibits the characteristic symptoms of the infection, we can get a handle on
the epidemic curve by exploring the equation involving dR/dt (details provided in Maths
Box 2.2). This gives the following inelegant but useful approximation:

dR

dt
=

γα2

2S(0)R2
0

sech2(
1
2
αγt − φ). (2.8)

The quantities α and φ depend in a complex way on the parameters and initial conditions,
and are defined in Maths Box 2.2. For any specific epidemic, the parameters in equation
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(2.8) can be estimated from the data, as shown in figure 2.3. Note that the derivation of
this equation requires R0R to be small, which is unlikely to be the case for many infections,
especially near the end of the epidemic when R typically approaches 1 (see figure 2.2),
but is a good approximation during the early stages often up to the peak of the epidemic.
For most practical purposes however, we need to numerically solve the SIR equations to
calculate how variables such as X and Y change through time. The basic issues involved
in such an endeavour are discussed in Maths Box 2.3 and the associated figure.

1.1.3 Worked example: Influenza in a boarding school
An interesting example of an epidemic with no host demography comes from an outbreak
of influenza in a British boarding school in early 1978 (Anon 1978; Murray 1989). Soon
after the start of the Easter term, three boys were reported to the school infirmary with
the typical symptoms of influenza. Over the next few days, a very large fraction of the
763 boys in the school had contracted the infection (represented by circles in figure 2.4).
Within two weeks, the infection had become extinguished, as predicted by the simple SIR
model without host demography.
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FIGURE 2.4 The SIR dynamics. The filled circles represent number of boys with
influenza in an English boarding school in 1978 (data from the 4th March edition of
the British Medical Journal). The curves represent solutions from the SIR model
fitted to the data using least squares. Estimated parameters are β = 1.66 per day
and 1/γ = 2.2 days, giving an R0 of 3.65.

We can get an understanding into the epidemiology of this particular strain of influenza
A virus (identified by laboratory tests to be A/USSR/90/77 (H1N1)) by estimating the
parameters for the SIR model from these data. Using a simple least squares procedure
(minimising the difference between predicted and observed cases), we find the best fit
parameters yield an estimated active infectious period (1/γ) of 2.2 days and a mean



Keeling & Rohani, Chapter 2 12

transmission rate (β) of 1.66 per day. Therefore, the estimated R0 of this virus during this
epidemic is β/γ = 1.66×2.2, which is 3.65. As shown in figure (2.4), model dynamics with
these parameters is in good agreement with the data. Note, however, that as pointed out
by Wearing et al. (2005), the precise value of R0 estimated from these data is substantially
affected by the assumed model structure (in Chapter 3section 3 we deal with this issue in
more detail).

1.2 THE SIR MODEL WITH DEMOGRAPHY

In the last section, we presented the basic framework for the SIR model given the assump-
tion that the time-scale of disease spread is sufficiently fast so as not to be affected by
population births and deaths. Some important epidemiological lessons were learnt from
this model, but ultimately, the formalism ensured the eventual extinction of the infec-
tion. If we are interested in exploring the longer-term persistence and endemic dynamics
of an infection, then clearly demographic processes will be important. In particular, the
most important ingredient necessary for endemicity in a population is the influx of new
susceptibles through births.

The simplest and most common way of introducing demography into the SIR model
is to assume there is a natural host “life-span”, 1/µ years. Then, the rate at which
individuals (in any epidemiological class) suffer natural mortality is given by µ. It is
important to emphasise that this factor is independent of the disease and is not intended
to reflect the pathogenicity of the infectious agent. Some authors have made the alternative
assumption that mortality only acts on the recovered class (see Bailey 1975; Keeling et al.
2001a; Brauer 2002), which makes manipulation easier but is generally less popular among
epidemiologists. Historically, it has been assumed that µ also represents the population’s
crude birth rate, thus ensuring that total population size does not change through time
(dS

dt + dI
dt + dR

dt = 0). This framework is very much geared towards the study of human
infections in developed nations – our approach would be different if the host population
exhibited its own “interesting” dynamics (as is often the case with wildlife populations;
see Chapter 5). Putting all these assumptions together, we get the generalised SIR model:

dS

dt
= µ − βSI + µS, (2.13)

dI

dt
= βSI − γI − µI, (2.14)

dR

dt
= γI − µR. (2.15)

Note that for many diseases, such as measles, newborns may have passive immunity derived
via the placental transfer of maternal antibodies (if the mother had experienced infection
or had been vaccinated). Given that the average age at which this immunity to measles
and other childhood infections is lost (approximately 6 months) is considerably smaller
than the typical age at infection (4-5 years in developed nations; Anderson & May 1982),
the assumption that all newborns enter the susceptible class is not unreasonable. In
cases when the mean age at infection is very small – in developing nations, for example –
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Maths Box 2.2: The Epidemic Curve
To obtain an expression for the epidemic curve, we start by considering equations
(2.1)-(2.3). As shown in the steps leading to equation (2.6), it is possible to remove
the variable I from the system by the division of equation (2.1) by equation (2.3),
which (after integrating) gives an expression for S in terms of R. Bearing in mind
that by definition S + I + R = 1, we can re-write equation (2.3):

dR

dt
= γ(1 − S − R).

After substituting for S from equation (2.6), this gives

dR

dt
= γ(1 − S(0)e−R0R − R). (2.9)

As it stands, this equation is not solvable. If, however, we assume that R0R is small,
we can Taylor expand the exponential term to obtain:

dR

dt
= γ

(

1 − S(0) +

(

S(0)R0 − 1

)

R − S(0)R2
0

2
R2

)

. (2.10)

It is messy but possible to solve this equation. Omitting the intermediate steps, we
get

R(t) =
1

R2
0S(0)

(
S(0)R0 − 1 + α tanh(

1
2
αγt − φ)

)
, (2.11)

where

α =
[(

S(0)R0 − 1
)2

+ 2S(0)I(0)R2
0

] 1
2

,

and
φ = tanh−1

[
1
α

(
S(0)R0 − 1

)]
.

To obtain the epidemic curve as a function of time, we need to differentiate equation
(2.11) with respect to time, giving

reported cases ∼ dR

dt
=

γα2

2S(0)R2
0

sech2
(1

2
αγt − φ

)
. (2.12)

As usual, it is important to scrutinise the assumptions made while deriving this
result. The key step was in going from equation (2.9) to equation (2.10) and it
involved the assumption that R0R is small. This condition is most likely to be
met at the start of the epidemic (when R ( 1) or if the infection has a very small
R0. Hence, the approximation will, in general, probably not be very accurate for
highly infectious diseases such as measles, whooping cough, or rubella with estimated
R0 values of 10 or higher (see table 2.1). In addition, the ease with which these
equations can be numerically integrated largely negates the need for such involved
approximations on a regular basis.
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maternally derived immunity needs to be explicitly incorporated into models (see McLean
& Anderson 1988a,b; and Hethcote 2000).

Before proceeding further, it is useful to establish the expression for R0 in this model.
Starting with the basic definition of R0 (number of secondary infectives per index case
in a naive population of susceptibles), we can look closely at equation (2.14) to work it
out. The parameter β represents the transmission rate per infective, while the negative
terms in the equation tells us that each infectious individual spends an average 1

γ+µ time
units in this class – the infectious period is effectively reduced due to individuals dying
whilst infectious. Therefore, if we assume the entire population is susceptible (S = 1),
then the average number of new infections per infectious individual is determined by the
transmission rate multiplied by the infectious period:

R0 =
β

γ + µ
. (2.16)

This value is generally similar to, but always smaller than, R0 for a closed population
as the natural mortality rate reduces the average time an individual is infectious – some
individuals will die of natural causes while in the infectious class. Having established the
expression for the R0, we can now explore some of the properties of the system. This model
has proved very useful, primarily for (i) establishing disease prevalence at equilibrium, (ii)
determining the conditions necessary for endemic equilibrium stability, (iii) identifying
the underlying oscillatory dynamics and (iv) predicting the threshold level of vaccination
necessary for eradication. We will successively explore these features and discuss some of
the relevant mathematical under-pinnings.

1.2.1 The Equilibrium State
The inclusion of host demographic dynamics may permit a disease to persist in a popula-
tion in the long term. One of the most useful ways of thinking about what may happen
eventually is to explore when the system is at equilibrium, with dS

dt = dI
dt = dR

dt = 0. We
therefore set each equation in the system (equations 2.13–2.15) to zero and work out the
values of the variables (now denoted by S∗, I∗ and R∗) which satisfy this condition.

