
Phenomenology of dark matter 
structure formation 

The halo model:  Theory 

Halo abundances, clustering, profiles 

In practice:  HOD, CLF, SHAM 

Assembly bias 



Halo-
model 

 
 

Circles in 
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blue red 



Complication:  Light is a biased tracer 

Not all galaxies are fair tracers of dark matter; 
To use galaxies as probes of underlying dark matter 
distribution, must understand ‘bias’  



You can observe a lot 
just by watching 



How to describe different point 
processes which are all built from 
the same underlying density field? 

THE HALO MODEL 
Review in Physics Reports (Cooray & Sheth 2002) 



Center-satellite process requires knowledge of how   
1) halo abundance;        2) halo  clustering;        3) halo profiles;  
4) number of galaxies per halo;       all depend on halo mass (+ ...)   
(Revived, then discarded in 1970s by Peebles, McClelland & Silk)  



(Almost) 
universal 
mass function 
 
(m/r) (dn/dlnn) =   
 nf(n) = A [1 + (qn)-p]    
             sqrt(qn/2p)  
             exp(-qn/2) 
where all n = (dc/s)2 
and A ensures 
integral over all n is 
unity 

 

and halo bias   
 
b(n) = 1 + dlnf/ddc 

Sheth-Tormen 1999 



Universal 
Halo 

Profiles 

r(r) = 4rs/(r/rs)/(1+ r/rs)
2 

 
•Not quite isothermal  
•Depend on halo mass, 
formation time 
•Massive halos less 
concentrated (partially 
built-in from GRF initial 
conditions) 
• Distribution of shapes 
(axis-ratios) known (Jing & 
Suto 2001) 

Navarro, Frenk 
& White (1996) 



The halo-model of clustering 
• Two types of pairs:  both particles in same halo, or  

particles in different halos  

 

 

 

 

 

• 1+ξ(r) = 1+ξ1h(r) + 1+ξ2h(r)  

• All physics can be decomposed similarly:  ‘nonlinear’ 
effects from within halo, ‘linear’ from outside 



The dark-matter correlation function 

                   ξdm(r) = 1+ξ1h(r) + ξ2h(r)  

• 1+ξ1h(r) ~ ∫dm n(m) m2 ξdm(r|m)/r2 

• n(m): comoving number density of m-halos 

• Comoving mass density: r  = ∫dm n(m) m 

• ξdm(r|m):  fraction of total pairs, m2, in an m-
halo which have separation r; depends on 
(convolution of) density profile within m-halos  

• This term only matters on scales smaller than 
the virial radius of a typical M* halo (~ Mpc) 
– Need not know spatial distribution of halos!   



ξdm(r) = 1+ξ1h(r) + ξ2h(r) 

• ξ2h(r) ≈ ∫dm1 m1n(m1) ∫dm2 m2n(m2) ξ2h(r|m1,m2) 

                              
r 

                 
r

   

• Two-halo term dominates on large scales, where 
peak-background split estimate of halo 
clustering should be accurate: dh ~ b(m)ddm  

• ξ2h(r|m1,m2) ~ ‹dh
2› ~ b(m1)b(m2) ‹ddm

2›  

• ξ2h(r) ≈ [∫dm mn(m) b(m)/r]2 ξdm(r)   

• On large scales, linear theory is accurate:              
ξdm(r) ≈ ξLin(r)   so  ξ2h(r) ≈ beff

2 ξLin(r)  



Dark matter power spectrum 

• Convolutions in real space are products in k-space, 
so P(k) is easier than ξ1h(r)  

                    P(k) = P1h(k) + P2h(k)  

• P1h(k) = ∫dm n(m) m2 |udm(k|m)|2/r2 

• P2h(k)  [∫dm n(m) b(m) m udm(k|m)/r]2 Pdm(k) 



The halo-model of galaxy clustering 
• Two types of particles:  central + ‘satellite’  

