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1. HOw TO USE THIS DOCUMENT

e These notes contain many sample calculations. It is important to do these
yourself—type them in at your keyboard and see what happens on your
screen—to get the feel of working in R.

e Exercises in the middle of a section should be done immediately when you get
to them, and make sure you have them right before moving on. Some more
challenging exercises (indicated by asterisks or identified as a Project) are given
at the end of some sections. These can be left until later, and may be assigned
as homework.

These notes are based in part on course materials by former TAs Colleen Webb, Jonathan
Rowell, and Daniel Fink at Cornell, Professors Lou Gross (University of Tennessee) and
Paul Fackler (NC State University), and on the book Getting Started with Matlab by
Rudra Pratap (Oxford University Press). It also draws on the documentation supplied
with R. Versions of this document have been used in courses taught by BB and AAK
at Florida, Michigan, and in the Ecology and Evolution of Infectious Diseases Workshop
over several years.

You can find many other similar introductions scattered around the web, or in the
“contributed documentation” section on the R web site (http://cran.r-project.org/
other-docs.html). This particular version is limited (it has similar coverage to Sec-
tions 1 and 2 of the Introduction to R that comes with R) and targets biologists who are
neither programmers nor statisticians.

2. WHAT 1S R?

R is a computing environment that combines

e a programming language called S, developed by John Chambers at Bell Labs,
that can be used for numerical simulation of deterministic and stochastic dynamic
models,

e an extensive set of functions for classical and modern statistical data analysis and
modeling,

e graphics functions for visualizing data and model output, and


http://cran.r-project.org/other-docs.html
http://cran.r-project.org/other-docs.html
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e extensive help and documentation facilities.

R is an open source project, available for free download via the Web (R Core Team,
2014b). Originally a research project in statistical computing (Thaka and Gentleman,
1996), it is now managed by a development team that includes a number of well-regarded
statisticians, and is widely used by statistical researchers (and a growing number of
theoretical ecologists and ecological modellers) as a platform for making new methods
available to users. The commercial implementation of S (called S-PLUS) offers an Office-
style “point and click” interface that R lacks. For our purposes, however, the advantage of
this front-end is outweighed by the fact that R is built on a faster and much less memory-
hungry implementation of S and is easier to interface with other languages. A standard
installation of of R also includes extensive documentation, including an introductory
manual (~ 100 pages) and a comprehensive reference manual (over 1000 pages). [There
are a number of graphical front-ends for R (see http://www.r-project.org/GUI/ and
http://www.rstudio.com). Before learning about these, however, you should learn a
little about R itself.]

3. GETTING STARTED WITH R

3.1. Installing R on your computer. The main source for R is the Comprehensive
R Archive Network (CRAN): http://cran.r-project.org. You can get the source
code and compile it yourself, but you may prefer at this point to download and install a
precompiled version. You can download precompiled binaries for most major platforms
from any CRAN mirror. To do so:

e 2o to http://cran.r-project.org/mirrors.html and find a mirror site that is
geographically somewhat near you.

e Find the appropriate page for your operating system — when you get to the
download section, go to base rather than contrib. Download the binary file
(e.g. base/R-x.y.z-win32.exe for Windows, R-x.y.z.dmg for MacOS, where
x.y.z is the version number). The binary files are large (30-60 megabytes) —
you will need to find a fast internet connection.

e Read and follow the instructions.

Be sure to install the latest version, which is 3.1.2, nicknamed “Pumpkin
Helmet”.

R should work well on any reasonably recent computer.

For Windows, R is installed by launching the downloaded file and following the on-screen
instructions. At the end you’ll have an R icon on your desktop that can be used to launch
the program. In the following, we’ve tried to mark Windows-specific items with a W) and
*nix (linux/unix/MacOSX)-specific items with a (X).


http://www.r-project.org/GUI/
http://www.rstudio.com
http://cran.r-project.org
http://cran.r-project.org/mirrors.html
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@) If you are using R on a machine where you have sufficient permissions, you may want
to edit some of your graphical user interface (GUI) options.

e To allow command and graphics windows to move independently on the desktop
(SDI, single-document interface, rather than MDI, multiple-document interface):
go to File/Edit/Preferences and click the radio button to set SDI instead of
MDI. This edits the Rconsole file. R will ask you where to save it; click through to
My Computer/Program Files/R/R-x.y.z/, where x.y.z stands for the version
of R. You will then need to restart R.

The standard distributions of R include several packages, user-contributed suites of add-
on functions. These notes use some additional packages which you will have to install. In
the Windows version additional packages can be installed easily from within R using the
Packages menu. Under all platforms, you can use the commands install.packages ()
and update.packages() to install and update packages, respectively. Most packages
are available pre-compiled for MacOS X and Windows; under *nix, R will download and
compile the source code for you.

3.2. Starting R. () Execute R from the command line.

@) Click on the icon on your desktop, or in the Start menu (if you allowed the Setup
program to make either or both of these). If you lose these shortcuts for some reason,
you can search for the executable file Rgui.exe on your hard drive, which will probably
be somewhere like Program™Files\R\R-X.X.X\bin\Rgui.exe.

3.3. Stopping R.
When entering, always look for the exit. —Lebanese proverb

You can stop R from the File menu (@)), or you can stop it by typing q() at the
command prompt (if you type q by itself, you will get some confusing output which is
actually R trying to tell you the definition of the q function; more on this later).

When you quit, R will ask you if you want to save the workspace (that is, all of the
variables you have defined in this session); in general, you should say “no” to avoid
clutter and unintentional loading of old data.

Should an R command seem to be stuck or take longer than you're willing to wait, click
on the stop sign on the menu bar or hit the Esc key (W)), or Ctrl-c (X)).

4. INTERACTIVE CALCULATIONS

When you start R it opens the console window. The console has a few basic menus at
the top; check them out on your own. The console is also where you enter commands
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for R to execute interactively, meaning that the command is executed and the result is
displayed as soon as you hit the Enter key. For example, at the command prompt >,
type in 2+2 and hit Enter; you will see

2+2

## [1] 4

To do anything complicated, the results from calculations have to be stored in (assigned
to) variables. For example:

a <- 2+2

R automatically creates the variable a and stores the result (4) in it, but R doesn’t print
anything. This may seem strange, but you’ll often be creating and manipulating huge
sets of data that would fill many screens, so the default is to not print the results. To
ask R to print the value, just type the variable name by itself

a

## [1] 4

The [1] at the beginning of the line is just R printing an index of element numbers; if
you print a result that displays on multiple lines, R will put an index at the beginning
of each line. print(a) also works to print the value of a variable. By default, a variable
created this way is a vector (an ordered list), and it is numeric because we gave R a
number rather than (e.g.) a character string like "pxqr"; in this case a is a numeric
vector of length 1, which acts just like a number.

You could also type a <- 2+2; a, using a semicolon to put two or more commands on
a single line. Conversely, you can break lines anywhere that R can tell you haven’t
finished your command and R will give you a “continuation” prompt (+) to let you
know that it doesn’t think you’re finished yet: try typing

a <- 3x(4+
5)

to see what happens (this often happens e.g. if you forget to close parentheses). If you get
stuck continuing a command you don’t want—e.g., you opened the wrong parentheses—
just hit Ctrl-c (%)), the Esc key or the stop icon in the menu bar (®)) to get out.

You can assign values to variables in R using the <- operator. There are several alternative
forms for assignment. Each of these three commands accomplishes the same thing; the
first is the preferred form, however.

a <- 242
2+2 -> a
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a = 2+2

Variable names in R must begin with a letter, followed by alphanumeric characters. You
can break up long names with a period, as in long.variable.number.3, an underscore
(very_very_long variable name), or by using camel case (quiteLongVariableName);
you cannot use blank spaces in variable names. R is case sensitive: Abc and
abc are different variables. Make variable names long enough to remember, short
enough to type. N.per.ha or pop.density are better than x and y (too short) or
available.nitrogen.per.hectare (too long). Avoid c, 1, q, t, C, D, F, I, and T, which
are either built-in R functions or hard to tell apart.

R does calculations with variables as if they were numbers. It uses +, -, *, /, and ~
for addition, subtraction, multiplication, division and exponentiation, respectively. For
example:

R = B
y <= 2
zl <- xxy
z2 <- x/y
z3 <- X7y
zl; z2; z3

# [1] 10
## [1] 2.5
## [1] 25

Even though R did not display the values of x and y, it “remembers” that it assigned
values to them. Type x; y or print(x); print(y) to display the values.

You can retrieve and edit previous commands. The up-arrow (1 ) key or Ctrl-p recalls
previous commands to the prompt. For example, you can bring back the second-to-last
command and edit it to

z3 <- 2¥x7y

Experiment with the |, —, <—, Home and End keys too.

You can combine several operations in one calculation:

A <-3
C <- (A+2*sqrt(A))/(A+5%sqrt(A)); C

## [1] 0.5543706

Parentheses specify the order of operations. The command

C <- A+2%sqrt(A)/A+5xsqrt (A)
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is not the same as the one above; rather, it is equivalent to

C <- A + 2x(sqrt(A)/A) + B*sqrt(A)

The default order of operations is: (1) parentheses, (2) exponentiation, (3) multiplication
and division, (4) addition and subtraction.

> b <- 12-4/2"3 gives 12 - 4/8 = 12 - 0.5 = 11.5
> b <- (12-4)/273 gives 8/8 =1

> b <- -172 gives -(172) = -1

> b <- (-1)"2 gives 1

In complicated expressions it’s best to use parentheses to specify explicitly what
you want, such as > b <- 12 - (4/(273)) or at least > b <- 12 - 4/(273) ; a
few extra sets of parentheses never hurt anything, although if you get confused it’s better
to think through the order of operations rather than flailing around adding parentheses
at random.

R also has many built-in mathematical functions that operate on variables (Table 1
shows a few).

Exercise 1. Using editing shortcuts wherever you can, use R to compute the values of

(1) % and compare it with (1 — 2=)~* (If any square brackets [| show up in your

web browser, replace them with regular parentheses ().)
(2) (a) 14+0.2
(b) 14+ 0.2+ 0.22/2
() 1+0.240.22/2+0.2°/6
(d) €%? (remembering that R knows exp() but not e; how would you get R to
tell you the value of e? What is the point of this exercise?)