Without needing to do much work, the disease-free equilibrium is self-evident. This is
the scenario where the pathogen has suffered extinction and, in the long-run, everyone
in the population is susceptible once more. Mathematically, this state is expressed as
(S∗, I∗, R∗) = (1, 0, 0). Below, we discuss the likelihood of observing this state in the
system.

Establishing the endemic equilibrium requires slightly more work. Perhaps counterintu-
itively, we’ll start by setting the equation for the infectives (equation 2.14) to zero:

βSI − (γ + µ)I = 0. (2.17)
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Maths Box 2.3: Numerical integration
Given the nonlinearity in epidemiological models, it is typically not possible to
derive an exact equation that predicts the evolution of model variables through
time. In such cases, it is necessary to resort to numerical integration methods. By
far the simplest algorithm is called Euler’s method, due to the 18th Century Swiss
mathematician. It involves the translation of differential equations into discrete-
time analogues. Simply, if we are interested in integrating the SIR equations, we
consider the change in each variable during a very small time interval, δt. This is
approximately given by the rate of change of that variable at time t multiplied by
δt. For example, the equation describing the dynamics of the fraction of infectives
is given by

I(t + δt) = I(t) + δt × dI

dt
= I(t) + δt × (βS(t)I(t) − (µ + γ)I(t)),

Using this scheme, we can simulate the dynamics of a system of ordinary differential
equations (ODEs) through time. The problem with the method, however, is that
it is rather crude and possesses low accuracy (the error in predicted trajectories
scales with δt rather than a higher power). In extreme cases (with δt too large), the
method has been known to generate spurious dynamics such as cyclic trajectories
when it is possible to demonstrate analytically that all solutions converge to a
stable equilibrium (see figure below).
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The figure demonstrates SEIR (see section 5) dynamics predicted by different
numerical integration schemes. The grey line depicts model predictions using un-
transformed variables, while the black line represents log-transformed variables (see
below). The three different integration schemes demonstrated are the Runge-Kutta
Dormand-Prince (“ODE45” in Matlab; left), Runge-Kutta Bogacki and Shampine
pairs (“ODE23”; centre), and Gear’s method (“ODE15s”; right) (see Shampine &
Reichelt 1997 for more details of these methods). As shown by the fluctuations in
the left and centre, numerical integration schemes can generate spurious dynamics,
highlighting the importance of a thorough examination of model dynamics using
alternative methods, as well as potentially substantial gains from log-transforming
variables. [Parameters values are β = 1250 per year, µ = 0.02 per year, 1/σ = 8
days and 1/γ = 5 days.]
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Maths Box 2.3 continued
Such numerical issues may easily overcome using more sophisticated integration
methods, where the deviation from the true solution scales with higher powers of
δt (see Press et al. (1988) for a review of different methods, as well as algorithms
for their implementation). However, no numerical scheme will ever be exact due
to computational rounding error and therefore it is optimal to re-formulate the
equations so that such errors are minimised. Dietz (1976) suggested the use of log-
transform variables (x̂ = log(S) and ŷ = log(I)). The transformed SIR equations
become

ex̂ dx̂

dt
= µ − βeŷ+x̂ − µex̂

eŷ dŷ

dt
= βex̂+ŷ − (µ + γ)eŷ,

which after simplification becomes

dx̂

dt
= µe−x̂ − βeŷ − µ

dŷ

dt
= βex̂ − µ − γ.

These new equations, although looking inherently more complex, are far less prone
to numerical error. In the above figure, we show that although some integration
schemes, applied to the standard SIR equations can generate spurious fluctuating
dynamics (grey lines) the use of log-transformation of variables (black lines) can
overcome this problem – as can the use of more sophisticated integration methods.
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After factorising for I, we have

I

(
βS − (γ + µ)

)
= 0, (2.18)

which is satisfied whenever I∗ = 0 or S∗ = (γ+µ)
β . The first condition is simply the disease

free equilibrium, so we concentrate on the second. The quantity on the right hand side
of the equality should look familiar: it is simply the inverse of the R0. This leads to an
important result:

"• In the SIR model with births and deaths, the endemic equilibrium is charac-
terised by the fraction of susceptibles in the population being the inverse of R0.

Having established that S∗ = 1
R0

, we substitute this into equation (2.13) and solve for I∗.
Missing out a few lines of algebra, we eventually arrive at

I∗ =
µ

γ

(
1 − 1

R0

)
=

µ

β
(R0 − 1). (2.19)

One universal condition on population variables is that they cannot be negative. Hence
the endemic equilibrium is only biologically feasible if R0 > 1, which agrees with our
earlier ideas about when an epidemic is possible. Now, utilising S∗ + I∗ + R∗ = 1, we can
obtain an expression for R∗. The endemic equilibrium is, therefore, given by:

(S∗, I∗, R∗) =
(

1
R0

,
µ

β
(R0 − 1), 1 − 1

R0
− µ

β
(R0 − 1)

)

.

1.2.2 Stability Properties
So far, we have derived expressions for the disease-free and endemic equilibrium points
of the SIR system, and the restrictions on parameter values for these equilibria to be
biologically meaningful. We now would like to know how likely we are to observe them. In
mathematical terms, this calls for a “stability analysis” of each equilibrium point, which
would provide conditions on the parameter values necessary for the equilibrium to be sta-
ble to small perturbations. The basic idea behind stability analysis is explained in Maths
Box 2.4. When this technique is applied to our two equilibrium states, we find that for the
endemic equilibrium to be stable, R0 must be greater than one, otherwise the disease-free
equilibrium is stable. This makes good sense because the infection cannot invade if each
infected host passes on the infection to fewer than one other host (ie R0 < 1). However, if
successively larger numbers are infected (R0 > 1), then the “topping up” of the susceptible
pool by reproduction ensures the infection’s prevalence in the long-term.

"
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• In the SIR model with births and deaths, the endemic equilibrium is stable
if R0 > 1, otherwise the disease-free equilibrium state is stable.

1.2.3 Oscillatory Dynamics
An important issue for any dynamical system concerns the manner in which a stable equi-
librium is eventually approached. Do trajectories undergo oscillations as they approach
the equilibrium state or do they tend to reach the steady state smoothly? The SIR sys-
tem is an excellent example of a “damped oscillator”, which means the inherent dynamics
contain a strong oscillatory component, but the amplitude of these fluctuations declines
over time as the system equilibrates (figure 2.5).
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FIGURE 2.5 The SIR model’s damped oscillations. The main figure shows how
the fraction of infectives oscillates with decreasing amplitude as it settles towards the
equilibrium. The inset shows a slice of the time-series with the period of fluctuations as
predicted by equation (2.23). The figure is plotted assuming 1/µ = 70 years, β = 520
per year and 1/γ = 7 days, giving R0 = 10. Initial conditions were S(0) = 0.1 and
I(0) = 10−4.

In figure 2.6, we show how the period of oscillations (as determined by equation (2.23) in
Maths Box 2.4) changes with the transmission rate (β) and the infectious period (1/γ).
We note that (relative to the infectious period) the period of oscillations becomes longer
as the reproductive ratio approaches one, in addition this is also associated with a slower
convergence towards the equilibrium.
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Maths Box 2.4: Equilibrium Analysis
In this Maths Box, we outline the basic ideas and methods of determining the
stability of equilibrium points. Although we are specifically concerned with the
SIR model here, the description of the concepts will be quite general and could be
applied to a range of models discussed in this book. Assume we have n variables of
interest, Ni (i = 1, 2, . . . n). The dynamics of the system are governed by n coupled
Ordinary Differential Equations (ODEs; in the SIR equations, n is three):

dNi

dt
= fi(N1, N2, . . . , Nn), i = 1, 2, . . . , n (2.20)

To explore the equilibrium dynamics, we must first determine the system’s equilib-
rium state (or states). This is done by setting equations (2.20) to zero and solving
for the solutions N∗

1 , N∗
2 , . . . , N∗

n – noting that multiple solutions may exist. We
know that if the system is at equilibrium, then it will remain at equilibrium (by
definition). But what happens when the system is (inevitably) perturbed from this
state? In mathematical jargon, we are interested in determining the consequences
of small perturbations to the equilibrium state. This is achieved by looking at the
rates of change of these variables when each variable is slightly shifted away from
its equilibrium value. This is done by making the substitutions Ni = N∗

i + εi in
equations (2.20) and exploring the growth or decline of the perturbation terms, εi,
over time. In any specific case, we can carry out each of these steps, but there is a
more generic methodology.