• Two types of pairs:  both particles in same halo, or  
particles in different halos  

 

 

 

 

 

 

• 1+ξobs(r) = 1+ξ1h(r) + 1+ξ2h(r)  

                       1+ξ1h(r) = 1+ξcs(r) + 1+ξss(r)  



The halo-model of galaxy clustering 
• Write as sum of two components: 

–  1+ξ1gal(r) = ∫dm n(m) g2(m) ξdm(m|r)/rgal
2  

–  ξ2gal(r) ≈ [∫dm n(m) g1(m) b(m)/rgal]
2 ξdm(r)  

–  rgal = ∫dm n(m) g1(m):     number density of galaxies 
– ξdm(m|r):     fraction of pairs in m-halos at separation r 

 

• Think of mean number of galaxies, g1(m), as a weight 
applied to each dark matter halo 
– Galaxies ‘biased’ if g1(m) not proportional to m, …, gn(m) not 

proportional to mn  (Jing, Mo & Boerner 1998; Benson et al. 2000;                
Peacock & Smith 2000; Seljak 2000; Scoccimarro et al. 2001) 

– Central + Poisson satellites model (see later) works well   

• Similarly, YSZ or TX are just a weight applied to halos, so 
same formalism can model cluster clustering  



Power spectrum 

• Convolutions in real space are products in k-space, 
so P(k) is easier than ξ(r):  

                    P(k) = P1h(k) + P2h(k)  
• P1h(k) = ∫dm n(m) g2(m) |udm(k|m)|2/r2 

• P2h(k)  [∫dm n(m) b(m) g1(m) udm(k|m)/r]2 Pdm(k) 

 

• Galaxies ‘biased’ if gn(m) not proportional to mn 



Type-dependent clustering:  Why? 

populate massive 

halos 
populate 

lower mass 

halos 

Spatial distribution within halos second order effect (on >100 kpc) 



Comparison with 
simulations:  OK! 

• Halo model 
calculation of  x(r) 

• Red galaxies 

• Dark matter 

• Blue galaxies 

• Note inflection at 
scale of transition 
from 1halo term to 2-
halo term (~ virial 
radius) 

• Bias constant at large r 

x1h›x2h 

x1h‹x2h → 



Cosmology from  
Gravitational Lensing 

Volume as function of redshift  
Growth of fluctuations with time 



•Focal length strong function of cluster-centric 
distance; highly distorted images possible  
•Strong lensing if source lies close to lens-observer 
axis; weaker effects if impact parameter large 
•Strong lensing:  Cosmology from distribution of 
image separations, magnification ratios, time delays; 
but these are rare events, so require large dataset 
•Weak lensing:  Cosmology from correlations (shapes 
or magnifications); small signal requires large dataset 



Lensing provides a measure of dark matter along line of sight 



Weak lensing: 
Image 
distortions 
correlated with 
dark matter 
distribution 
 
E.g., lensed 
image 
ellipticities 
aligned parallel 
to filaments, 
tangential to 
knots (clusters) 
 



The shear power of lensing 

             stronger                weaker 

Cosmology from measurements of correlated shapes; better 
constraints if finer bins in source or lens positions possible  





Galaxy-lensing power spectrum 

                     P(k) = P1h(k) + P2h(k) 

  
• P1h(k) = ∫dm n(m) mu(k|m) g1(m)ug(k|m)/ngr

 

• P2h(k)  [∫dm n(m) b(m) m u(k|m)/r]   

                 x [∫dm n(m) b(m) g1(m) ug(k|m)/ng] Pdm(k) 

 



The other half of phase-space:  
Velocities 

 
Just as statistics can be split into 

two regimes, so too can the 
physics:  linear + nonlinear 



Non-Maxwellian Velocities? 