(3) the standard normal probability density, \/%76_952/ 2 for values of v = 1 and z = 2
(R knows 7 as pi.) (You can check your answers against the built-in function
for the normal distribution; dnorm(x=c(1,2)) should give you the values for the
standard normal for z = 1 and = = 2.)

5. THE HELP SYSTEM

R has a help system, although it is generally better for providing detail or reminding you
how to do things than for basic “how do I ...?7?” questions.

e You can get help on any R function by entering
7foo

(where foo is the name of the function you are interested in) in the console window
(e.g., try ?sin).
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e W The ‘Help’ menu on the tool bar provides links to other documentation, in-
cluding the manuals and FAQs, and a Search facility (‘Apropos’ on the menu)
which is useful if you sort of maybe remember part of the the name of what it is
you need help on.

e Typing help.start() opens a web browser with help information.

e example(cmd) will run any examples that are included in the help page for com-
mand cmd.

e demo (topic) runs demonstration code on topic topic: type demo() by itself to
list all available demos

By default, R’s help system only provides information about functions that are in the
base system and packages that you have loaded with library (see below).

e 77topic or help.search("topic") (with quotes) will list information related
to topic available in the base system or in any extra installed packages: then
use 7topic to see the information, perhaps using library(pkg) to load the ap-
propriate package first. help.search uses “fuzzy matching” — for example,
help.search("log") finds 528 entries (on my particular system) including lots
of functions with “plot”, which includes the letters “lot”, which are almost like
“log”. If you can’t stand it, you can turn this behavior off by specifying the incan-
tation help.search("log",agrep=FALSE) (81 results which still include matches
for “logistic”, “myelogenous”, and “phylogeny” ...)

e help(package="pkg") will list all the help pages for a loaded package.

e example(fun) will run the examples (if any) given in the help for a particular
function fun: e.g., example(log)

e RSiteSearch("topic") does a full-text search of all the R documentation and
the mailing list archives for information on topic (you need an active internet
connection).

e the sos package is a web-aware help function that searches all of the packages on
CRAN; its findFn function tries to find and organize functions in any package
on CRAN that match a search string (again, you need a network connection for
this).

Try out one or more of these aspects of the help system.

Other (on-line) help resources. Paul Johnson’s “R tips” web page (http://pj.
freefaculty.org/R/Rtips.html) answers a number of “how do I ...?” questions, al-
though it’s out of date in some places. The R “wiki” (http://wiki.r-project.org) is
a newer venue for help information. The R tips page is (slowly) being moved over to the
wiki, which will eventually (we hope) contain a lot more information. You can also edit
the wiki and add your own pages!

Also see:


http://pj.freefaculty.org/R/Rtips.html
http://pj.freefaculty.org/R/Rtips.html
http://wiki.r-project.org
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abs() absolute value

cos(), sin(), tan() cosine, sine, tangent of angle x in radians
exp() exponential function, e”

log(Q) natural (base-e) logarithm

log10() common (base-10) logarithm

sqrt () square root

TABLE 1. Some of the built-in mathematical functions in R. You can get
a more complete list from the help system: ?Arithmetic for simple, ?log
for logarithmic, ?sin for trigonometric, and ?Special for special functions.

e R reference card: http://cran.r-project.org/doc/contrib/Short-refcard.
pdf

e Mathematica to R reference:
http://wiki.r-project.org/rwiki/doku.php?id=getting-started:
translations:mathematica2r

e Octave (free MATLAB clone) to R: http://wiki.r-project.org/rwiki/doku.
php?id=getting-started:translations:octave2r

e R ecology (“environmetrics”) task view: cran.r-project.org/web/views/
Environmetrics.html

e contributed documentation at CRAN: http://cran.us.r-project.org/
other-docs.html

Exercise 2. Do an Apropos on sin to see what it does. Now enter the command

help.search("sin")

and see what that does (answer: help.search pulls up all help pages that include ‘sin’
anywhere in their title or text. Apropos just looks at the name of the function). Note
that ??sin is equivalent to help.search("sin"). If you have a net connection, try
RSiteSearch("sin") from the command line or the equivalent from the menu and see
what happens.

6. A FIRST INTERACTIVE SESSION: LINEAR REGRESSION

To get a feel for working in R we’ll fit a straight-line model (linear regression) to data.
Below are some data on the maximum growth rate r,,, of laboratory populations of the
green alga Chlorella vulgaris as a function of light intensity (uE per m? per second).
These experiments were run during the system-design phase of the study reported by
Fussman et al. (2000).

Light: 20, 20, 20, 20, 21, 24, 44, 60, 90, 94, 101
Fmax: 1.73, 1.65, 2.02, 1.89, 2.61, 1.36, 2.37, 2.08, 2.69, 2.32, 3.67


http://cran.r-project.org/doc/contrib/Short-refcard.pdf
http://cran.r-project.org/doc/contrib/Short-refcard.pdf
http://wiki.r-project.org/rwiki/doku.php?id=getting-started:translations:mathematica2r
http://wiki.r-project.org/rwiki/doku.php?id=getting-started:translations:mathematica2r
http://wiki.r-project.org/rwiki/doku.php?id=getting-started:translations:octave2r
http://wiki.r-project.org/rwiki/doku.php?id=getting-started:translations:octave2r
cran.r-project.org/web/views/Environmetrics.html
cran.r-project.org/web/views/Environmetrics.html
http://cran.us.r-project.org/other-docs.html
http://cran.us.r-project.org/other-docs.html
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To analyze these data in R, first enter them as numerical vectors:

Light <- ¢(20,20,20,20,21,24,44,60,90,94,101)
rmax <- ¢(1.73,1.65,2.02,1.89,2.61,1.36,2.37,2.08,2.69,2.32,3.67)

The function c() combines the individual numbers into a vector. Try recalling (with 1)
and modifying the above command to

Light <- 20,20,20,20,21,24,44,60,90,94,101

and see the error message you get: in order to create a vector of specified numbers, you
must use the c() function.

To see a histogram of the growth rates enter hist (rmax), which opens a graphics window
and displays the histogram. There are many other built-in statistics functions: for
example mean (rmax) gets you the mean, and sd(rmax) and var (rmax) give the standard
deviation and variance, respectively. Play around with these functions, and any others
you can think of.

To see how the algal rate of increase varies with light intensity, type

plot(Light,rmax)

to plot rmax (y) against Light (x). Based on what you see, does it seem reasonable
to hypothesize a linear relationship between these variables?” Don’t close this plot
window: we’ll soon be adding to it.

To perform linear regression we create a linear model using the 1m() function:

fit <- Im(rmax~Light)

(Note that the variables in the formula rmax Light appear in an order opposite to that
in plot () command above. In the formula, rmax is the response variable and Light is
the predictor.)

The 1m command created an object named fit. In R, an object is a data structure
consisting of multiple parts. In this case, fit holds the results of the linear regression
analysis. Unlike most statistics packages, R rarely summarizes an analysis for you by
default. Statistical analyses in R are done by creating a model, and then giving additional
commands to extract desired information about the model or display results graphically.

To get a summary of the results, enter the command summary(fit). R sets up model
objects (more on this later) so that the function summary () “knows” that fit was created
by 1m(), and produces an appropriate summary of results for an 1m() object:

summary (fit)
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##

## Call:

## 1lm(formula = rmax ~ Light)

#i#

## Residuals:

## Min 1Q Median 3Q Max

## -0.5478 -0.2607 -0.1166 0.1783 0.7431

#i#

## Coefficients:

## Estimate Std. Error t value Pr(>|t])

## (Intercept) 1.580952  0.244519 6.466 0.000116 *x*x

## Light 0.013618 0.004317 3.154 0.011654 *

#H -

## Signif. codes: 0 'sx*x*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 0.4583 on 9 degrees of freedom
## Multiple R-squared: 0.5251,Adjusted R-squared: 0.4723
## F-statistic: 9.951 on 1 and 9 DF, p-value: 0.01165

If you've had (and remember) a statistics course the output will make sense to you. The
table of coefficients gives the estimated regression line as rmax = 1.58 4+ 0.0136 x Light.
Associated with each coefficient is the standard error of the estimate, the t-statistic
value for testing whether the coefficient is nonzero, and the p-value corresponding to
the t-statistic. Below the table, the adjusted R? gives the estimated fraction of the
variance explained by the regression line, and the p-value in the last line is an overall
test for significance of the model against the null hypothesis that the response variable
is independent of the predictors.

You can add the regression line to the plot of the data with a function taking fit as its

input (if you closed the plot of the data, you will need to create it again in order to add
the regression line):

abline(fit)
(abline, pronounced “a b line”, is a general-purpose function for adding lines to a plot:

you can specify horizontal or vertical lines, a slope and an intercept, or a regression
model: 7abline).

You can get the coefficients by using the coef () function:
coef (fit)

## (Intercept) Light
## 1.58095214 0.01361776
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3.5

rmax

20 40 60 80 100

Light

F1GURE 1. Graphical summary of regression analysis

You can also also “interrogate” fit directly. Type names(fit) to get a list of the
components of fit, and then extract components according to their names using the $
symbol.

names (fit)

## [1] "coefficients" '"residuals" "effects" "rank"
## [5] "fitted.values" "assign" "qr" "df .residual"
## [9] "xlevels" D eIl "terms" "model"

You can get the regression coefficients this way:

fit$coefficients

## (Intercept) Light
## 1.58095214 0.01361776
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aov, anova Analysis of variance or deviance

1m Linear models (regression, ANOVA, ANCOVA)

glm Generalized linear models (e.g. logistic, Poisson regres-
sion)

gam Generalized additive models (in package mgcv)

nls Fit nonlinear models by least-squares

lme, nlme Linear and nonlinear mixed-effects models (repeated
measures, block effects, spatial models): in package nlme

boot Package: bootstrapping functions

splines Package: nonparametric regression (more in packages

fields, KernSmooth, logspline, sm and others)
princomp, manova, lda, Multivariate analysis (some in package MASS; also see

cancor packages vegan, ade4)
survival Package: survival analysis
tree, rpart Packages: tree-based regression

TABLE 2. A few of the functions and packages in R for statistical modeling
and data analysis. There are many more, but you will have to learn about
them somewhere else.