Mathematical results dating back some two hundred years have established
that for a series of equations such as those described by equations (2.20), stability
of an equilibrium point is determined by quantities known as eigenvalues, here
represented by Λi. For a system of n ODEs, there will be n eigenvalues and stability
is ensured if the real part of all eigenvalues are less than zero – these eigenvalues are
often complex numbers. Having established the usefulness of eigenvalues, we need
to explain how calculate these terms. Before we can do that, a matrix, J , known
as the Jacobian must be introduced. It is given by:

J =





∂f∗
1

∂N1

∂f∗
1

∂N2
. . .

∂f∗
1

∂Nn
∂f∗

2
∂N1

∂f∗
2

∂N2
. . .

∂f∗
2

∂Nn
... . . . ...

∂f∗
n

∂N1

∂f∗
n

∂N2
. . . ∂f∗

n
∂Nn




.

The terms f∗
i refer to the functions fi(N1, N2, . . . , Nn) calculated at equilibrium,

ie fi(N∗
1 , N∗

2 , . . . , N∗
n). The eigenvalues Λi (i = 1, 2, . . . , n) are the solutions of

det(J − ΛI) = 0; where I is the identity matrix. That is, we subtract Λ from
each diagonal element of the Jacobian and then work out the determinant of the
matrix. This will give rise to an polynomial in Λ of order n. This is called the
characteristic polynomial, which, when set to zero and solved gives rise to the
eigenvalues (Λ1,Λ2, . . . ,Λn).
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Maths Box 2.4 continued
Let us demonstrate these ideas by applying them to the SIR system of equations.
Finding the two equilibrium states is described in the main text. So next, we work
out the Jacobian:

J =




−βI∗ − µ −βS∗ 0

βI∗ βS∗ − (µ + γ) 0
0 γ −µ



 .

To obtain the characteristic polynomial, we subtract Λ from the diagonal elements
and calculate the determinant. This gives:

(
βI∗ − µ − Λ

)(
βS∗ − (µ + γ) − Λ

)(
− µ − Λ

)
+ (βI∗)(βS∗)(−µ − Λ) = 0.

Notice that (−µ−Λ) can be factorised immediately, giving one eigenvalue (Λ1 = −µ)
that is negative. The remaining two solutions Λ2,3 are found by solving the following
quadratic equation:

(
βI∗ − µ − Λ

)(
βS∗ − (µ + γ) − Λ

)
+ βI∗βS∗ = 0. (2.21)

Let us first consider the disease-free equilibrium. If we make the appropriate
substitutions (S∗ = 1 and I∗ = 0), we have

(−µ − Λ)(β − (µ + γ) − Λ) = 0.

This clearly has two solutions, Λ2 = −µ and Λ3 = β − (µ + γ). For this equilibrium
to be stable, we need to ensure all eigenvalues are negative, hence the stability
criterion becomes β < µ + γ, which translates into ensuring R0 < 1.

To explore the endemic equilibrium, again we substitute the expressions for
S∗ and I∗ into equation (2.21) and explore the condition required for the remaining
two eigenvalues to be negative. After making some simplifications we arrive at the
following quadratic equation,

Λ2 + µR0Λ + (µ + γ)µ(R0 − 1) = 0, (2.22)

the solutions of which can be obtained by the standard formula, giving:

Λ2,3 = −µR0

2
±

√
(µR0)2 −

4
AG

2
,

where the term A = 1
µ(R0−1) denotes the mean age at infection (see section 1.2.4)

and G = 1
µ+γ determines the typical period of a host’s infectivity.
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Maths Box 2.4 continued
To make further progress with this equation, we notice that for most reasonable
cases (µR0)2 is small enough to ignore and hence we can approximate the above
solutions to

Λ2,3 ≈ −µR0

2
± i√

AG
,

where i =
√
−1. Therefore, the endemic equilibrium is feasible only when R0 is

greater than one, but it is always stable. The fact that the largest (“dominant”)
eigenvalues are complex conjugates (they are of the form Λ2,3 = x± iy) tells us that
the equilibrium is approached via oscillatory dynamics. The period of these damped
oscillations, T , is determined by the inverse of the complex part of the eigenvalues
multiplied by 2π:

T ∼ 2π
√

AG. (2.23)

1.2.4 Mean Age at Infection
When dealing with infectious diseases in the real world, an important indicator of preva-
lence is the host’s mean age at infection, A (if it possible to contract the infection multiple
times, then we would be interested in the mean age at first infection). This quantity can
be measured in a straightforward way for many human or animal infections by analysing
age-specific serological data, which detect the presence of antibodies specific to pathogen
antigens. The rate at which individuals seroconvert (from negative to positive) provides
information on the force of infection (see Maths Box 1.1). Age-stratified serological sur-
veys, when conducted randomly through the population, can yield a relatively unbiased
population level estimate of the mean age at infection. Typically we may also have ac-
curate independent estimates for some of the model parameters such as the host life
expectancy (from demographic data) and the infectious period (from clinical epidemiol-
ogy data). Thus, once we have an estimate of the mean age at infection from serological
surveys, we can estimate the transmission rate β as long as we have an expression for A
derived from the model.

How do we calculate the average age at which susceptibles are infected, especially given
a non-age-structured model? We can approach this question by taking equation (2.13)
at equilibrium and calculating the mean time an individual remains susceptible – that is
the mean time from birth (or loss of maternally derived immunity) to infection. Ignoring
the small, disease-independent mortality term, the average period spent in the susceptible
class is approximated by the inverse of the force of infection, namely 1

βI∗ . Upon substi-
tuting for I∗ from equation (2.19), we obtain an expression for the mean age at infection:

A ≈ 1
µ(R0 − 1)

. (2.24)

This equation can be re-phrased as R0−1 ≈ L
A , where L is the host’s life expectancy. The

above step has proven historically very important in establishing a robust link between
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FIGURE 2.6 The period of damped oscillations in the SIR model as the transmis-
sion rate (β) and infectious period (1/γ) are varied. The grey line on the surface
depicts the oscillatory period whenever the parameters combine to yield an R0 of 15.
The figure is plotted assuming 1/µ = 70 years.

model parameters and population level quantities such as L. In their classic work, An-
derson & May (1982; 1991) used the estimates of A and L to calculate R0 for numerous
infections in different geographical regions and eras (see Table 2.1).

"• The mean age of (first) infection is equal to the average life expectancy of
an individual divided by R0 − 1.

2. PATHOGEN-INDUCED MORTALITY AND SI MODELS
The models described in the previous section have implicitly assumed that the infection is
essentially benign. Transmission results in a period of illness, which is followed by recovery
and life-long immunity. This scenario is reasonable for largely harmless infections such
as the common cold or chickenpox. However, numerous infectious diseases are associated
with a substantial mortality risk. Examples include malaria, measles, whooping cough,
SARS and dengue fever, among others. How do we explore the consequences of infection-
induced mortality? Specifically, how do we incorporate a mortality probability into the
SIR equations? The obvious approach would be to add a term such as −mI to equation
(2.14), where m is a per capita disease-induced mortality rate for infected individuals.
However, this may be tricky to interpret biologically or estimate from data. Instead, it is
preferable to think about the probability, ρ, of an individual in the I class dying from the
infection before either recovering or dying from natural causes. This is the quantity most
likely estimated from clinical studies or case observations. Mathematically, this translates
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FIGURE 2.7 The mean age at infection for the SIR model as a function of the
basic reproductive ratio (R0) and the average life expectancy (1/µ). Using equation
(2.24), we see that as R0 increases, there is a dramatic decline in the mean age at
infection, while changes in µ are not as influential.

into the following equation:

dI

dt
= βSI − (γ + µ)I − ρ

1 − ρ
(γ + µ)I, (2.25)

where ρ represents the per capita probability of dying from the infection and takes values
from zero to one. (The S equation remains as before.) Therefore, if we insist on working
with a mortality rate, we should set m = ρ

1−ρ(γ + µ). This equation for the infection
dynamics can be tidied up to give

dI

dt
= βSI − (γ + µ)

1 − ρ
I. (2.26)

Note that as ρ approaches unity, new infectives die almost instantaneously and R0 drops
to zero; for such diseases it may be more appropriate to further subdivide the infectious
period and only allow mortality in the later stages of infection (see Chapter 3section 3).

