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What is Matrix Quantum Mechanics
• Matrix Quantum Mechanics (gauged) is a 0 + 1 dimensional quantum
field theory of N ×N Hermitian matrices denoted by M(t) and a non
dynamical gauge field At.

• The Partition function is:

e−W =
∫
DM(t) exp

[
−N

∫ ∞
−∞

dtTr
(

1
2 (DtM)2 + 1

2M
2 − κ

3!M
3
)]
(1)

• It is convenient to split M = UΛU† where Λ(t) is diagonal and U unitary.
• One then picks up a Jacobian

DM = DU
N∏
i=1

dλi∆2(Λ), ∆(Λ) =
∏
i<j

(λi − λj) (2)

• The gauge field will also lead to the decoupling of the angular dof’s U
from the path integral (it projects to the singlet sector).
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Fermionic Well
It is convenient to pass to the Hamiltonian description. The Hamiltonian
using the covariant laplacian becomes:

H = − 1
2β2∆(λ)

d2

dλ2
i

∆(λ) + V (λi) , β = N

κ2 ∼
1
~

(3)

We define an “antisymmetric" wavefunction Ψ(λ) as Ψ(λ) ≡ ∆(λ)χsym(λ).
The Schrödinger equation now reads:(

− 1
2β2

d2

dλ2
i

+ V (λi)
)

Ψ(λ) = EΨ(λ). (4)

This describes N non interacting fermions in the cubic potential V (λ).

• We fill up the potential with N
fermions. The energy spacing
is ∼ β−1. By tuning the
coupling constant κ, there is a
critical value κc after which
the eigenvalues will start to
spill.
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The double scaling limit
Now if we make a 1/N expansion, we can organise a genus g expansion of
the partition function

Z =
∑
g

N2−2gZg(κ). (5)

We can connect this expansion with the genus expansion of the partition
function of the Liouville theory (2D gravity+c = 1 matter). To receive
contributions from all genera, we take the N →∞ limit together with
κ→ κc (double scaling limit) The partition function diverges as:

Zg(κ) ∼ (κc − κ)(2−Γ)χ/2, (6)

In the double scaling limit, the matrix model perturbative expansion changes
from the double parameter expansion of (1/N, κ) to the single parameter
expansion of µr ≡ N(κ− κc)(2−Γ)/2:

Z(µr) =
∑
g

µ2−2g
r fg. (7)

In the free fermion language we send β →∞, µ→ 0, µr = βµ with µ the
distance of the fermi level from the top of the potential.
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Some comments, Open-Closed duality
• Matrices naturally arise in the study of dynamics of D-Branes.
• It can be shown that String theories with c=1 contain D0 branes whose
excitations are simply a Tachyon and a 1-d gauge field.

• The tachyon potential in bosonic string theories is unbounded from below
-the D branes can decay and produce closed strings (SFT).

• It shares the same Universal characteristics with the MQM cubic
potential - a local maximum at M = 0 and is unbounded from below for
negative M.

• This connection strengthens in the double scaling limit
gs → 0, N →∞, µ = fixed, where one focuses at the top of the
potential barrier.

• In the same limit, the Matrix model describes also the physics of
continuous Riemmann surfaces (closed string Liouville description).

• This is the analogue of the Maldacena decoupling limit in this simple
case.

• MQM describes the dynamics of N D0 branes anchored at the strong
coupling region of the dual closed string Liouville description.
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Solution of Matrix Quantum mechanics

• One can find an asymptotic solution of the model as a genus expansion
in the double scaling limit, where only the top of the potential matters
(reverse harmonic oscillator).

• For a circle the partition function is:

Z = 1
4

[
(2βµ0

√
R)2 logµ0 − 2f1(R) logµ0 +

∞∑
m=1

fm+1(R)
m(2m+ 1)(2βµ0

√
R)−2m

]
,

(8)
where fn is a function of R+R−1, and µr = βµ0 is the genus expansion
parameter.

• This expression is T-dual R→ 1
R , µr → Rµr.

• We can also match the second term with the Liouville computation of
the torus partition function:

Z1 = − 1
24

(
R+ 1

R

)
logµ0, (9)
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S1/Z2 Orbifold
The idea is to make a similar
computation for the orbifold. In
string theory we get extra twisted
states from the orbifold fixed
points.

To implement orbifolding on the matrix model we gauge the Z2 reflection
symmetry by combining it with a Z2 subgroup of the gauge group:

Ω =
(
−1n×n 0

0 1(N−n)×(N−n)

)
∗ (10)

with ∗f(t) = f(−t)∗, ∗∂t = −∂t∗, 0 ≤ n ≤ N
2 , and then requiring:

ΩA(t)Ω−1 = −A(t), ΩM(t)Ω−1 = M(t) (11)

This naturally splits the matrices into (even/odd) blocks that need to satisfy
different boundary conditions. Gauge invariance is now under
U(n)× U(N − n), thus we get two separate sets of n and N − n fermions.
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Directions

• Compute Partition function (Generalised statistics?) - T-duality?
• Compare with the Liouville torus Partition function on the orbifold.
• Supersymmetric case (OB)
• Analytic continuation -Pick specific value of n for the initial/final state of
a Big bang Big crunch universe?

• Second quantization (SFT)?
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Thank you!
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