It’s good to be able to look inside R objects when necessary, but all other things be-
ing equal you should prefer (e.g.) coef(x) to x$coefficients. For more information
(perhaps more than you want) about fit, use str(fit) (for structure).

7. STATISTICS IN R

Some of the important functions and packages (collections of functions) for statisti-
cal modeling and data analysis are summarized in Table 2. The book Modern Ap-
plied Statistics with S (Venables and Ripley, 2002) gives a good practical overview,
and a list of available packages and their contents can be found at the main R web-
site (http://cran.r-project.org, and click on Packages).

8. THE R PACKAGE SYSTEM
R has many extra packages that provide extra functions. You may be able to install new
packages from a menu within R. You can always type, e.g.,

install.packages("plotrix")

This installs the plotrix package. You can install more than one package at a time:

n n

install.packages(c("ellipse","plotrix"))


http://cran.r-project.org
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(c stands for “combine”, and is the command for combining multiple things into a single
object.) If the machine on which you use R is not connected to the Internet, you can
download the packages to some other medium (such as a flash drive or CD) and install
them later, using Install from local zip file in the menu (W)) or

install.packages("plotrix",repos=NULL)

If you do not have permission to install packages in R’s central directory, R will may ask
whether you want to install the packages in a user-specific directory. It is safe to answer
“yes” here.

You will frequently get a warning message something like

Warning message: In file.create(f.tg)
cannot create file '.../packages.html', reason 'Permission denied'.

Don’t worry about this; it means the package has been installed successfully, but the
main help system index files couldn’t be updated because of file permissions problems.

9. VECTORS

The most basic data-type in R is the vector. A vector is just a 1-dimensional array of
values. Several different kinds of vectors are available: (1) numerical vectors, (2) logical
vectors, (3) character-string vectors, (4) factors, (5) ordered factors, and (6) lists. Lists
are treated a bit differently in R than the other kinds, so we’ll postpone talking about
them until later.

Besides its class—which kind of vector it is—a vector’s only other necessary attribute is
its length. Optionally, vectors in R can have a names attribute, which allows you to refer
to entries by name.

We’ve already how to create vectors in R using the ¢ function, e.g.,

<- ¢(1,3,5,7,9,11)
c(6.5,4.3,9.1,-8.5,0,3.6)

<- c("dog","cat","dormouse","chinchilla")
<- c(a=4,b=5.5,c=8.8)

= N< X
N
|

length(x)
## [1] 6
mode (y)

## [1] "numeric"
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mode (z)
## [1] "character"
names (w)

## [1] nan ||b|| IICII

The nice thing about having vectors as a basic type is that many operations in R are
efficiently vectorized. That is, the operation acts on the vector as a unit, saving you the
trouble of treating each entry individually. For example:

x <- x+1
xx <- sqrt(x)
X; XX

## [1] 2 4 6 8 10 12
## [1] 1.414214 2.000000 2.449490 2.828427 3.162278 3.464102

Notice that the operations were applied to every entry in the vector. Similarly, commands
like x-5, 2*x, x/10, and x~2 apply subtraction, multiplication, and division to each
element of the vector. The same is true for operations involving multiple vectors:

Xty

## [1] 8.5 8.3 15.1 -0.5 10.0 15.6

Exercise 3. What do the %% and %/% operators do?

In R the default is to apply functions and operations to vectors in an element by ele-
ment manner; anything else (e.g. matrix multiplication) is done using special notation
(discussed below).

Warning: element recycling. R has a very useful, but unusual and perhaps unexpected,
behavior when two vector operands in a vectorized operation are of unequal lengths. It
will effectively extend the shorter vector using element “re-cycling”: re-using elements of
the shorter vector. Thus

x <- ¢(1,2,3)
y <- ¢(10,20,30,40,50,60)
Xty

## [1] 11 22 33 41 52 63

y=x
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## [1] 9 18 27 39 48 57

Exercise 4. What happens when the length of the longer vector is not a multiple of
that of the shorter?

9.1. Functions for creating vectors. A set of regularly spaced values can
be created with the seq function, whose syntax is x <- seq(from,to,by) or
x <- seq(from,to) or x <- seq(from,to,length.out). The first form generates a
vector (from,from+by,from+2*by,...) with the last entry not extending further than
than to; in the second form the value of by is assumed to be 1 or -1, depending on whether
from or to is larger; and the third form creates a vector with the desired endpoints and
length. There is also a shortcut for creating vectors with by=1:

1:8

## [1] 1 2345678

Exercise 5. Use seq to create the vector v=(1 5 9 13), and to create a vector going
from 1 to 5 in increments of 0.2 .

Exercise 6. What happens when to is less than from in seq? This is one of the first
“gotchas” R newbies run into.

A constant vector such as (1 1 1 1) can be created with rep function, whose basic
syntax is rep(values,lengths) . For example,

rep(3,5)

## [1] 3 3 3 3 3

creates a vector in which the value 3 is repeated 5 times. rep() will repeat a whole
vector multiple times

rep(1:3,3)

## [11 123123123

or will repeat each of the elements in a vector a given number of times:

rep(1:3,each=3)

## [1] 111222333

Even more flexibly, you can repeat each element in the vector a different number of times:
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seq(from,to,by=1) Vector of evenly spaced values (default increment =
1)

seq(from, to, length.out) Vector of evenly spaced values, specified length

clu,v,...) Combine a set of numbers and /or vectors into a single
vector

rep(a,b) Create vector by repeating elements of a b times each

hist(v) Histogram plot of value in v

mean (v) ,var(v),sd(v) Estimate of population mean, variance, standard de-
viation based on data values in v

cov(v,w) Covariance between two vectors

cor (v,w) Correlation between two vectors

TABLE 3. Some important R functions for creating and working with vec-
tors. Many of these have other optional arguments; use the help system
(e.g. 7?cor) for more information. The statistical functions such as var
regard the values as samples from a population and compute an estimate
of the population statistic; for example sd(1:3)=1.

rep(c(3,4),c(2,5))

## [1] 3344444

The value 3 was repeated 2 times, followed by the value 4 repeated 5 times. rep() can
be a little bit mind-blowing as you get started, but you'll get used to it—and it will turn
out to be useful.

Some useful functions for creating and working with vectors are listed in Table 3.

9.2. Vector indexing. It is often necessary to extract a specific entry or other part of
a vector. This procedure is called vector indexing, and uses square brackets ([]):

z <- ¢(1,3,5,7,9,11); z[3]

## [1]1 5

[How would you use seq() to construct z?] z[3] extracts the third item, or element, in
the vector z. You can also access a block of elements by giving a vector of indices:

v <- z[c(2,3,4,5)]

or

v <- z[2:5]; v

## [1]1 357 9
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This has extracted the 2" through 5" elements in the vector.
Exercise 7. If you enter v <- z[seq(1,5,2)], what will happen? Make sure you un-

derstand why.

Extracted parts of a vector don’t have to be regularly spaced. For example

v <- z[c(1,2,5)]; v
## [1] 1 3 9

Indexing is also used to set specific values within a vector. For example,

z[1] <- 12

changes the value of the first entry in z while leaving all the rest alone, and

changes the 1%, 3", and 5" values.

Elements in a named vector can be accessed and modified by name as well as by position.
Thus

w

## a b C
## 4.0 5.5 8.8

W[“a”]

## a
#it 4

W[C(”C","b")]

#it c b
## 8.8 5.5

W["b”] <- 0
W

## a b c
## 4.0 0.0 8.8

Exercise 8. Write a one-line command to extract a vector consisting of the second,
first, and third elements of z in that order.
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Exercise 9. What happens when I set the value of an element that doesn’t exist? For
example, try

z[9] <- 11

Exercise 10. Write code that computes values of y = 8;3 for x = 1,2,---,10, and

plots y versus x with the points plotted and connected by a line.

Warning: unavoidable imprecision. Note that comparing very similar numeric values can
be tricky: rounding can happen, and some numbers cannot be represented exactly on a
digital computer. By default, R displays 7 significant digits (options("digits")).

x <= 1.999999; x; x-2

## [1] 1.999999
## [1] -1e-06

x <- 1.9999999999999; x; x-2

## [1] 2
## [1] -9.992007e-14

x <= 1.99999999999999999; x; x-2

## [1] 2
## [1] ©

All the digits are still there, in the second case, but they are not shown. Also note that
x-2 is not exactly —1 x 107!3; this is unavoidable. What happened in the third case?

Exercise 11. The sum of the geometric series 1 + 7 + 72 + 73 + ... + r" approaches the
limit 1/(1 — ) for r < 1 as n — oo. Take r = 0.5 and n = 10, and write a one-line
command that creates the vector G = (r°, 7!, r? ... r"). Compare the sum (using sum())

of this vector to the limiting value 1/(1 — r). Repeat for n = 50.

9.3. Logical operations. Some operations return a logical value (i.e., TRUE or FALSE).
For example, try:

a <-1; b <= 3;
c<-a<xb

d <- (a > b)
c; d
## [1] TRUE

## [1] FALSE
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x <y less than

X >y greater than

X <=y less than or equal to

X >=y greater than or equal to
X ==y equal to

xl=y not equal to

TABLE 4. Some comparison operators in R. Use ?Comparison to learn more.

The parentheses around a > b above are optional but do make the code easier to read.
Be careful when you make comparisons with negative values: a<-1 may surprise you by
setting a=1, because <- is the assignment operator in R. Use a< -1 or a<(-1) to make
this comparison.

When we compare two vectors or matrices, comparisons are done element-by-element
(and the recycling rule applies). For example,

x <= 1:5; b <- (x<=3); b

## [1] TRUE TRUE TRUE FALSE FALSE

So if x and y are vectors, then (x==y) will return a vector of values giving the element-
by-element comparisons. If you want to know whether x and y are identical vectors, use
identical(x,y) or all.equal(x,y). You can use ?Logical to read more about logical
operations. Note the difference between = and ==: can you figure out what
happened in the following cautionary tale?