2.1 MORTALITY THROUGHOUT INFECTION

It is important to note that because infection actively removes individuals from the pop-
ulation, we can no longer implicitly assume that the population size is fixed – disease
induced mortality could lead to an ever declining population size. One way round this is
to incorporate a fixed birth rate (ν) into the susceptible equation (2.13), independent of
the population size:

dS

dt
= ν − βSI − µS. (2.27)
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However, the fact that the population size N can vary means that we need to consider the
transmission term βSI in much more detail. Until now, it made little difference whether
density or frequency dependent transmission was assumed, as the N term was constant
and could be absorbed by rescaling the population size or rescaling the transmission rate
β. However, since N is now variable, this is no-longer possible and the choice of transmis-
sion mechanisms can profoundly affect the dynamics. Given that this problem illustrates
an important (and often confusing) issue in epidemiological modelling, we will deal with
the two cases separately paying particular attention to the underlying assumptions. To
make matters explicit we will deal with numbers, rather than proportions throughout this
section.

2.1.1 Density Dependent Transmission
For density dependent (pseudo mass action) transmission , we specifically consider the
case where as the total population size N decreases, due to disease-induced mortality,
resulting in reduced interaction between hosts. We start by considering the values of ν
and µ and the dynamics of the disease-free state. In the absence of disease we find that,

dN

dt
= ν − µN ⇒ N → ν

µ
(2.28)

Hence, we can equate ν
µ with the ecological concept of a carrying capacity for the popu-

lation.

We can now repeat the kinds of analyses that were carried out on the generalised SIR
model in section (1.1.2). Once again, we find the system possesses two equilibrium points:
one endemic (X∗, Y ∗, Z∗) and one disease free ( ν

µ , 0, 0). Missing out a few lines of algebra,
we find the endemic equilibrium to be:

X∗ =
µ + γ

β(1 − ρ)
=

ν

µR0
, (2.29)

Y ∗ =
µ

β

(
R0 − 1

)
, (2.30)

Z∗ =
γ

β

(
R0 − 1

)
. (2.31)

⇒ N∗ =
ν

µR0

[
1 + (1 − ρ)(R0 − 1)

]
. (2.32)

In this case, R0 (= β(1−ρ)ν
(µ+γ)µ ) contains a correction term (1− ρ) that takes into account the

reduced period of infectivity due to mortality, as well as a term that takes into account
the population size at the disease-free equilibrium. The condition necessary to ensure the
feasibility of the endemic equilibrium (and hence the instability of the disease-free steady
state) is found by ensuring Y ∗ > 0, which translates to R0 > 1, as we have previously seen.
This means that if ρ > 0, then the infection has to have a higher transmission rate per
unit infectious period ( β

µ+γ ) in order to remain endemic, compared to a similar infection
that is benign – due to the fact that the effective infectious period is reduced by disease
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induced mortality.

The stability properties of this system are very similar to the basic SIR model. Indeed,
stability analysis reveals the endemic equilibrium to be always locally asymptotically sta-
ble. The approach to the equilibrium is also via damped oscillations, the (natural) period
of which are determined by the following equation:

T ∼ 2π
√

AG. (2.33)

This is clearly identical to equation (2.23), though note that here, the terms A (the average
age of infection) and G (the average generation length of infection) , respectively, both
contain a correction term due to infection-induced mortality into account.

"• When disease induced mortality is added to the SIR model with density de-
pendent transmission, the equilibrium and stability properties simply reflect
a change in parameters.

2.1.2 Frequency Dependent Transmission
For frequency dependent (mass action) transmission, the calculation is somewhat more
involved. Recall that if X and Y are the number of susceptible and infectious hosts, then
the mass-action assumption means that the transmission rate is given by βXY/N . Previ-
ously, we rescaled the variables such that S and I represented fractions of the population,
which removed the N term in the transmission rate leaving us with more elegant-looking
equations. However, in this scenario N is varying and that trick is no longer appropriate.
Instead, we retain the notion that X and Y are numbers of hosts. Our equation for the
number of infectious individuals is therefore:

dY

dt
= βXY/N − (γ + µ)

1 − ρ
Y. (2.34)

We note that the mass-action assumption means that even when the population size is
reduced each individual still has the same average number of contacts.

It will not be a surprise to find that two equilibria exist: the endemic (X∗, Y ∗, Z∗) and
the disease-free ( ν

µ , 0, 0). The endemic equilibrium can again be found by setting the rates
of change equal to zero:

X∗ = ν(1 − ρ)(γ + µ)
µ(β(1 − ρ) − µρ − γρ) = N

R0
, ⇒ S∗ = (γ + µ)

β(1 − ρ) = 1
R0

Y ∗ = νβ(1 − ρ)2 − ν(µ + γ)(1 − ρ)
(µ + γ)(β(1 − ρ) − µρ − γρ) , ⇒ I∗ = µ

β(1 − ρ)(R0 − 1)

N∗ = βν(1 − ρ)2
µ(β(1 − ρ) − µρ − γρ) = ν

µ

(
R0(1 − ρ)
(R0 − ρ)

)

(2.35)
As these expressions demonstrate, equilibrium values are easier to understand intuitively
if we deal with the proportion of the population in each state, rather than the absolute
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number. Again, we note that R0 > 1 is necessary and sufficient for the disease to invade
the population and for the equilibrium point to be feasible and stable.

For both the frequency and density dependent models, it is clear that the population size
can be reduced from its carrying capacity of ν

µ by the action of the disease. Not sur-
prisingly, diseases with the highest mortalities (ρ close to one) and largest R0 have the
greatest impact on the population (figure 2.8). While for low mortality levels both mixing
assumptions lead to similar results, when the mortality is high the frequency dependent
(mass-action) assumption leads to the largest drop in the total population size. This is
because pseudo-mass-action mixing places a natural damping on transmission, such that
as the population size decreases so does the contact rate between individuals, limiting dis-
ease spread and reducing disease-induced mortality. From this relatively simple example
it is clear that when population sizes change, our assumption about mixing behaviour can
have profound effects on the dynamics.
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FIGURE 2.8 The population size, N∗, for diseases that are associated with mortal-
ity. Two different disease mortality probabilities are considered ρ = 0.1 and ρ = 0.9,
and the two mixing assumptions of density dependence (βXY , solid line) and fre-
quency dependence (βXY/N , dashed line) are shown.

"• When disease induced mortality is added to the SIR model with frequency
dependent transmission, the equilibrium and stability properties can change
substantially especially if the probability of mortality is high.

2.2 MORTALITY LATE IN INFECTION

One difficulty with equation (2.26) is that when the mortality rate is very high, the in-
fectious period is substantially reduced. In some cases, we may wish to consider a disease
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where mortality generally occurs at (or towards) the end of the infectious period. This is
often plausible as the onset of disease (and symptoms) may be significantly delayed from
the onset of infection. In such cases, the following model would be appropriate:

dS

dt
= ν − βSI − µS (2.36)

dI

dt
= βSI − (γ + µ)I (2.37)

dR

dt
= (1 − ρ)γI − µR (2.38)

For this form of model mortality, we again need to consider the precise form of transmis-
sion. For frequency dependent transmission, the reduction in the recovered population has
no effect on the dynamics and hence this model has the same properties as the standard
SIR model. However, for density dependent transmission, we find that X∗ = ν(µ+γ(1−ρ))

(β−γρ)µ

and Y ∗ = ν(β−γ−µ)
(β−γρ)(γ+µ) , although again this is stable and feasible if R0 = βν

µ(γ+µ) > 1.

"• The equilibrium levels of diseases that cause mortality is critically depen-
dent upon whether frequency or density dependent transmission is assumed,
due to the changes in the total population size that occur. However, we gen-
erally find that the endemic equilibrium is feasible and stable as long as R0 > 1.