• v = vvir + vhalo 

• Maxwellian/Gaussian velocity within halo 
(dispersion depends on parent halo mass, 
because v2 ~ GM/rvir ~ M2/3)        

    + Gaussian velocity of parent halo (from 
linear theory ≈ independent of m) 

• Hence, at fixed m, distribution of v is 
convolution of two Gaussians, i.e.,  

   p(v|m) is Gaussian, with dispersion 

   svir
2(m) + sLin

2 = (m/m*)2/3svir
2(m*) + sLin

2  

 



Two contributions to velocities 

• Virial motions 
(i.e., nonlinear 
theory terms)  
dominate for 
particles in 
massive halos 

•  Halo motions 
(linear theory) 
dominate for 
particles in low 
mass halos  

Growth rate of halo motions ~ consistent with linear theory; 
Zeldovich should be good approximation for halo motions  

~ mass1/3 



Exponential tails are generic 

• p(v) = ∫dm mn(m) G(v|m) 

   F(t) = ∫dv eivt p(v) = ∫dm n(m)m e-t2svir
2(m)/2 e-t2sLin

2/2 

• For P(k) ~ k−1, mass function n(m) ~ power-law times  
exp[−(m/m*)2/3/2], so integral is:  

   F(t) = e-t2sLin
2/2 [1 + t2svir

2(m*)]−1/2 

• Fourier transform is product of Gaussian and FT of K0 
Bessel function, so p(v) is convolution of G(v) with 
K0(v) 

• Since svir(m*)~ sLin, p(v) ~ Gaussian at |v|<sLin but 
exponential-like tails extend to large v   



Comparison with simulations 

   Gaussian core with exponential tails as expected 

Sheth & Diaferio 2001 



Redshift space power spectrum 

                         Ps(k) = P1h(k) + P2h(k)  

 
                       us(k|m) = u(k|m) e-k2m2s2vir(m)/2  

• P1h(k) = (1 + fm2)2 ∫dm n(m) g2(m) |us(k|m)|2/ng
2 

• P2h(k)  [∫dm n(m) b(m) g1(m) us(k|m)/ng]
2  

                           (1 + fm2)2 Pdm(k) 

 



Bells and whistles                           
(which matter for CDM→WDM) 

• Mass-concentration and scatter 
– Different profiles for red vs blue 

• Distribution of halo shapes 
– Correlation of shapes with surrounding large 

scale structure 

– Projection effects matter for conc-m relation!  

• Substructure = galaxies?  Correlations with 
concentration/formation, time/environment 
– Correlation of substructure with large scale 

structure 



 

• Handle ‘assembly bias’ easily by treating m as 
vector (m, conc, formation time, spin, …) 

 
– See Musso et al. (2012, 2014), Dalal et al. (2008) 

– Statements that halo model cannot treat this bias are based 
on common but NOT essential assumption that m = halo 
mass only 

– Of course, now need moments of central and satellite 
distributions as a function of m rather than just m. 



Halo Model:  HOD, CLF, SHAM 
• Goal is to infer p(N|m) from measurements of abundance 

and clustering 
– Abundance constrains <N|m> = g1(m) 
– 1-halo term of n-pt clustering constrains gn(m) 

• HOD uses abundance and 2pt statistics to constrain 
p(N|m) from different samples (Zehavi et al. 2011; Skibba et al. 
2014) 

• CLF now does too, to constrain f(L|m)  (Lu et al. 2014) 
• Since <N(>L)|m> = f(>L|m),  HOD~CLF but with different 

systematics 
• SHAM (Klypin+ 1999; Sheth-Jain 2003; Conroy+ 2006) uses 

abundance only, but gets 2pt stats quite well anyway 
(Moster et al. 2013) 
– Problematic for color selected samples 



Halo model in practice:   
Central + Poisson satellites 

• In this model we want to place one galaxy close to (at!) the halo 
center, and the others with an ~NFW profile around it.  So, if we 
define  us(m|k) = u(k|m) e-k2m2svir(m)2/2  then we can write this 
model, with z-space distortions, as (real space is svir=0 and f=0): 