## [1] FALSE FALSE FALSE

a=b
a==

## [1] TRUE TRUE TRUE

Exclamation points ! are used in R to signify logical negation; != (not !==) means “not
equal to”.

R also does arithmetic on logical values, treating TRUE as 1 and FALSE as 0. So sum(b)
returns the value 3, telling us that three entries of x satisfied the condition (x<=3). This
is useful for (e.g.) seeing how many of the elements of a vector are larger than a cutoff
value.
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More complicated conditions are built by using logical operators to combine compar-

isons:
! logical NOT

& logical AND, elementwise
&& logical AND, first element only
| logical OR, elementwise
|l logical OR, first element only
xor(x,y) exclusive OR, elementwise

The two forms of logical OR (| and ||) are non-exclusive, meaning that x|y is true if
either x or y or both are true. For example, try

a <- C(1’2:3,4)

b <- ¢(1,1,5,5)
(a<b) & (a>3)

## [1] FALSE FALSE FALSE TRUE
(a<b) | (a>3)

## [1] FALSE FALSE TRUE TRUE

and make sure you understand what happened. Use xor when exclusive OR is needed.
The two forms of AND and OR differ in how they handle vectors. The shorter one does
element-by-element comparisons; the longer one only looks at the first element in each
vector.

9.4. More on vector indexing. We can also use logical vectors (lists of TRUE and FALSE
values) to pick elements out of vectors. This is important, e.g., for subsetting data.

As a simple example, we might want to focus on just the low-light values of 7., in the
Chlorella example:

Light <- X[,1]
rmax <- X[,2];
lowLight <- Light[Light<50]

lowLightrmax <- rmax[Light<50]
lowLight

## [1] 20 20 20 20 21 24 44
lowLightrmax

## [1] 1.73 1.65 2.02 1.89 2.61 1.36 2.37
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What is really happening here (think about it for a minute) is that Light<50 generates
a logical vector the same length as Light (TRUE TRUE TRUE ...) which is then used to
select the appropriate values.

If you want the positions at which Light is lower than 50, you could
say (1:length(Light))[Light<50], but you can also use a built-in function:
which(Light<50). If you wanted the position at which the maximum value of Light
occurs, you could say which(Light==max(Light)). (This normally results in a vector
of length 1; when could it give a longer vector?) There is even a built-in command for
this specific function, which.max () (although which.max() always returns just the first
position at which the maximum occurs).

(What would happen if instead of setting lowLight you replaced Light by saying
Light <- Light[Light<50]7 Why would that be the wrong thing to do?)

We can also combine logical operators (making sure to use the element-by-element & and
| versions of AND and OR):

Light [Light<50 & rmax <= 2.0]
## [1] 20 20 20 24
rmax [Light<60 & rmax <= 2.0]

## [1] 1.73 1.65 1.89 1.36

Exercise 12. runif(n) is a function (more on it soon) that generates a vector of n
random, uniformly distributed numbers between 0 and 1. Create a vector of 20 numbers,
then find the subset of those numbers that is less than the mean.

*Exercise 13. Find the positions of the elements that are less than the mean of the
vector you just created (e.g. if your vector were (0.1 0.9 0.7 0.3) the answer would
be (1 4)).

As I mentioned in passing above, vectors can have names associated with their elements:
if they do, you can also extract elements by name (use names() to find out the names).

x <- c(first=7,second=5,third=2)
names (x)

## [1] "first" "second" "third"
x["first"]

## first
#it 7
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x[c("third","first")]

## third first
#it 2 7

x[c('second', 'first')] <- c(8,9); x

## first second third
#it 9 8 2

Finally, it is sometimes handy to be able to drop a particular set of elements, rather
than taking a particular set: you can do this with negative indices. For example, x[-1]
extracts all but the first element of a vector.

*Exercise 14. Specify two ways to take only the elements in the odd positions (first,
third, ...) of a vector of arbitrary length.

10. MATRICES AND ARRAYS

10.1. Creating matrices. A matrix is a two-dimensional array of items. Most straight-
forwardly, we can create a matrix by specifying the number of rows and columns, and
specifying the entries. For example

X <- matrix(c(1,2,3,4,5,6) ,nrow=2,ncol=3); X

## [,11 [,2]1 [,3]
## [1,] 1 3 5
# [2,] 2 4 6

takes the values 1 to 6 and reshapes them into a 2 by 3 matrix. Note that the values in
the data vector are put into the matrix column-wise, by default. You can change this by
using the optional parameter byrow:

A <- matrix(1:9,nrow=3,ncol=3,byrow=TRUE); A

#it [,11 [,2]1 [,3]
## [1,] 1 2 3
## [2,] 4 5 6
## [3,] 7 8 9

R will re-cycle through entries in the data vector, if need be, to fill a matrix of the
specified size. So for example

matrix(1,nrow=50,ncol=50)
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creates a 50x50 matrix, every entry of which is 1.

Exercise 15. Use a command of the form X <- matrix(v,nrow=2,ncol=4) where v is
a data vector, to create the following matrix X:

[,11 [,2]1 [,3]1 [,4]
[1,] 1 1 1 1
[2,] 2 2 2 2

R will also collapse a matrix to behave like a vector whenever it makes sense: for example
sum(X) above is 12.

Exercise 16. Use rnorm and matrix to create a 5x7 matrix of Gaussian random num-
bers with mean 1 and standard deviation 2.

Another useful function for creating matrices is diag. diag(v,n) creates an nxn matrix
with data vector v on its diagonal. So for example diag(1,5) creates the 5x5 identity
matriz, which has 1s on the diagonal and 0 everywhere else.

Finally, one can use the data.entry function. This function can only edit existing
matrices, but for example (try this now!)

A <- matrix(0,3,4); data.entry(A)
will create A as a 3x4 matrix, and then call up a spreadsheet-like interface in which the
values can be edited directly.

matrix(v,nrow=m,ncol=n) m X n matrix using the values in v

t(A) transpose (exchange rows and columns) of matrix A

dim(X) dimensions of matrix X. dim(X) [1]1=# rows,
dim(X) [2] =# columns

data.entry(A) call up a spreadsheet-like interface to edit the values in A

diag(v,n) diagonal n x n matrix with v on diagonal, 0 elsewhere (v
is 1 by default, so diag(n) gives an n x n identity matrix)

cbind(a,b,c,...) combine compatible objects by attaching them along
columns

rbind(a,b,c,...) combine compatible objects by attaching them along rows

as.matrix(x) convert an object of some other type to a matrix, if pos-
sible

outer(v,w) “outer product” of vectors v, w: the matrix whose (4, j)™

element is v[il*w[j]

TABLE 5. Some important functions for creating and working with ma-
trices. Many of these have additional optional arguments; use the help
system for full details.
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10.2. cbind and rbind. If their sizes match, vectors can be combined to form matrices,
and matrices can be combined with vectors or matrices to form other matrices. The
functions that do this are cbind and rbind.

cbind binds together columns of two objects. One thing it can do is put vectors together
to form a matrix:

C <- cbind(1:3,4:6,5:7); C

## (,11 [,2] [,3]
## [1,] 1 4 5
## [2,] 2 5 6
## [3,] 3 6 7

Remember that R interprets vectors as row or column vectors according to what you're
doing with them. Here it treats them as column vectors so that columns exist to be
bound together. On the other hand,

D <- rbind(1:3,4:6); D

#t [,11 [,21 [,3]
## [1,] 1 2 3
## [2,] 4 5 6

treats them as rows. Now we have two matrices that can be combined.

Exercise 17. Verify that rbind(C,D) works, cbind(C,C) works, but cbind(C,D)
doesn’t. Why not?

10.3. Matrix indexing. Matrix indexing is like vector indexing except that you have
to specify both the row and column, or range of rows and columns. For example
z <- A[2,3] sets z equal to 6, which is the (2" row, 3'4 column) entry of the matrix A
that you recently created, and

A[2,2:3];
## [1] 5 6
B <- A[2:3,1:2]; B
## (.11 [,2]

## [1,] 4 5
## [2,] 7 8

There is an easy shortcut to extract entire rows or columns: leave out the limits, leaving
a blank before or after the comma.
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first.row <- A[1,]; first.row

## [1] 1 2 3

second.column <- A[,2]; second.column;

## [1] 25 8

(What does A[,] do?)

As with vectors, indexing also works in reverse for assigning values to matrix entries. For
example,

Al1,1] <- 12; A

## (,11 [,2] [,3]
## [1,] 12 2 3
## [2,] 4 5 6
## [3,] 7 8 9

The same can be done with blocks, rows, or columns, for example

A[ly] <- 0(2,435); A

#it [,11 [,2]1 [,3]
## [1,] 2 4 5
## [2,] 4 5 6
## [3,] 7 8 9

If you use which() on a matrix, R will normally treat the matrix as a vector—so for
example which(A==8) will give the answer 6 (figure out why). However, which() does
have an option that will treat its argument as a matrix:

which(A>=8,arr.ind=TRUE)

## row col
## [1,] 3 2
## [2,] 3 3

10.4. Arrays. The generalization of the matrix to more (or less) than 2 dimensions is
the array. In fact, in R, a matrix is nothing other than a 2-dimensional array. How does
R store arrays? In the simplest possible way: an array is just a vector plus information
on the size of the array. Most straightforwardly, we can create an array from a vector:

X <- array(1:24,dim=c(3,4,2)); X

## ., 1
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(.11 [,21 [,3] [,4]

[1,] 1 4
[2,] 2 5
[3,] 3 6

7
8
9

10
11
12

(,11 [,2] [,3] [,4]

’ b 2

[1,] 13 16
[2,] 14 17
[3,] 15 18

19
20
21

22
23
24

27

Note, again, that the arrays are filled in a particular order: the first dimension first, then

the second, and so on. A one-dimensional array is subtly different from a vector:

y <- 1:5; y

##

z <- array(1:5,dim=5); z

[1] 1 2 345

### [1] 1 2345

y::

## [1] TRUE TRUE TRUE TRUE TRUE

identical(y,z)

## [1] FALSE

dim(y); dim(z)

## NULL
## [1] 5

Exercise 18. What happens when we set the dimension attribute on a vector? For
example:

x <- seq(1,27)
dim(x) <- c(3,9)
is.array(x)
is.matrix(x)
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11. FACTORS

For dealing with measurements on the nominal and ordinal scales (Stevens, 1946), R
provides vectors of type factor. A factor is a variable that can take one of a finite
number of distinct levels. To construct a factor, we can apply the factor function to a
vector of any class:

x <- rep(c(1,2),each=3); factor(x)

## [1] 1 1
## Levels:

1222

12

trochee <- c("jetpack","ferret","pizza","lawyer")
trochee <- factor(trochee); trochee

## [1] jetpack ferret pizza  lawyer
## Levels: ferret jetpack lawyer pizza

By default, factor sets the levels to the unique set of values taken by the vector. To
modify that behavior, there is the levels argument:

factor(trochee,levels=c("ferret","pizza","cowboy","scrapple"))

## [1] <NA> ferret pizza <NA>
## Levels: ferret pizza cowboy scrapple

Note that the order of the levels is arbitrary, in keeping with the fact that the only
operation permissible on the nominal scale is the test for equality. In particular, the
factors created with the factor command are un-ordered: there is no sense in which we
can ask whether, e.g., ferret < cowboy.