2.3 FATAL INFECTIONS

The models of sections 2.1 and 2.2 are representative of cases where infection does not
always kill. There are, however, numerous examples of animal and plant pathogens which
are always fatal (Feline Infectious Peritonitis (FIP), Spongiform Encephalopathy (BSE),
Leishmaniasis, Rabbit Haemorrhagic Disease, Highly Pathogenic Avian Influenza (H5N1)).
In this situation, we can simplify the SIR equations by removing the recovered class, which
leads to a family of models known as SI models. Here, infecteds are assumed to remain
infectious for a defined period of time (1/γ), after which they succumb to the infection.
Assuming frequency dependent transmission, the equations describing the SI model are
simply:

dX

dt
= ν − βXY/N − µX, (2.39)

dY

dt
= βXY/N − (γ + µ)Y. (2.40)

It is straightforward to demonstrate that the endemic equilibrium (X∗ = ν
β−γ , Y ∗ =

ν(β−γ−µ)
(β−γ)(γ+µ) ) is feasible as long as R0 = β

(µ+γ) > 1 and is always locally stable.
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Alternatively if we assume pseudo mass action transmission, such that the contact rate
scales with density, we obtain:

dX

dt
= ν − βXY − µX, (2.41)

dY

dt
= βXY − (γ + µ)Y. (2.42)

Similarly, for this system the endemic equilibrium (X∗ = γ+µ
β , Y ∗ = ν

(γ+µ) −
µ
β ) is feasible

as long as R0 = βν
(µ+γ)µ > 1 and is again always locally stable.

3. WITHOUT IMMUNITY: THE SIS MODEL
The SI and SIR models are both capture the dynamics of acute infections that either

kill or confer life-long immunity once recovered. There are, however, numerous infections
for which there is no long-lasting immunity, such as rotaviruses, sexually transmitted in-
fections and many bacterial infections. For these diseases, an individual can be infected
multiple times throughout their life, with no apparent immunity. Here, we concentrate
briefly on this class of models, called SIS because recovery from infection is followed by
an instant return to the susceptible pool.

Simply, these SIS models are described by a pair of coupled ordinary differential equations:

dS

dt
= γI − βIS, (2.43)

dI

dt
= βSI − γI. (2.44)

The parameters are as defined in the previous section, but with S + I = 1. In this
simple example, demography (births and deaths) has been ignored. Despite this lack of
susceptible births, the disease can still persist as the recovery of infectious individuals
replenishes the susceptible pool. We can, therefore, substitute S = 1 − I into equation
(2.44) and simplify to get

dI

dt
= (β − βI − γ)I = βI((1 − 1/R0) − I), (2.45)

where, as usual, R0 = β/γ. This equation is the equivalent of the logistic equation used
to describe density dependent population growth in ecology. The equilibrium number of
infectives in this population is obtained by setting equation (2.45) to zero and solving for
I∗. This gives I∗ = (1 − 1/R0), hence yet again S∗ = 1/R0, and the equilibrium will be
stable as long as R0 > 1. However, for this class of model, convergence to the equilibrium
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is monotonic with no oscillatory behaviour. The dynamics of SIS models and sexually
transmitted diseases is described in more detail in chapter 3.

"• For an infectious disease that does not give rise to in long-term immunity,
as long as the infection is able to invade the population, loss of immunity will
guarantee its long-term persistence.

4. WANING IMMUNITY: THE SIRS MODEL
The SIR and SIS models are two behavioural extremes where immunity is either life-long
or simply does not occur. An intermediate assumption is that immunity lasts for a limited
period before waning such that the individual is once again susceptible.

This translates into the following model:

dS

dt
= µ + wR − βSI − µS (2.46)

dI

dt
= βSI − γI − µI (2.47)

dR

dt
= γI − wR − µR, (2.48)

where w is the rate at which immunity is lost and recovered individuals move into the
susceptible class. Not surprisingly the dynamics of this model provide a smooth transition
between the SIR framework (when w = 0) and the SIS model (when w → ∞). As before,
R0 = β

γ+µ and we require R0 > 1 to obtain a plausible stable endemic solution. Once
again it is possible to obtain the oscillatory damping towards endemic equilibrium that
was seen in the SIR model; the period of these oscillations is given by:

T =
4π√

4(R0 − 1)
1

GI

1
GR

−
(

1
GR

− 1
A

)2

where A = w+µ+γ
(w+µ)(β−γ−µ) is again the average age at first infection, while GI = 1/(γ + µ)

is the average period spent in the infectious class and GR = 1/(w + µ) is the average time
spent in the recovered class.

Figure 2.9 shows the dramatic effects of changing the level of waning immunity: as the
period of immunity (1/w) is reduced (and the dynamics more closely resemble those of the



Keeling & Rohani, Chapter 2 30

10−4 10−2 10010−4

10−3

10−2

10−1

100

Rate of waning immunity, w (per year)

Pr
ev

al
en

ce
 o

f i
nf

ec
tio

n,
 I*

10−4 10−2 1000

0.5

1

1.5

2

2.5

3

Rate of waning immunity, w (per year)

Pe
rio

d 
of

 d
am

pe
d 

os
cil

la
tio

ns
, T

 (y
ea

rs
)

FIGURE 2.9 The effects of waning immunity on the equilibrium infection prevalence
(left graph) and the period of the damped oscillations (right graph). (R0 = 10,
1/µ = 70 years, 1/γ = 10 days).

SIS model), we observe a dramatic increase in the prevalence of infectious disease together
with a marked drop in the period of the damped oscillations. This waning immunity result
was used by Grassly et al. (2005) to explain the 9-10 year cycle observed in syphilis cases
in the USA. It was postulated that these cycles were determined by the natural oscillations
of syphilis infection if waning immunity was assumed. Grassly et al. (2005) found that
oscillations consistent with those observed could be generated by a model with R0 = 1.5,
1/w = 10 years, 1/γ = 2 months and 1/µ = 33 years – this high birth rate accounts
for individuals entering and leaving the pool of sexually active individuals. We note that
although the deterministic model predicts that eventually such oscillations will decay to
zero, the chance nature of transmission can lead to sustained oscillations generally close
to the natural period, T (see Chapter 6).

5. ADDING A LATENT PERIOD: THE SEIR MODEL
We briefly introduce a refinement to the SIR model to take into account the latent period.
The process of transmission often occurs due to an initial inoculation with a very small
number of pathogen units (for example, a few bacterial cells or virions). There then
ensues a period of time during which the pathogen reproduces rapidly within the host,
relatively unchallenged by the immune system. During this stage, pathogen abundance is
too low for active transmission to other susceptible hosts, and yet the pathogen is present.
Hence, the host cannot be categorised as susceptible, infectious or recovered; we need to
introduce a new category for these individuals who are infected but not yet infectious.
These individuals are referred to as Exposed and are represented by the variable E in
SEIR models.

Assuming the duration of the latent period is given by 1/σ, the SEIR equations are:
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dS

dt
= µ − (βI + µ)S, (2.49)

dE

dt
= βSI − (µ + σ)E, (2.50)

dI

dt
= σE − (µ + γ)I, (2.51)

dR

dt
= γI − µR. (2.52)

As before, we typically assume S +E + I +R = 1 and hence equation (2.52) is redundant.
The addition of a latent period is essentially akin to introducing a slight time delay into
the system and we may expect that such a feature may act to destabilise the system. As
we will demonstrate, the dynamic properties of the SEIR model are qualitatively similar
to those of the SIR system.

Standard equilibrium stability analysis proceeds by finding the steady states of the system
and determining the criteria for their stability. As with previous disease models, the SEIR
model also possesses an endemic (S∗, E∗, I∗, R∗) and a disease-free (1, 0, 0, 0) equilibrium
solution. As usual, the endemic fixed point is of greater interest and we find it is given by

S∗ =
(µ + γ)(µ + σ)

βσ
=

1
R0

, (2.53)

E∗ =
µ(µ + γ)

βσ
(R0 − 1). (2.54)

I∗ =
µ

β
(R0 − 1), (2.55)

with R∗ = 1−S∗ + E∗ + I∗. Note that the expression for R0 is now slightly different, due
to the death of some individuals in the exposed class who do not contribute to the chain
of transmission. However, this difference is often negligible since typically σ/(µ + σ) ∼ 1
as the latent is far smaller that the expected life span. As expected if the latent period is
infinitesimally small (ie, σ → ∞), then we recover the same expression for R0 as for the
SIR model (R0 = β/(γ + µ)).

For the endemic equilibrium to be feasible and stable (and the disease free equilibrium to
be unstable), equation (2.55) once again requires that the basic reproductive ratio exceed
one (R0 > 1). By exploring the Jacobian of the system (equations 2.49-2.51) in the usual
way, we obtain a quartic in the eigenvalues Λ. As for the SIR model (Maths Box 2.4),
Λ = −µ is an obvious solution, leaving us with a cubic equation:

Λ3 + (µR0 + 2µ + σ + γ)Λ2 + µR0(2µ + σ + γ)Λ + µ(R0 − 1)(µ + σ)(µ + γ) = 0.

