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We study some non-perturbativeaspectsof N = 2 supersymmetricquantum field theories
(both superconformaland massive deformationsthereof). We show that the metric for the
supersymmetricgroundstates,which in the conformal limit is essentiallythe same asZamolod-
chikov’s metric, is pseudo-topologicalandcan be viewed as a result of fusion of thetopological
version of N 2 theory with its conjugate.For special marginal/relevantdeformations(corre-
sponding to theories with factorizable S-matrix), the ground State metric satisfies classical
Toda/Affine Todaequationsasa function of perturbationparameters.The uniqueconsistent
boundaryconditions for these differential equationsseemto predict the normalizedOPE of
chiral fields at the conformal point. Also the subset of N = 2 theorieswhose chiral ring is
isomorphic to SU(N)k Verlinde ring turns out to lead to affine Toda equationsof SU(N) type
satisfiedby the groundstatemetric.

1. Introduction

N = 2 supersymmetricquantum field theories have recently undergone an
intensive investigationfrom many different pointsof view: From the string pointof
view N = 2 superconformalmodelsin 2 dimensionsconstitutethe building blocks
of N = 1 space-timesupersymmetricstring vacua[1]. From the point of view of
classificationof conformaltheories,theyare in a sensethe simplesttype to classify,
and a nice subsetof them, supersymmetricLandau—Ginzburgtheories,is related
to catastrophetheory[2—5].From the point of view of topologicalcharacterization
of the theory, theyhavea finite ring of operators(chiral primaryfields) [4] which is
believed to basically characterizethem. There is a “twisted” version of these
theories[6], the topologicalversion,which has as its physical degreeof freedom
only theseoperators.Thesetopological theorieshavebeenstudiedfrom the view
point of 2d superconformal[7] andtopologicalLandau—Ginzburgtheories[81,and
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from the viewpoint of their propertiesunder coupling to topological gravity in
[9—111.

From a slightly different point of view, N = 2 supergravitytheorieshas also

beenstudiedin four dimensions,andit wasfound that for the constructionof the
theorya very specialtype of Kähler geometryis needed[12]. This in turn is related

to the fact that in the type II superstringcompactification,leading to 2-dimen-
sional N= 2 superconformaltheories,the metric on moduli spaceof a three-fold
Calabi—Yau has specialproperties,and is basically characterizedby a holomor-
phic, topological object (pre-potential)[13,14]. This geometry is called “special
geometry”. The metric on moduli space of Calabi—Yau is the same as the
Zamolodchikovmetricof the underlying N = 2 SCFT,thusrelatinggeometrywith
SCFTcorrelationfunctions.

In the topological descriptionof N= 2 theories,one of the two supersymmetry

chargesplays the roleof a BRST operatorandthe physical operatorsof the theory
get truncatedto the chiral ring. In this way the computationscanbe performedin
a more or less closed form. The topological correlation functions are basically
combinatorial objects, holomorphic functions of moduli. In the case of special
geometrythesetopologicalcorrelationfunctionsserveas coefficientsof differential
equationscharacterizingZamolodchikov’s metric on moduli space,which thus
makesthe Zamolodchikov’smetric pseudo-topological.The Zamolodchikovmetric
which appearsfor examplein the low-energydynamicsof the effectivefield theory
description of strings is thus characterizedby purely kinematical/ combinatorial

topological data. In thesecasesone finds that the Zamolodchikov(Weil—Peters-
son) metric is Kähler and the Kähler potential is written as a finite sum of
holomorphic and anti-holomorphic “blocks” (periods) in the moduli of target
space.

In the contextof supersymmetricquantummechanicsrelated to LG theoriesit
was found in ref. [14] that the samesystemof differential equationsthat character-
izes the groundstatemetric (basicallythe Zamolodchikovmetric)at the conformal
pointandgave rise to specialgeometryarealsovalid off the conformal point. That
naturallyraisesa questionof whetherthereis a generalizationof specialgeometry
off the conformal point as well.

Oneof the aimsof this paperis to uncoverthe specialgeometryfor massive(i.e.
non-conformal)theoriesas well, and explain the rationale for finding a pseudo-
topological metric from the topological viewpoint for both masslessand massive
theories.Basicallywhat we find is, that if onefusesa topological theorywith itself,

one endsup with topologicalobjectssuch as the holomorphicpre-potentialwhich
arise in specialgeometry.If on the otherhandwe fuse a topological theorywith its
conjugate, which we call anti-topological, we end up with pseudo-topological
objectssuchasZamolodchikov’smetric. The generalizednotion of specialgeome-
try simply encodesthis relation between topological—topological fusion versus
topological—anti-topologicalfusion andtheir variation with respectto moduli. We
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show from this viewpoint in preciselywhat sensethey are topological and derive

the equationsthat characterizethem,thus generalizingthe resultsderived in ref.
[14] for Landau—Ginzburgtheoriesto arbitraryN = 2 QFTs. In thisway we find a
generalizedspecialgeometry to be equallyvalid on- or off-criticality. Eventhough
the equationsare the samein the two cases,we find a sharp differencebetween

the solutions to theseequationson- and off-criticality. In both caseswe find the
metric to be a sum over a finite block of objects,but in the critical theory these
objects(periods)are holomorphic while in the off-critical theory theseobjects (the
generalizedperiods)are not holomorphic functions of moduli andare generically
far too complicatedto give in closedform. From the viewpoint of chiral rings the

main reasonfor complicationof solutionsto special geometryin the massivecase
is that in this casethe ring is not nilpotent.