To represent variables measured on the ordinal scale, R provides ordered factors, con-
structed via the ordered function. An ordered factor is just like an un-ordered factor
except that the order of the levels matters:

x <- ordered(sample(x=letters,size=22,replace=TRUE)); x

## [l gavudojpwzekltgfgtrgft
1<

t c
## 18 Levels: a<c <d<e<f<<g<j<kc«< 0<p<qg<r<t<...<z

Here, we’ve relied on ordered’s default behavior, which is to put the levels in alphabetical
order. It’s typically safer to specify explicitly what order we want:

x <- ordered(x,levels=rev(letters))
x[1:5] < x[18:22]

## [1] FALSE FALSE TRUE TRUE TRUE
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Exercise 19. Look up the documentation on the sample function used above.
Exercise 20. Can I make a matrix or an array out of a factor variable?

*Exercise 21. What is the internal representation of factors in R? Try converting factors
to integers using as.integer. Try converting an integer vector to a factor using factor.

12. OTHER STRUCTURES: LISTS AND DATA FRAMES

12.1. Lists. While vectors and matrices may seem familiar, lists may be new to you.
Vectors and matrices have to contain elements that are all the same type: lists in R can
contain anything—vectors, matrices, other lists, .... Indexing is a little different too:
use [[ 1] to extract an element of a list by number or name or $ to extract an element
by name (only). Given a list like this:

L <- list(A=x,B=trochee,C=c("a","b","c"))

Then L$A, LL["A"]], and L[[1]] will each return the first element of the list. To extract
a sublist, use the ordinary single square brackets: []:

L[C(IIBII s llcll)]

## $B

## [1] jetpack ferret pizza  lawyer
## Levels: ferret jetpack lawyer pizza
##

## $C

## [1] Hall Ilbll IICII

12.2. Data frames. Vectors, matrices, and lists of one sort or another are found in just
about every programming language. The data frame structure is (or was last time I
checked) unique to R, and is central to many of R’s useful data-analysis features. It’s
very natural to want to store data in vectors and matrices. Thus, in the example above,
we stored measurements of two variables (rp.x and light level) in vectors. This was done
in such a way that the observations of the first replicate were stored in the first element of
each vector, the second in the second, and so on. To explicitly bind together observations
corresponding to the same replicate, we might join the two vectors into a matrix using
cbind. In the resulting data structure, each row would correspond to an observation,
each column to a variable. This is possible, however, only because both variables are of
the same type: they’re both numerical. More commonly, a data set is made up of several
different kinds of variables. The data frame is R’s solution to this problem.

Data frames are a hybrid of lists and vectors. Internally, they are a list of vectors which
can be of different types but must all be the same length. However, they behave somewhat
like matrices, in that you can do most things to them that you can do with matrices.
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You can index them either the way you would index a list, using [[ 1] or $—where each
variable is a different item in the list—or the way you would index a matrix. You can
turn a data frame into a matrix (using as.matrix(), but only if all variables are of the
same class) and a matrix into a data frame (using as.data.frame()).

When data are read into R from an external file using one of the read.xxx commands
(read.csv, read.table, read.xls, etc.), the object that is created is a data frame.

course.url <- "http://kinglab.eeb.lsa.umich.edu/ICTPWID/SaoPaolo_2015/"

dat <- read.csv(file.path(course.url,"data/ChlorellaGrowth.csv"),
comment .char="'#")

dat

#Hit light rmax

## 1 20 1.73
## 2 20 1.65
## 3 20 2.02
## 4 20 1.89
## 5 21 2.61
## 6 24 1.36
## 7 44 2.37
## 8 60 2.08
## 9 90 2.69
## 10 94 2.32
## 11 101 3.67

Exercise 22. Download the hurricanes.csv file from the above course URL. Examine
the resulting data frame by printing it and using the str command. Note the class type
of each variable.

13. PROBABILITY DISTRIBUTIONS IN R

R contains a great deal of distilled knowledge about probability distributions. In partic-
ular, for each of a large class of important distributions, methods to compute probability
distribution functions (p.d.f., i.e., density or mass functions), cumulative distribution
functions (c.d.f.), and quantile functions are available, as are methods for simulating
these distributions (i.e., drawing random deviates with the desired distribution). Conve-
niently, these are all named using the same scheme:

dxxx(x, ...) probability distribution function
pxxx(q, ...) cumulative distribution function
gxxx(p, ...) quantile function (i.e., inverse of pxxx)
rxxx(n, .) simulator
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In the above xxx stands for the abbreviated name of the specific distribution (the “R
name” as given in Table 6). In each case, the ... indicates that additional, distribution-
specific, parameters are to be supplied. Table 6 lists some of the more common distri-
butions built in to R. A complete list of distributions provided by the base stats package
can be viewed by executing ?Distributions.

TABLE 6. Some of the probability distributions built in to R. For complete
documentation, execute e.g., 7dbinom in an R session.

Distribution R name Parameters Range
Discrete distributions

Binomial binom size, prob 0,1,..., size
Bernoulli binom (size=1) prob 0,1

Poisson pois lambda 0,1,...,00
Negative binomial nbinom size, (prob or mu) 0,1,...,00
Geometric geom rate 0,1,...,00
Hypergeometric hyper m, n, k 0,1,....m
Multinomial multinom size, prob € [0, 1]™ {(z1,...,2m) : D_x; = size}
Continuous distributions

Uniform unif min, max [min, max]
Normal norm mean, sd (—00, 00)
Gamma gamma shape, (scale or rate) [0, 00)
Exponential exp mu [0, 00)

Beta beta shapel, shape2 0,1]
Lognormal lnorm meanlog, sdlog [0, 00)
Cauchy cauchy location, scale (00, 00)

e chisq df [0, 00)
Student’s T t df [0, 00)
Weibull weibull shape, scale [0, 00)

Exercise 23. Write codes to plot the c.d.f. of the binomial distribution (pbinom). Verify
the relationship between the p.d.f. (dbinom) and the c.d.f.

Exercise 24. Plot the p.d.f. and c.d.f. of the Poisson distribution for several values of
the parameter \.

Exercise 25. Plot the p.d.f. and c.d.f. of the gamma distribution for several values of
the shape and scale (or rate) parameters. Put in a vertical line to indicate the mean. Be
sure to explore both large and small values of the shape parameter.

Exercise 26. Use Rstudio’s manipulate facility to plot the p.d.f. and c.d.f. of the beta
distribution for several values of the first and second shape parameters. Put in a vertical
line to indicate the mean. Be sure to explore the full ranges of the parameters.
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14. SCRIPT FILES AND DATA FILES

Modeling and complicated data analysis are often accomplished more efficiently using
scripts, which are a series of commands stored in a text file. The Windows and MacOS
versions of R both have basic script editors. You can also use Windows Notepad or Word-
pad, or a more featureful editor like PFE, emacs (with ESS, “emacs speaks statistics”),
or Tinn-R: you should not use MS Word or other fancy editors (see below).

Most programs for working with models or analyzing data follow a simple pattern of
program parts:

(1) Setup statements.

(2) Input some data from a file.

(3) Carry out the calculations that you want.

(4) Print the results, graph them, and/or save them to a file.

For example, a script file might

(1) Load some packages, or “source” another script file that creates some functions
(more on functions later).

(2) Read in data from a text file.

(3) Fit several statistical models to the data and compare them.

(4) Graph the results, and save the graph to disk for including in your paper.

Even for relatively simple tasks, script files are useful for building up a calculation step-
by-step, making sure that each part works before adding on to it. They are also essential
for making research reproducible.

Tips for working with data and script files (sounding slightly scary but just trying to
help you avoid common pitfalls):

e To let R know where data and script files are located, you have a few choices:

(1) change your working directory to wherever the file(s) are located before run-
ning R.

(2) change your working directory within an R session to wherever the file(s)
are located using the setwd() (set working directory) function, e.g.
setwd("c:/temp").

(3) spell out the path to the file explicitly. —Use a single forward slash
to separate folders (e.g., &) "c:/My~Documents/R/script.R" or (X)
"/home/kingaa/projects/hurricanes"): this works on all platforms.

The first option is far preferable, since it makes your codes portable: as long as
you copy the whole directory, you can copy it whereever you like and R will find
what it needs.
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@WIf you have a shortcut defined for R on your desktop (or possibly in the
Start menu) you can permanently change your default working directory by right-
clicking on the shortcut icon, selecting Properties, and changing the starting
directory to somewhere like (for example) My Documents/projectX.

e [t’s important that script files be preserved as plain text and data files also as
plain text, using comma- or tab-separated format. There are three things that
can go wrong here:

(1) if you use a web browser to download files, be careful that it doesn’t automat-
ically append some weird suffix to the files or translate them into something
other than plain text.