Unfortunately, there is no obvious solution to this equation. As pointed out by Anderson
& May (1991), however, in many cases σ and γ will be much larger than µ and µR0. If so,
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then one solution to this equation is approximately Λ ∼ −(σ + γ), which leaves us with a
quadratic for the two remaining eigenvalues:

Λ2 + µR0Λ +
γσ

σ + γ
µ(R0 − 1) ≈ 0.

Clearly, this is similar to the analogous equation for the SIR model (equation 2.22), with
a slight correction term due to the death of exposed individuals. By working out the
expression for these eigenvalues, it can be seen that the endemic equilibrium is stable,
with perturbations dying out in an oscillatory manner. Again, we can find an expression
for the natural period of oscillations in this case, which is given by T ∼ 2π

√
AG, where

G (the “ecological generation length” of the infection) is slightly modified to include the
latent period: G = 1

µ+γ + 1
µ+σ .

From this analysis one may be tempted to conclude that the SEIR model is an unnecessary
complication of the SIR model. Given the death rate is small (µ ( γ,σ), the SIR
and SEIR model behave similarly at equilibrium as long as the basic reproductive ratio
(βSIR/γSIR = βSEIR/γSEIR) and average infected period (1/γSIR = 1/γSEIR + 1/σSEIR)
are identical. However, the two models behave very differently at invasion, with the
presence of an exposed class slowing the dynamics. Examining the eigenvalues at the
disease-free equilibrium allows us to describe the growth of infection at invasion:

ISEIR(t) ≈ I(0) exp
(

1
2
[
√

4(R0 − 1)σγ + (σ + γ)2 − (σ + γ)]t
)

,

{
≈ I(0) exp

(
[(
√

R0 − 1)γ]t
)

if σ = γ
}

whereas without an exposed class the dynamics are given by:

ISIR(t) ≈ I(0) exp([(R0 − 1)γ]t)

where natural mortality has been ignored to simply the equations. This behaviour is
exemplified in figure 2.10, showing how long exposed periods can slow or even prevent the
spread of infection. Therefore, if large fluctuations in the levels of infection are of interest,
or we wish to consider both invasion and equilibrium properties, it is important that the
exposed class is realistically modelled.

"• Although the SIR and SEIR models behave similarly at equilibrium (when
the parameters are suitably rescaled), the SEIR model has a slower growth
rate after pathogen invasion due to individuals needing to pass through the
exposed class before they can contribute to the transmission process.

6. INFECTIONS WITH A CARRIER STATE
While the SIR and SEIR model paradigms are a good approximation to the epidemi-
ological characteristics of many infectious diseases, such as measles or influenza, other
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FIGURE 2.10 The effects of an exposed period on the initial growth rate of an
infection in a totally susceptible population. While a small exposed period leads to
dynamics close to those predicted by the SIR model, long exposed period can dra-
matically slow the spread of infection, or even prevent spread if too many individuals
die before becoming infectious. (1/µ = 70 years, 1/γ = 10 days.)

infections have a more complex natural history. As an example of how such complexities
can be accommodated in the model will we consider infections such as Hepatitis B, Her-
pes or Chickenpox where a proportion of infected individuals may become chronic carriers,
transmitting infection at a low rate for many years. The greater biological complexity of
these systems can be readily incorporated into our current modelling framework, although
accurate parameterisation becomes more complex. Here we focus on the inclusion of a
single carrier class, using Hepatitis B as our prototypic infectious disease.

"• This general framework of building compartmental models can be readily
extended to infections with more complex biology.

For diseases with carrier states, susceptible individuals can be infected by either carriers
or acutely infectious individuals. It is generally assumed that the progress of infection
within an individual is independent of their source of infection, that is those infected
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by acutely infectious individuals and those infected by carriers are indistinguishable. A
recently infected individual is acutely (highly) infectious for a given period and then either
recovers complete or moves into the carrier class. Such dynamics lead to the following
model:

dS

dt
= µ − (βI + εβC)S − µS, (2.56)

dI

dt
= (βI + εβC)S − γI − µI, (2.57)

dC

dt
= γqI − ΓC − µC, (2.58)

dR

dt
= γ(1 − q)I + ΓC − µR. (2.59)

Here, C captures the proportion of carriers in the population; ε is the reduced transmission
rate from chronic carriers compared to acute infectious individuals, q is the proportion of
acute infections that become carriers while a fraction (1−q) simply recover, finally Γ is the
rate at which individuals leave the carrier class – all other parameters have their standard
meanings.

As with any new epidemiological model, it is important to understand when an epidemic
can occur and hence to calculate the basic reproductive ratio, R0. For infections with a
carrier state R0 has two components: one comes from acutely infectious individuals, which
follow the standard calculation for R0 that has been given throughout this chapter; the
other comes from infections caused whilst in the carrier state and must take into account
the fraction of infecteds becoming carriers:

R0 =
β

γ + µ
+

qγ

(γ + µ)
εβ

(Γ + µ)

where the term qγ
γ+µ accounts for those individuals that do not die in the infectious class

and go on to be carriers. Therefore, as expected, the fact that infected individuals can
enter an infectious carrier state rather than simply recovering increases the value of R0.

"• The value of R0 is the sum of separate components from the acutely infected
and chronic carriers.

With only a little more work than usual, the equilibrium values of the model can be found:

S∗ =
γ + µ

β +
qγεβ

Γ + µ

=
1

R0

I∗ =
µ(1 − S)

γ + µ
C∗ =

γqµ(1 − S)
(γ + µ)(Γ + µ)
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Figure 2.11 shows how these equilibrium values change as q, the fraction of infected indi-
viduals that become carriers, varies. Due to their much longer ‘infectious’ period carriers
can easily out-number acutely infected individuals.
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FIGURE 2.11 The equilibrium values of a model with a carrier class. (β = 73
per year, 1/γ = 100 days, 1/Γ = 1000 days, ε = 0.1, 1/µ = 50 years) Using these
parameters R0 is relatively large (from 19.9 to 38.8), hence the level of susceptibles
is always low and therefore the variation in the level of acute infections is negligible.

In practice, the epidemiology of diseases such as Hepatitis B virus (HBV) is far more
complex, as the risk of becoming a carrier is age-dependent with infected children more
likely to become carriers. This can potentially lead to some surprising behaviour with two
stable endemic situations for a given set of parameters due to positive feed-backs between
R0 and the number of carriers (Medley et al. 2001). When R0 is high, the average age of
infection is low, which in turn leads to many carriers and hence a higher R0; in contrast
a low R0 means that the average-age of infection is high and so few carriers are produced
and R0 remains low. In this manner, and using a age-structured formalism (Chapter 3), it
is possible to observe ‘endemic stability’ where both high and low R0 solutions are stable
and the equilibrium level of infection depends on the initial starting conditions.

7. DISCRETE-TIME MODELS
Throughout this chapter, we have concentrated exclusively on epidemiological models
written as differential equations. This is partly because the vast majority of models in
the literature are based on this framework. The inherent assumption has been that the
processes of disease transmission occur in real time and that variability in factors such as
the infectious period may be dynamically important. Some have argued that if the latent
and infectious periods are relatively constant, it is reasonable to construct models phrased
in discrete time. Such models were first developed by Reed & Frost in 1928 (Abbey 1952)
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as probabilistic entities, assuming transmission probabilities are binomial (giving rise to
“chain binomial” models; see Bailey 1975 and Daley & Gani 1999 for more details). Here,
we introduce these models within a deterministic setting and refer interested readers to
Chapter 6 for a discussion of analogous stochastic models.

An important issue that arises in modelling epidemics in discrete time is precisely what a
time increment represents. Ideally, units of time should represent the “generation” length
of the infection through a host, though in some cases this can lead to some difficulty
especially if latent and infectious periods differ markedly. To demonstrate this approach,
consider a disease with latent and infectious periods of exactly a week. We are therefore
interested in determining the future changes in the fraction of individuals in the population
who are susceptible (St), exposed (Et) or infectious (It) in week t. The following difference
equations may be used to represent such a scenario:

St+1 = µ − Ste
−βIt , (2.60)

Et+1 = St(1 − e−βIt), (2.61)
It+1 = Et, (2.62)

where µ now represents the weekly per capita births. The exponential term in equation
(2.60) represents the per capita probability of not contracting the infection given It in-
fectives with transmission β (cf Maths Box 2.1). This formalism inherently assumes that
transmission probability per susceptible follows a Poisson distribution, with mean βIt.
Hence, the probability of escaping infection is given by the zero term of this distribution.
The transmission parameter (β) is now analogous to the maximum reproductive potential
– or R0 – of the infection. Consider the situation where everyone in the population is
susceptible and a single infectious individual is introduced. Then, the initial growth of
the infection occurs at rate β, very much analogous to R0 in the continuous-time models.
Thus, as before, for the infection to invade, we require β > 1.