• g1(m) u(k|m)  

     → fcen(m) [1 + <Nsat|m> us(k|m)] (1 + fm2) 

– (1 instead of u, because the central galaxy is  at center, so the 
relevant ‘density profile’ is a delta function) 

• g2(m) u2(k|m) 

     → fcen(m) [2<Nsat|m> us(k|m) + <Nsat(Nsat -1)|m> us
2(k|m)] (1 + fm2)2 

     = fcen(m) [2<Nsat|m> us(k|m) + <Nsat|m>2 us
2(k|m)] (1 + fm2)2 

                           cen-sat pairs                sat-sat pairs 

 



Zehavi et al. 2011 
 SDSS 

<Ngal|m> = fcen(m) [1 + <Nsat|m>] 

Luminosity dependence of clustering 
F

(>L|M
) 





Moster et al. 2013 

 =
 m

*
/ 

f b
 M

h
 

Knowing <M*|Mh> at each z yields estimates of 
SFR(Mh,z) for the population (i.e., not object by object) 

From f(L|M) or f(M*|M) can determine <M*|M >; i.e. 
star formation efficiency as function of halo mass 

Low star formation 
efficiency at small 
Mh suggests dwarfs 
DM dominated 



• Knowing M*-Mh at 
each z yields M*(z) 
given M*(0) and 
Mh(0)  

• Since Mh(z) also 
known, can 
compare growth in 
situ vs mergers 

• Hence, can deduce 
SFR(Mh,z) for the 
population (but 
not object by 
object) 

• Clustering also 
predicted - OK 
 

Moster et al. 2013 



Assembly bias 

p(N|Mh,x) ≠ 
p(N|Mh)       

E.g. x = zform, 
conc, spin, 
etc. 

Because M*sat depends on more than Mh, MEAM will exhibit assembly bias 

Would be interesting to correlate MEAM scatter with x = zform, c 





Inferred HOD may be biased 

Erase assembly bias by 

scrambling centrals and 

satellites at fixed Mh; this 

insures p(N|Mh) same 

Zentner et al. 2014 



This can lead 
to incorrect 
conclusions 
about galaxy 

formation 
and 

cosmology 

=Nredsat/Nsat 

Zentner et al. 2014 



• In early days Halo Model was touted by some as 
being the end of SAMs; SAMs argued Assembly 
bias was end of Halo Model 

• Increased complexity means SHAM, MEAN not far 
from SAM 



• In early days Halo Model was touted by some as 
being the end of SAMs; SAMs argued Assembly 
bias was end of Halo Model 

• Increased complexity means SHAM, MEAN not far 
from SAM (though still simpler) 

You should always go to other 
people’s funerals; otherwise they 

won’t go to yours. 



Halo Model based approaches attractive because they 

interpret observations in language which is easy to 

relate to simulations, semi-analytic models  

 

Increased complexity is blurring difference between 

SHAMs and SAMs 

 

Observational and Assembly biases matter! 



You had better know 
where you’re going,  

or you might not get there 

Halo Model based approaches attractive because they 

interpret observations in language which is easy to 

relate to simulations, semi-analytic models  

 

Increased complexity is blurring difference between 

SHAMs and SAMs 

 

Observational and Assembly biases matter! 



Halo Model is simplistic … 

• Nonlinear physics on small scales from virial 
theorem 

• Linear perturbation theory on scales larger 
than virial radius (exploits 20 years of hard 
work between 1970-1990) 

• Halo mass is more efficient language (than 
e.g., dark matter density) for describing 
nonlinear field 

…but quite accurate!  



Useful for cosmology and 
 galaxy formation from  

Large Scale Structure Sky Surveys  

• Baryon Acoustic Oscillations 

• Cluster counts and clustering 

• Weak gravitational lensing 

• Redshift space distortions 

• Supernovae IA 

• Your name here! 