(2) if your web browser uses “file associations” (e.g., it thinks that all files ending
in .dat are Excel files), make sure to save the file as plain text, and without
any extra extensions;

(3) never use Microsoft Word to edit your data and script files; MS Word
will try very hard to get you to save them as Word (rather than text) files,
which will screw them up!

e If you send script files by e-mail, even if you are careful to send them as plain text,
lines will occasionally get broken in different places, which can lead to confusion.
Beware.

As a first example, the file Introl.R has the commands from the interactive regression
analysis.

Download Introl.R from the course dropsite,
kinglab.eeb.lsa.umich.edu/ICTPWID/SaoPaolo_2015,

and save it to your computer. Open your copy of Introl.R. In your editor, select
and Copy the entire text of the file, and then Paste the text into the R console window.
This has the same effect as entering the commands by hand into the console: they will
be executed and so a graph is displayed with the results. Cut-and-Paste allows you to
execute script files one piece at a time (which is useful for finding and fixing errors). The
source function allows you to run an entire script file, e.g.,

source ("Introl.R")

Another important time-saver is loading data from a text file.  Grab copies of
Intro2.R and ChlorellaGrowth.csv from the dropsite to see how this is done. In
ChlorellaGrowth.csv the two variables are entered as columns of a data matrix. Then
instead of typing these in by hand, the command

X <- read.csv("ChlorellaGrowth.csv",comment.char="#")

reads the file (from the current directory) and puts the data values into the variable X.
Note that as specified above you need to make sure that R is looking for the data file in
the right place: either move the data file to your current working directory, or change the
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line so that it points to the actual location of the data file. Note also the comment . char
option in the call to read.csv; this tells R to ignore lines that begin with a # and allows
us to use self-documenting data files (a very good practice).

Extract the variables from X with the commands

Light <- X[,1]
rmax <- X[,2]

Think of these as shorthand for “Light = everything in column 1 of X”, and “rmax =
everything in column 2 of X” (we’ll learn about working with data matrices later). From
there on out it’s the same as before, with some additions that set the axis labels and add
a title.

Exercise 27. Make a copy of Intro2.R under a new name, and modify the copy so
that it does linear regression of algal growth rate on the natural log of light intensity,
LogLight=log(Light), and plots the data appropriately. You should end up with a
graph that resembles Fig. 2.

Exercise 28. Run Intro2.R, then enter the command plot(fit) in the console and
follow the directions in the console. Figure out what just happened by entering ?plot.1lm
to bring up the help page for the function plot.1m() that carries out a plot () command
for an object produced by 1m(). (This is one example of how R uses the fact that
statistical analyses are stored as model objects. fit “knows” what kind of object it is (in
this case an object of type 1m), and so plot (fit) invokes a function that produces plots
suitable for an 1m object.) Answer: R produced a series of diagnostic plots exploring
whether or not the fitted linear model is a suitable fit to the data. In each of the plots,
the 3 most extreme points (the most likely candidates for “outliers”) have been identified
according to their sequence in the data set.

The axes in plots are scaled automatically, but the outcome is not always ideal (e.g. if
you want several graphs with exactly the same axes limits). You can control scaling using
the x1im and ylim arguments in plot:

plot(x,y,xlim=c(x1,x2), [other stuff])
will draw the graph with the z-axis running from x1 to x2, and using ylim=c(y1,y2)
within the plot () command will do the same for the y-axis.

Exercise 29. Create a plot of growth rate versus light intensity with the z-axis running
from 0 to 120, and the y-axis running from 1 to 4.

Exercise 30. Several graphs can be placed within a single figure by using the par
function (short for “parameter”) to adjust the layout of the plot. For example the
command

par (mfrow=c(m,n))
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Data from Fussmann et al. (2000) system

- rmax =-0.011+0.617 log(Light)

15 2.0 25 8.0 835

| | l |
3.0 3.5 4.0 4.5

Maximum growth rate, rmay (1/d)

Log light intensity (LE/m?/s)

FIGURE 2. Graphical summary of regression analysis using log of light
intensity (with plot annotations).

divides the plotting area into m rows and n columns. As a series of graphs is drawn,
they are placed along the top row from left to right, then along the next row, and so
on. mfcol=c(m,n) has the same effect except that successive graphs are drawn down the
first column, then down the second column, and so on.

Save Intro2.R with a new name and modify the program as follows. Use mfcol=c(2,1)
to create graphs of growth rate as a function of Light, and of log(growth rate) as a
function of log(Light) in the same figure. Do the same again, using mfcol=c(1,2).

*Exercise 31. Use ?par to read about other plot control parameters that can be set
using par (). Then draw a 2 x 2 set of plots, each showing the line y = bx + 3 with x
running from 3 to 8, but with 4 different line styles and 4 different line colors.

*Exercise 32. Modify one of your scripts so that at the very end it saves the plot to
disk. You can accomplish this using the dev.print () function. Do ?dev.print to read
about this function. Note that you need to specify the file argument to write your
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graphics to a file; if you don’t, it will try and send it to a printer. Also note that many
alternative formats are available via the dev argument.

15. LoorING IN R

Very frequently, a computation involves iterating some procedure across a range of cases,
and every computer language ['ve ever come across has one or more facilities for producing
such loops. R is no exception, though judging by their code, many R programmers look
down their noses at loops. The fact remains that, at some point in life, one simply has
to write a for loop. Here, we’ll look at the looping constructs available in R.

15.1. for loops. Execute the following code.

phi <- 1

for (k in 1:1000) {
phi <- 1+1/phi
print (c(k,phi))

}

What does it do? Sequentially, for each value of k between 1 and 1000, phi is modified.
More specifically, at the beginning of the for loop, a vector containing all the integers
from 1 to 1000 in order is created. Then, k is set to the first element in that vector, i.e.,
1. Then the R expression from the { to the } is evaluated. When that expression has
been evaluated, k is set to the next value in the vector. The process is repeated until, at
the last evaluation, k has value 1000.

As an aside, note that the final value of phi is the Golden Ratio, 1.618034.

As an example of a situation where a loop of some sort is really needed, suppose we wish
to iterate the Beverton-Holt map (one of the simplest discrete-time models of population
growth),

a N,
1+bN;
We simply have no option but to do the calculation one step at a time. Here’s an R code
that does this

Nt+1 =

<- 1.1

<- 0.001

<- seq(from=1,t0=200,by=1)
<- numeric(length(T))

<- 2

for (t in T) {

n <- a*n/(1+bx*n)

N[t] <- n

B =40

}
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Spend some time to make sure you understand what happens at each line of the above.
We can plot the population sizes N, through time via

plot(T,N)

40 60 80 100
|

20

0
|

0 50 100 150 200

Gotcha: An alternative way to do the above might be something like

N <- numeric(length(T))
for (t in 1:length(T)) {
n <- axn/(1+b*n)
N[t] <- n
}

Exercise 33. Check that this works with different vectors T. What happens when T has
length 17 What happens when T has length 07 Why? To avoid this trap, it’s preferable
to use seq_len, seq_along, or seq.int instead of the 1:n construction used above. This
and many other R gotchas are described in the useful R Inferno (Burns, 2012), a free
version of which can be downloaded from the course readings site.

15.2. while loops. A second looping construct is the while loop. Using while, we can
compute the Golden Ratio as before:

phi <- 20
k <- 1
while (k <= 1000) {
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phi <- 1+1/phi
print (c(k,phi))
k <- k+1

}

What’s going on here? First, phi and k are initialized. Then the while loop is started.
At each iteration of the loop, phi is modified, and intermediate results printed, as before.
In addition, k is incremented. The while loop continues to iterate until the condition
k <= 1000 is no longer TRUE, at which point, the while loop terminates.

Note that here we’ve chosen a large number (1000) of iterations. Perhaps we could get by
with fewer. If we wanted to terminate the iterations as soon as the value of phi stopped
changing, we could do:

phi <- 20

conv <- FALSE

while (!lconv) {
phi.new <- 1+1/phi
conv <- phi==phi.new
phi <- phi.new

}

Exercise 34. Verify that the above works as intended. How many iterations are needed?

Another way to accomplish this would be to use break to stop the iteration when a
condition is met. For example

phi <- 20

while (TRUE) {
phi.new <- 1+1/phi
if (phi==phi.new) break
phi <- phi.new

}

While this while loop is equivalent to the one before, it does have the drawback that,
if the break condition is never met, the loop will go on indefinitely. An alternative that
avoids this is to use a for loop with a large (but necessarily finite) number of iterations,
together with break:

phi <- 3

for (k in seq_len(1000)) {
phi.new <- 1+1/phi
if (phi==phi.new) break
phi <- phi.new

}
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Exercise 35. Recompute the trajectory of the Beverton-Holt model using a while loop.
Verify that your answer is exactly equivalent to the one above.

15.3. repeat loops. A third looping construct in R involves the repeat keyword. For
example,
phi <- 12
repeat {
phi.new <- 1/(1+phi)
if (phi==phi.new) break
phi <- phi.new

}

In addition, R provides the next keyword, which, like break, is used in the body of a
looping construct. Rather than terminating the iteration, however, it aborts the current
iteration and leads to the immediate execution of the next iteration.

For more information on looping and other control-flow constructs, execute ?Control.

16. FUNCTIONS AND ENVIRONMENTS

16.1. Definitions and examples. An extremely useful feature in R is the ability to
write arbitrary functions. A function, in this context, is an algorithm that performs a
specific computation that depends on inputs (the function’s arguments) and produces
some output (the function’s value) and/or has some side effects. Let’s see how this is
done.

Here is a function that squares a number.

sq <- function (x) x"2

The syntax is function (arglist) expr. The one argument in this case is x. When a
particular value of x is supplied, R performs the squaring operation. The function then
returns the value x~2:

sq(3); sq(9); sq(-2);
## [1] 9

## [1] 81
## [1] 4

Here is a function with two arguments and a more complex body, as we call the expression
that is evaluated when the function is called.

f <- function (x, y = 3) {
a <- sqx)
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a+y

Here, the body is the R expression from { to }. Unless the return codeword is used
elsewhere in the function body, the value returned is always the last expression evaluated.
Thus:

£(3,0); £(2,2); £(3);
## [1] 9

## [1] 6
## [1] 12

Note that in the last case, only one argument was supplied. In this case, y assumed its
default value, 3.