The introduction of discrete time does little to change the analytical approaches used
to explore model dynamics. For example, we can easily perform equilibrium analysis on
these equations (2.60–2.62) by solving for S∗ = St+1 = St, E∗ = Et+1 = Et etc. Such an
exercise yields the following equilibrium solutions:

S∗ =
µ

1 − e−βµ
, (2.63)

E∗ = µ, (2.64)
I∗ = µ. (2.65)

To establish the criterion for endemicity, we insist that at equilibrium the proportion of
susceptibles is less than one (S∗ < 1). From equation (2.63), this translates into requiring
that

β >
− log(1 − µ)

µ
.
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This relationship is nearly always satisfied since (i) log |1−µ| ∼ µ (for µ ( 1) and (ii) for
the infection to successfully invade, we require β > 1.

To establish the stability of this equilibrium, we follow a similar procedure to that outlined
in Maths Box 2.4. The Jacobian for this system is simply a matrix whose elements
represent the partial derivatives of equations (2.60–2.62) with respect to St, Et and It,
evaluated at equilibrium (for more details, see Murray 1989):

J =




e−βI∗ 0 −βS∗e−βI∗

1 − e−βI∗ 0 βS∗e−βI∗

0 1 0



 .

To obtain a polynomial for the eigenvalues, we subtract Λ from the diagonal elements and
work out the determinant for the Jacobian (ie, set det |J − ΛI| = 0). As for the SIR
equations, since we have three variables, we obtain a cubic equation in the eigenvalues. In
this instance, because of the discrete time nature of the model, stability of the equilibrium
solution requires the dominant eigenvalue to have magnitude less than one (May 1973;
Nisbet & Gurney 1982; Murray 1989). For the system described by equations (2.60–2.62),
this reduces to requiring all roots of the following equation to lie in the unit circle:

Λ3 − e−βI∗Λ2 − βS∗e−βI∗Λ + βS∗e−βI∗ = 0.
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FIGURE 2.12 The stability of the endemic equilibrium for the SIR model phrased in
discrete-time. The magnitude of the dominant eigenvalue is always less than one, but
not massively so, suggesting very weakly stable dynamics; the dominant eigenvalue
is also real and negative indicating a 2-week oscillatory cycle in the approach to
equilibrium.
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While an analytical solution to this equation is not possible, we can use any number of
commands in mathematical software packages to find its roots. In figure (2.12), we have
numerically calculated the dominant eigenvalues for a range of parameter combinations
and show that as long as the endemic equilibrium is feasible, it is also stable. Note,
however, that the absolute values of Λ are very close to unity, suggesting a weakly stable
equilibrium: perturbations eventually decay to zero, but this may happen over a long
time.

Recently, some authors (Finkenstädt & Grenfell 2000; Bjørnstad et al. 2001; Xia et
al. 2004) have argued that when the level of infection is relatively small then we may
conveniently rewrite equation (2.60) using a bi-linear term to represent the transmission
term:

St+1 = St + µ − βStIt.

This is essentially the same as expanding the exponential term in equation (2.60) and
ignoring the β2I2

t and higher order terms (for an ecological example, contrast the host-
parasitoid models of Hassell (1978) and Neubert et al. (1995)). If we proceed with an
equilibrium analysis, as above, we find that the dominant eigenvalue is always equal to
unity. In this system, the endemic equilibrium is neutrally stable, with small perturbations
to the equilibrium neither decaying nor growing. This is an undesirable and unrealistic
property of the model and results largely from the above simplification. To overcome this
undesirable structural instability of the model, Finkenstädt & Grenfell (2000) incorporated
an exponent into the St and It terms:

St+1 = St + µ − βSα
t Iφ

t .

When α and φ are less than one, the endemic equilibrium is stabilised.

The major benefit of formulating a model in discrete time is that it is much easier to pa-
rameterise using discrete time data than the associate differential equation counterparts
(Bailey 1975; Mollison & Ud-Din 1993; Finkenstädt & Grenfell 2000). Their major draw-
back, however, is their demonstrated mathematical fragility (Glass et al. 2003).

8. PARAMETERISATION
While models in isolation can provide us with a deeper understanding of the transmission
and control of infectious diseases, if we wish to be more specific in our application we need
to parameterise our models to match the observed behaviour of the disease. While generic
models provide an intuitive explanation it is only though detailed parameterisation that
useful public-health guidance can be generated. It is worth noting that from a modelling
perspective, it is only the parameterisation that differentiates models of smallpox and
measles, or models of Chlamydia and HIV.

For the standard SIR model there are four parameters: the birth rate, the natural death
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rate, the average infectious period (or conversely the rate of recovery) and the transmis-
sion rate. It is to be hoped that a good understanding of the host’s biology will provide
accurate estimates of the birth and death rates (which we have generally assumed to be
equal). The infectious period can usually be estimated by monitoring infected individuals,
either by observation of transmission events or by more detailed techniques measuring
the amount of virus excreted. This leaves us with a single parameter – the transmission
rate, β – to estimate. In practise, researchers generally focus attention on estimating the
basic reproductive ratio, R0, from which the transmission rate can be derived. There are
multiple approaches to finding the value of R0, which is appropriate will depend on the
type of data that is available (Figure 2.13).
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FIGURE 2.13 The effect of sample size on the estimated value of R0. The true value
of R0 is 17, while the lines show the 95% confidence intervals associated with various
estimation methods. It should be noted that for the serological estimates the sample
size refers to the number of sampled individuals (irrespective of disease status), for
the case-based estimate (triangles) the sample size refers to the number of recorded
cases. We have assumed no age-bias in the reporting of cases.

8.1 ESTIMATING R0 FROM REPORTED CASES

An initial response to estimating transmission, β, or the basic reproductive ratio, R0, would
be to record the total number of reported cases of infection within a given community or
area. However, if we examine the equilibrium prevalence (equation 2.19), we find that:

I∗ =
µ

β
(R0 − 1) =

µ

γ + µ

[
1 − 1

R0

]
.

Therefore if R0 is substantially bigger than one, then estimation is going to be very dif-
ficult as the effect of R0 on prevalence is relatively small. In addition, we are unlikely
to record every case within a population as many infections will go unreported. Even for
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measles in England and Wales (which is one of the most accurately recorded long-term
epidemiological data sets) the reporting rate is only 60%, which swamps the small effects
of R0 that we wish to detect.

An alternative approach is to examine the early behaviour of an epidemic. The SIR model
predicts that the early growth of an epidemic will be exponential:

I(t) ∼ I(0) exp([R0 − 1](γ + µ)t)

Fitting to this type of behaviour is possible, and during the early stages of a novel infec-
tion (such as the 2001 foot-and-mouth epidemic in the UK or the 2003 SARS epidemic
in Thailand) is the only way of estimating transmission levels. However, in general three
difficulties may exist. The first difficulty is that this method can only work if there is an
epidemic to be observed, it cannot provide information on endemic diseases. The second
is that in the early stages of an epidemic, due to the low number of cases, the dynam-
ics may be highly stochastic and influenced by large fluctuations (see Chapter 6), which
will cause the estimates of R0 to also fluctuate. By the time stochastic fluctuations be-
come negligible, it is likely that the epidemic behaviour is non-linear and therefore the
exponential approximation is no longer valid. The final difficulty with this approach is
that unless the pathogen is novel to the population some individuals are likely to be im-
mune. While this partial susceptibility can be incorportated into the equations leading to
I(t) ∼ I(0)exp([S(0)R0 − 1](γ + µ)t), it is impossible to separate its effects from the value
of R0. One plausible solution is to fit to the entire epidemic, finding which values of R0,
the initial level of susceptible, S(0), and case identification probability lead to a model
epidemic which most closely matches the recorded profile of cases (see Gani & Leach 2001
for an example of this method applied to smallpox data). Additional aspects affecting the
use of this approach in estimating R0 are discussed in Chapter 3 and Wearing et al. (2005).