Note that functions need not be assigned to symbols; they can be anonymous:

function (x) x5
## function (x) x5
(function (x) x75)(2)

## [1] 32

A function can also have side effects, e.g.,

hat <- "hat"

hattrick <- function (y) {
hat <<- "rabbit"
2%y

}

hat; hattrick(5); hat

## [1] "hat"
## [1] 10
## [1] "rabbit"

However, the very idea of a function insists that we should never experience unintentional
side effects. We’ll see how R realizes this imperative below.

An aside. If we want the function not to automatically print, we can wrap the return
value in invisible():

hattrick <- function (y) {
hat <<- "rabbit"
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invisible (2*y)
¥
hattrick(5)
print (hattrick(5))

## [1] 10

A function in R is defined by three components: (1) its formal parameters, i.e., its
argument list, (2) its body, and (3) its environment, i.e., the context in which the function
was defined. R provides simple functions to interrogate these function components:

formals(hattrick)

## $y

body (hattrick)

## {

## hat <<- "rabbit"
#it invisible(2 * y)
## ¥

environment (hattrick)

## <environment: R_GlobalEnv>

16.2. Function scope. 'As noted above, a paramount consideration in the implemen-
tation of functions in any programming language is that unintentional side effects should
never occur. In particular, I should be free to write a function that creates temporary
variables as an aid to its computations, and be able to rest assured that no variables I
create temporarily will interfere with any other variables I've defined anywhere else. To
accomplish this, R has a specific set of scoping rules.

Consider the function

f <- function (x) {
y <- 2%x
print(x)
print (y)
print(z)

}

IThis section draws heavily, and sometimes verbatim, on §10.7 of the Introduction to R manual (R
Core Team, 2014a).
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In this function’s body, x is a formal parameter, y is a local variable, and z is a free, or
unbound variable. When f is evaluated, each of these variables must be bound to some
value. In R, the free variable bindings are resolved—each time the function is evaluated—
by first looking in the environment where the function was created. This is called lexical
scope. Thus if we execute

£(3)

we get an error, because no object named z can be found. If, however, we do

z <- 10
£(3)

## [1] 3
## [1] 6
## [1] 10

we don’t get an error, because z is defined in the environment,
<environment: R_GlobalEnv>, of f. Similarly, when we do

z <- 13
g <- function (x) {
2%x+z

}

f <- function (x) {
z <- -100
g(x)

}

£(5)

## [1] 23

The relevant value of z is the one in the environment where g was defined, not the one
in the environment wherein it is called.

16.3. Nested functions and environments. In each of the following examples, make
sure you understand exactly what has happened.

Consider this:

y <= 11

f <- function (x) {
y <- 2%xX
y+X

}

f(; y

## [1]1 3
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## [1] 11

Exercise 36. Why hasn’t y changed its value?

What about this?

y <- 0
f <- function (x) {
2%x+y

}

f(); y

## [1] 2
## [1]1 O

Exercise 37. Why is the return value of f different?

How about the following?

g <= function (y) y
f <- function (x) {
g <- function (y) {
2%y
}

11+g(x)

}

£(2); g(2)

## [1] 15
## [1] 2

Exercise 38. Be sure you understand what’s happening at each line and why you get
the results you see.

Another example:

y <= 11
f <- function (x) {
y <- 22
g <- function (x) {
x+y
}
g(x)
}

f(); y
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## [1] 23
## [1] 11

Exercise 39. Which value of y was used?

Compare that with this:

y <- 11
f <- function (x) {
y <- 22
g <- function (x) {
y <<= 7
x+y
}
c(g(x),y)
}

f(); vy

## [1]1 8 7
## [1] 11

and this:

y <= 11
f <- function (x) {
g <- function (x) {
x+y
}

g(x)
}

f(; y

## [1] 12
## [1] 11

and this:

f <- function (x) {
y <= 37
g <- function (x) {
h <- function (x) {
x+y
}

h(x)

}
g(x)
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f(); y

## [1] 38
## [1] 11

Finally, consider the following:

rm(y)
f <- function (x) {
g <- function (x) {
y <<- 2%x
y+1
}
g(x)+1

}

fAD; vy

## [1] 24
## [1] 22

£(-2); vy

## [1] -2
## [1] -4

Exercise 40. In the above five code snippets, make sure you understand the differences.

As mentioned above, each function is associated with an environment: the environment
within which it was defined. When a function is evaluated, a new temporary environment
is created, within which the function’s calculations are performed. Every new environ-
ment has a parent, the environment wherein it was created. The parent of this new
environment is the function’s environment. To see this, try

f <- function () {
g <- function () {
h <- function () {

cat("inside function h:\n")
cat("current env: ")
print(sys.frame(sys.nframe()))
cat("parent env: ")
print(parent.frame(1))
cat("grandparent env: ")
print(parent.frame(2))
cat("great-grandparent env: ")
print (parent.frame(3))
invisible (NULL)
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}

cat("inside function g:\n")
cat("environment of h: ")
print (environment (h))

cat ("current env: ")
print(sys.frame(sys.nframe()))
cat("parent env: ")

print (parent.frame(1))

cat ("grandparent env: ")

print (parent.frame(2))

h()

cat("inside function f:\n")
cat("environment of g: ")
print (environment (g))
cat("current env: ")
print(sys.frame(sys.nframe()))
cat("parent env: ")
print(parent.frame(1))

g0

}

cat("environment of f: "); print(environment (f))

#i#t
#Hit

environment of f:
<environment: R_GlobalEnv>

cat("global env: "); print(sys.frame(sys.nframe()))

#Hit
#Hit

£0)

##
##
##
##
##
##
##
##
##
##
##
##
##
##

global env:
<environment: R_GlobalEnv>

inside function f:

environment of g: <environment: 0x27603f8>
current env: <environment: 0x27603£8>
parent env: <environment: R_GlobalEnv>
inside function g:

environment of h: <environment: 0x2757bf0>
current env: <environment: 0x2757bf0>
parent env: <environment: 0x27603f8>
grandparent env: <environment: R_GlobalEnv>
inside function h:

current env: <environment: 0x27629b8>
parent env: <environment: 0x2757bf0>
grandparent env: <environment: 0x27603f8>
great-grandparent env: <environment: R_GlobalEnv>
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Each variable referenced in the function’s body is bound, first, to a formal argument if
possible. If a local variable of that name has previously been created (via one of the
assignment operators <-, => or =, this is the variable that is affected by any subsequent
assignments. If the variable is neither a formal parameter nor a local variable, then the
parent environment of the function is searched for that variable. If the variable has not
been found in the parent environment, then the grand-parent environment is searched,
and so on.

If the assignment operators <<- or ->> are used, a more extensive search for the referenced
assignee is made. If the variable does not exist in the local environment, the parent
environment is searched. If it does not exist in the parent environment, then the grand-
parent environment is searched, and so on. Finally, if the variable cannot be found
anywhere along the lineage of environments, a new global variable is created, with the
assigned value.

17. THE APPLY FAMILY OF FUNCTIONS

As mentioned above, there are circumstances under which looping constructs are really
necessary. Very often, however, we wish to perform some operation across all the elements
of a vector, array, or dataset. In such cases, it is faster and more elegant (to the R
afficiando’s eye) to use the apply family of functions.

17.1. List apply: lapply. lapply applies a function to each element of a list or vector,
returning a list.

x <- list("teenage","mutant","ninja","turtle",
"hamster","plumber","pickle","baby")
lapply (x,nchar)

## [[1]1]
## [1] 7
#it

# [[2]]
## [1] 6
#it

## [[3]]
## [1] 5
#it

# [[4]]
## [1] 6
#it

## [[5]]
## [1] 7
#it

## [[6]]
## [1] 7
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##
## [[7]]
## [1] 6
##

## [[8]]
## [1] 4

y <= c("teenage","mutant","ninja","turtle",
"hamster","plumber","pickle", "baby")
lapply(y,nchar)

## [[1]1]
## [1] 7
#it
## [[2]]
## [1] 6
#it
## [[3]]
## [1] 5
#it
## [[4]]
## [1] 6
#it
## [[5]]
## [1]1 7
#it
## [[6]]
## [1]1 7
#it
## [[7]1]
## [1] 6
#it
## [[8]]
## [1] 4

17.2. Sloppy list apply: sapply. sapply isn’t content to always return a list: it at-
tempts to simplify the results into a non-list vector if possible.

x <- list("teenage","mutant","ninja","turtle",
"hamster","plumber","pickle","baby")
sapply(x,nchar)

## [1] 76 56 7 7 6 4
y <= c("teenage","mutant","ninja","turtle",

"hamster","plumber","pickle", "baby")
sapply (y,nchar)
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## teenage mutant ninja turtle hamster plumber pickle baby
#it 7 6 5 6 7 7 6 4

17.3. Multiple-list apply: mapply. mapply is a multiple-argument version of sapply:

x <- c("teenage","mutant","ninja","turtle")

y <= c("hamster","plumber","pickle","baby")
mapply (paste,x,y,sep="/")

#it teenage mutant ninja turtle
## "teenage/hamster" '"mutant/plumber" "ninja/pickle" "turtle/baby"

As usual, the recycling rule applies:

mapply(paste,x,y[2:3])

#Hit teenage mutant ninja turtle
## "teenage plumber" "mutant pickle" "ninja plumber" "turtle pickle"

mapply (paste,x[c(1,3)],y)

#i#t teenage ninja <NA> <NA>
## '"teenage hamster" "ninja plumber" '"teenage pickle" "ninja baby"

17.4. Array apply: apply. apply is very powerful and a bit more complex. It allows
an arbitrary function to applied to each slice of an array, where the slices can be defined
in all possible ways. Let’s create a matrix:

A <- array(data=seq_len(15),dim=c(3,5)); A

## [,11 [,2]1 [,3] [,4] [,5]
# [1,] 1 4 7 10 13
## [2,] 2 5 8 11 14
## [3,] 3 6 9 12 15

To apply an operation to each row, we marginalize over the first dimension (rows). For
example, to sum the rows, we’'d do

apply(A,1,sum)

## [1] 35 40 45

To sum the columns (the second dimension), we’d do
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apply(A,2,sum)

## [1] 6 15 24 33 42

Now suppose we have a 3-dimensional array:

A <- array(data=seq_len(30),dim=c(3,5,2)); A

## o, , 1

#it

#it [,11 [,21 [,31 [,4] [,5]
## [1,] 1 4 7 10 13
## [2,] 2 5 8 11 14
## [3,] 3 6 9 12 15

##

## ., 2

##

#H [,11 [,2]1 [,3] [,4] [,5]
## 16 19 22 25 28

[1,]
# [2,] 17 20 23 26 29
## [3,] 18 21 24 27 30

To sum the rows within each slice, we’d do

apply(A,c(1,3),sum)

## [,1]1 [,2]
## [1,] 35 110
## [2,] 40 115
## [3,] 45 120

while to sum the slices, we’d do

apply(A,3,sum)

## [1] 120 345

For each of the above, make sure you understand exactly what has happened.

Of course, we can apply an anonymous function wherever we apply a named function:

apply(A,c(2,3) ,function (x) sd(x)/sqrt(length(x)))

## [,1] [,2]
## [1,] 0.5773503 0.5773503
## [2,] 0.5773503 0.5773503
## [3,] 0.5773503 0.5773503
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## [4,] 0.5773503 0.5773503
## [5,] 0.5773503 0.5773503

Additional arguments are passed to the function:

apply(A,c(1,2),function (x, y) sum(x>y),y=8)

## [(,11 [,2]1 [,3] [,4] [,5]
## [1,] 1 1 1 2 2
## [2,] 1 1 1 2 2
## [3,] 1 1 2 2 2

apply(A,c(1,2),function (x, y) sum(x>y),y=-1)

## (,11 [,2] [,3] [,4] [,5]
## [1,] 2 2 2 2 2
## [2,] 2 2 2 2 2
## [3,] 2 2 2 2 2

17.5. Table apply: tapply. tapply is, in a way, an extension of table. The syntax is
tapply (X, INDEX,FUN,...), where X is a vector, INDEX is a list of one or more factors,
each the same length as X, and FUN is a function. The vector X will be split into subvectors
according to INDEX, and FUN will be applied to each of the subvectors. By default, the
result is simplified into an array if possible. Some examples:

x <- seq(1,30,by=1)
b <- rep(letters[1:10],times=3)
data.frame(x,b)

#it X b
## 1 1 a
#t 2 2 b
## 3 3 c
#it 4 4 d
## 5 5 e
## 6 6 f
# 7 T g
## 8 8 h
## 9 9 i
## 10 10 j
## 11 11 a
## 12 12 b
## 13 13 ¢
## 14 14 d
## 15 15 e
## 16 16 £
##H 17 17 g
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## 18 18
## 19 19
## 20 20
## 21 21
## 22 22
## 23 23
## 24 24
## 25 25
## 26 26
## 27 27
## 28 28
## 29 29
## 30 30

ST U = 0= T WO B o PR o B o i C B R U =

tapply(x,b,sum)

## a b c d e f g h 1 j
## 33 36 39 42 45 48 51 54 57 60

b <- rep(letters[1:10],each=3)
data.frame(x,b)

##
##
##t
#it
#Hit
#Hit
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
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##
##
##
##
##
##

##

##
##
##
##
##
##
##t
#Hit
#Hit
#Hit
#Hit
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

25
26
27
28
29
30

25
26
27
28
29
30

a b
## 6 15 24 33 42 51 60 69 78 87

25

10
25

10
25

10
25

10
25

10
25

10
25

10
25

10
25

1

G G e e

C
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tapply(x,b,sum)

d e £f g h i j

course.url <- "http://kinglab.eeb.lsa.umich.edu/ICTPWID/SaoPaolo_2015/"
datafile <- "data/seedpred.dat"
seeds <- read.table(pasteO(course.url,datafile) ,header=TRUE,

53

colClasses=c(station='factor',dist='factor',date='Date'))

x <- subset(seeds,available>0)
with(x, tapply(tcum,list(dist,station),max,na.rm=TRUE))

10 100 101 102 103 104 105 106 107 108 109 11 110 111 112 113 114
10 24 248 122 248 10 17 39 17 46 10 3 17 NA 10 10 17 248

18 123
115 116

67
40
131
3
18
148
248
249
2
248
47

248
68
132
248
40
149
248
81
20
248
54

38 39

3

10

NA 249
57 58

24

3

11 159
76 77
248 3
249 47
96 97 98 99
10 10 10 17
18 18 11 4

11 249 249 11 11 249 81 11 123 249 4 25 249 47 249
117 118 119 12 120 121 122 123 124 125 126 127 128 129 1
248 24 10 248 17 248 248 3 248 248 10 67 17 248 24

11 32 18 249 32

11 249 68 249 249 18 NA 18 249 24

133 134 135 136 137 138 139 14 140 141 142 143 144 145 146
248 10 10 3 248 248 3 24 248 248 248 248 248 248 248
54 18 4 40 61 249 4 61 249 68 11 NA 4 249 209
15 150 151 152 153 154 155 156 157 158 159 16 160 17 18
3 248 39 248 248 248 NA 53 248 248 53 248 NA 248 136
11 249 249 249 249 249 249 123 249 249 32 25 249 4 249
21 22 23 24 25 26 27 28 29 3 30 31 32 33 34 35 36
248 24 24 248 24 248 53 31 80 31 NA NA 248 17 24 248 39
249 61 40 249 249 249 4 249 249 11 4 NA 18 4 4 159 4

4 40 41 42 43 44
31 248 122 248 NA 3

45 46 47 48 49 5 50 51 52 53 54
17 NA NA NA NA 248 3 248 3 10 248

249 4 NA 123 NA 4 249 11 18 4 11 249 40 18 11 11 249

59 6 60 61 62 63 64

65 66 67 68 69 7 70 71 72 73 74

NA 10 3 3 3 3 3 248 248 NA 10 17 10 3 NA 10 248 248
256 11 11 209 4 4 11 249 11 40 11 61 256 4 4 4 249 159
78 79 8 80 81 8283 84 85 86 87 88 89 9 90 91 92 93
10 NA NA 3 248 80 NA 241 122 24 10 10 24 115 17 NA 17 10

18 4 249 11 NA 11 11

11 249 11 NA 11 11 123 11 11 25 11

248
249
3 130
8 248
9 18
147
24
4
19
24
123
37
17
11
55 56
3 3
4 18
75
NA
32
94 95
3 3
4 11
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17.6. sapply with expected result: vapply. When we could use sapply and we know
exactly what the size and class of the value of the function will be, it is sometimes faster
to use vapply. The syntax is like that of sapply: vapply(X,FUN,FUN.VALUE,...),
where X and FUN are as in sapply, but we specify the size and class of the value of FUN
via the FUN.VALUE argument. For example, suppose we define a function that, given a
number between 1 and 26 will return the corresponding letter of the alphabet:

alph <- function (x) {
if (x <1 |l x> 26) stop("bad value of x")
LETTERS [as.integer(x)]

}

This function will return a vector of length 1 and class character. To apply it to a
randomly sampled set of integers, we might do

x <- sample(1:26,50,replace=TRUE)
y <- vapply(x,alph,character(1l))
paste(y,collapse="")

## [1] "HZYNIJFRXXOBJYDTNUBNBAWHDLHAOOSNBKGHVZTDSFVXVBFMRV"

18. VECTORIZED FUNCTIONS VS. LOOPS

As Ligges and Fox (2008) point out, the idea that one should avoid loops wherever
possible in R, using instead vectorized functions like those in the apply family, is quite
widespread in some quarters. The belief, which probably dates back to infelicities in
early versions of S and Splus but is remarkably persistent, is that loops are very slow in
R. Let’s have a critical look at this.

Consider the following loop code that can be vectorized:

x <= runif(n=1e6,min=0,max=2%pi)
y <- numeric(length(x))
for (k in seq_along(x)) {
y k] <- sin(x[k])
}

To time this, we can wrap the vectorizable parts in a call to system. time:

x <= runif(n=1e6,min=0,max=2%pi)
system. time ({
y <- numeric(length(x))
for (k in seq_along(x)) {
y[k] <- sin(x[k])
}
1)
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## user system elapsed
## 1.180 0.000 1.182

We can compare this with a simple call to sin (which is vectorized):

system.time(z <- sin(x))

## user system elapsed
## 0.032 0.000 0.035

Clearly, calling sin directly is much faster. What about using sapply?

Exercise 41. Compare the time spent on the equivalent calculation, using sapply.
What does this result tell you about where the computational cost is incurred?

#Hit user system elapsed
## 1.708 0.016 1.731

The above example is very simple in that there is a builtin function (sin in this case)
which is capable of the fully vectorized computation. In such a case, it is clearly preferable
to use it. Frequently, however, no such builtin function exists, i.e., we have a custom
function of our own we want to apply to a set of data. Let’s compare the relative speeds
of loops and sapply in this case.

X <- seq.int(from=20,to=1e6,by=10)
f <- function (x) {
(((x+1) *#x+1) *kx+1) *x+1
}
system. time ({
resl <- numeric(length(x))
for (k in seq_along(x)) {
resl[k] <- f(x[k])

}
b

#it user system elapsed
## 0.228 0.020 0.251

system.time(res2 <- sapply(x,f))

## user system elapsed
## 0.176 0.000 0.175

[Actually, in this case, f is vectorized automatically. Why is this?]

system.time (f(x))



56 ELLNER, BOLKER, AND KING

## user system elapsed
## 0 0 0

Another example: in this case function g is not vectorized.

g <- function (x) {
if ((x[1] > 30) && (x[1] < 5000)) {
1
} else {
0

¥
}

system.time ({
resl <- numeric(length(x))
for (k in seq_along(x)) {
resl[k] <- g(x[k])
t
19

#Hit user system elapsed
## 0.228 0.000 0.226

system.time(res2 <- sapply(x,g))

#Hit user system elapsed
## 0.148 0.000 0.150
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