At this stage, it is important to make a distinction between the variable Y (t) in models
and the kinds of longitudinal epidemiological data typically available. The plague case
notification data plotted in figure (2.3), for example, represent the total number of new
cases diagnosed in a given week – the incidence of infection. This is distinct from Y (t),
which is the number of individuals infectious at time t – the prevelance of infection. If
the infectious period of a disease happens to be approximately the same as the resolution
of the data, then cases and Y are comparable (Ferrari et al. 2005). Otherwise, we
need to introduce a new model variable that may be used in any estimation procedure.
In general, it is reasonable to assume that case reports take place once an individual
leaves the infectious class. This may be because diagnosis occurs most readily once an
individual is symptomatic, at which point, either the infection has already been cleared
or the individual remains infectious but has reduced transmission opportunities due to
quarantining and convalescence. Therefore, K(T ), the number of new cases reported at
time point T , may be represented by
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K(T ) =
∫ T

T−1
γI dt.

This formulation assumes no reporting error, which may be inappropriate and should
be addressed before estimation to ensure bias-free parameter values (see, for example,
Finkenstädt & Grenfell 2000; Clarke & Bjørnstad 2004). The implementation of reporting
error is discussed in more detail in Chapter 6.

Finally, one of the most powerful approaches using case reports it to identify the average
age at infection in an endemic situation. We have already seen (equation 2.24) that the
average age of infection is given by A ≈ 1/[µ(R0 − 1)], and this approximation is most
reliable when R0 is large. The average age of infection is generally estimated by simply
finding the average age of all reported cases. Figure 2.13, triangles, shows how successful
this estimation procedure is at finding the value of R0 as the number of sampled cases
varies. Two potential difficulties exist with this methodology. The first is that the age
of patients may not be recorded as a matter of course, therefore it may be impossible to
analyse historical data with this technique. Secondly, the researcher generally has little
control over which individuals report infection, and therefore age-related reporting biases
can influence the results.

8.2 ESTIMATING R0 FROM SEROPREVELANCE DATA

Estimating R0 from case report data is problematically in humans as reporting is often
patchy and biased as not all infected individuals seek medical advice. For wildlife diseases
obtaining data on individual cases is even more difficult. An alternative approach is to
use standard molecular techniques to detect the presence of antigen against a particular
infection; in this way we can differentiate the population into those that have not experi-
enced infection (susceptibles) and those that have (recovered or currently infected). The
primary advantage of working with such serological data is that the researcher has full
control over the sampling of the population; in contrast the advantage of working with
infectious cases (as detailed above) is that a larger amount of data may be collected during
normal medical practices.

The simplest way of utilising serological information is via the relationship that S = 1/R0,
this is shown by the crosses in Figure 2.13. Here the concept is relatively simple, R0 is
estimated as the inverse of the proportion of our sample that are sero-negative (suscepti-
ble). The complication with this approach is that we need to make sure that our sample
is representative of the entire population, as the level of sero-prevalence (proportion of
individuals recovered from infection) is expected to increase with age.

An alternative method that can take far better advantage of the information from a
serological survey is to once again utilise the age-dependent nature of the the likelihood
of being susceptible. For an individual of age a the standard SIR model predicts that
the probability an individual is still susceptible is given by P (a) ≈ exp(−aµ(R0 − 1)).
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Therefore if we know the ages of our serological sample we can construct the likelihood
that the data comes from a disease with a particular R0 value, and then find the R0 that
maximises this likelihood. If we have n individuals that are susceptible (sero-negative) of
ages a1, . . . , an, and m individuals that are ser-positive (ages b1, . . . , bm) then the likelihood
is:

L(R0) =
n∏

i=1

exp(−aiµ(R0 − 1))
m∏

i=1

[1 − exp(−biµ(R0 − 1))]

This use of additional age-related information together with serology provides a much
better prediction of the value of R0 (Figure 2.13, circles). However if we are free to choose
our serological sample from any members of the population then we should preferentially
pick individuals of an age close to (what we initially believe to be) the average age of
infection – as sampling many older individuals will provide little information as they are
all likely to be seropositive. In Figure 2.13, where R0 = 17, then just sampling individuals
in the 3 to 7 year old age range produces estimates of similar accuracy to those from the
case-based average age of infection assuming unbiased reporting (triangles).

8.3 ESTIMATING PARAMETERS IN GENERAL

The above likelihood argument provides a general framework in which models can be suc-
cessfully parameterised from data. Ideally as much information (and parameterisation)
should be gained from individual-level observations; often this provides a very accurate
parameterisation of individual-level characteristics such as average infectious and latent
periods, but is generally unreliable for transmission characteristics. For the missing pa-
rameters (for example in section 6 the equations (2.56-2.59) require a transmission rate
for both the infectious and carrier class) a maximum likelihood approach is often the most
suitable approach. For a given set of parameters we can determine the dynamics predicted
by the model and then calculate the likelihood that the observed data came from such
dynamics. By finding the set of parameters that maximise this likelihood we are selecting
a model which is in closest agreement with the available data. In the above example the
dynamics were the long-term equilibrium age-distribution of susceptibility, but there is no
reason why more dynamic behaviour could not be utilised. Finally, we note that this max-
imum likelihood approach is not confined to parameter selection but can even allow us to
distinguish between models, providing us with a means of selecting the most appropriate
framework.

In the chapters that follow we return to this question of parameterisation, where appro-
priate, and show how the extra levels of heterogeneity can be characterised from the type
of observation and survey data that are available.

9. SUMMARY
In this chapter, we have introduced the simplest models of epidemics, whose structure has
been determined by the biology of the aetiological agent and its effects on the host. We
have met (i) the SI model, which represents infections that are fatal, (ii) the SIS model
for infections that do not illicit a long-lasting immune response , (iii) the SIRS when im-
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munity is not permanent, and (iv) the SIR and SEIR models that describe host-pathogen
systems with life-long protection following infection.

We have introduced the epidemiologically important measure of an infection’s reproduc-
tive potential, R0. It summarises the number of new individuals infected when a single
infected experiences the infection in a wholly susceptible population. Irrespective of model
structure, we have seen that the infection will experience deterministic extinction unless
R0 > 1, which is intuitively appealing (and obvious).

By concentrating on these simple models, it has been possible to demonstrate a number
of important epidemiological principles:

• For an infection to invade a population, the initial fraction of the population in the
susceptible class has to exceed 1

R0
.

• Initially, the infection grows at a rate proportional to R0 − 1.

• In the absence of host demography, strongly immunising infections will always go ex-
tinct eventually. When the infection has died out, there remain some susceptibles in the
population. Thus, the chain of transmission is broken because there are too few infectives
and not due to a lack of susceptibles.

• To maintain an immunising infection, there needs to be replenishment of the susceptible
pool via recruitment.

• In the SIR model with host demography, the endemic equilibrium is feasible if R0 > 1
and is always stable. In this system, trajectories converge onto the asymptotic state via
damped oscillations, the period of which can be determined as a function of epidemiologi-
cally simple measures such as the mean age at infection and the effective infectious period
of the disease. This is often referred to as the “natural period” of the system.

• For diseases that fail to elicit long-term immunity to subsequent reinfection, the SIS
model is appropriate, which is identical to the standard logistic model population growth.
The key feature of that model is the presence of an exponentially stable equilibrium point.
This means the infection will always be feasible and stable if R0 > 1 and the approach to
the equilibrium is not oscillatory.
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• If we assume that infectious and latent periods are exactly fixed, then it is possible to
formulate models in discrete time. The take home message from these models is quali-
tatively similar to the standard SIR models, with the endemic equilibrium feasible and
stable as long as R0 > 1.

• Not surprisingly, discrete-time models are much less stable than their continuous-time
counterparts. The endemic equilibria are very weakly stable, with perturbations decaying
over long periods.

The focus in this chapter has been on model simplicity, often sweeping known epidemio-
logical and demographic complications under the carpet. In particular, we have focused
exclusively on deterministic approaches to understanding disease dynamics. Implicit in
this approach is an assumption that chance events (in the transmission process or host
population demography) are either unimportant or can be “averaged out”, to reveal the
true underlying system traits. In Chapter 6, we will relax this assumption and will explore
the consequences of stochasticity in SIR and SIS systems.