Theseideasare made more concreteusing many explicit examplesof massive
deformationsof N= 2 LG theories,which is the main reasonfor the unusual
length of the presentwork. The specialexamplesthat we obtain,which areof the
form of generalizedaffine Todaequations,bring a completelyorthogonaldirection
of interestto the presentwork. Namely,many of our examplesprovide interesting
non-singularsolutionsto someaffine Todaequationsin terms of correlations(the
metrics)of N = 2 theories.In thiswaywe canusethe methodsavailableto us from
the N = 2 theories,to gain insight into the solutions of (self-similar)affine Toda

equations,which onegenerallydoesnothavea good handleon. Along the waywe
areableto reproducesomedeepmathematicalresults for solutionsto PainlevéIII
[15] and Bullough—Dodd [16], which had been obtained using isomonodromic
deformationtechniqueand generalizethem to other affine Toda theories. We
basicallyfind that the OPEsof SCFTsolte the boundaryconditionsneededfor a
non-singularsolution to (self-similar)affine Toda equations.

As is the casewith many works on integrablesystemstherearemany mysteries
which need explanation.We find a numberof intriguing resultswhich beg for a
deeperunderstanding.In particular many of our N = 2 massivesupersymmetric
theoriesare themselvesdescribedby quantumaffine Todatheories(somenon-su-
persymmetricand someN = 2 supersymmetricaffine Todalagrangians).In these
caseswe find that the ground state metric, which could be viewed as some
particular correlation functions in these theories, as a function of the overall
coupling (temperatureor scaleparameter)satisfy ordinary classical affine Toda
equationsof thesametype (or reductionsthereof).This is somewhatreminiscentof
the space-time—targetduality obtainedfor critical N = 2 strings[17]. The magic is
evenmore mysterious:some of the casescorrespondingto N = 2 supersymmetric
affine Todalagrangians(the SU(N) case)turn out to be relatedto Verlinde’s ring
for SU(N)k RCFT [18].

The structureof this paperis as follows: In sect. 2 we review sometopological
aspectsof N = 2 theories,and introducethe idea of topological—anti-topological
fusion. In sect. 3 we derivesome equationssatisfiedby the groundstatemetric by
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consideringa family of N = 2 theories.We also discusssomegeneralpropertiesof
the metric. In sect. 4 we discussthe relation to renormalizationgroup flows, the
c-function and Zamolodchikovmetric. In sect.5 we discussthe reductionsto SQM
and in particular derive a rule which allows us to relate different models by
non-invertiblechangeof variables.Moreoverwe find a “period” decompositionof
the metric which generalizesthe known result at the conformal point to the
massivetheories.In sect. 6 we discusssomeLie-algebraicaspectsof our equations,
which are very helpful in a classificationof their solutions.In sect. 7 we consider
someexamplesrelatedto minimal modelsandsome specialmassiveperturbations
of them. In sect. 8 we considera few of the examplesdiscussedin sect. 7 in more
detail,usingpropertiesof the solutionsto PainlevéIII andBullough—Dodd[15,16].
In sects.9 and10 we studymoretricky modelsrelated to Verlinde rings. In sect. 11

we presentour conclusions.In appendicesA andB the propertiesof the metric in
the UV and IR are discussedrespectively.Finally in appendixC the relationship
with the “special coordinates”of specialgeometryis uncovered.

2. Topological aspectsof N = 2 theories

In this sectionwe review someof the backgroundwork which is neededfor this
paper.Our main interestfor mostof the paperis N = 2 Landau—Ginzburgtheory,
butmany of our constructionsaremoregeneral,andso in this sectionwe will not
commit ourselvesto the Landau—Ginzburgtheory, andconsiderthe more general
classof N = 2 quantumfield theories.Moreoverwe do not make the assumption
that the quantumfield theory is conformal, and our treatmentapplies to both
massiveandmassless(conformal)cases.We will be mostly interestedin the 1- and
2-dimensionaldescriptions,butsomeof whatwe say generalizesin a simpleway to
higherdimensions(andin particularto Donaldsontheory [19]).

In an N = 2 theory, thereare two supersymmetrycharges,which we label by
Q + and Q —. The main propertyof thesesupersymmetrychargesis that

(Q±)2= (Q~)2= 0, [Q~ Q~}= H, (Q~)t= Q~, (2.1)

where H is the hamiltonian.Topologicaltheory is obtainedby declaring Q + to be
a BRST operator[6] and by identifying the BRST cohomologyof Q~with the
physicalHilbert space(note that in the context of two-dimensionaltheories, this
meansthat we put periodicboundaryconditionson the circle in order to havea
supersymmetryoperator,i.e. we are in the Ramondsector)

Q+)~ =I~)+Q~Ip>.

We canfix the ambiguityof the topological theory in identifying the state,by using
the Q operator and demandingthat the physical statesbe also annihilatedby
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Q—. This is the analog of picking a harmonic representativein the standard
cohomology.As is clear from the standardarguments,this fixes the ambiguity of
adding Q~-exactstatesto the groundstate.In fact using(2.1) we can identify the
topologicalstateswith the groundstatesof the supersymmetrictheory.

The topologicaloperatorsçL~aredefinedto be operatorswhich commutewith

Q~i.e.

[Q~ c/~~]= 0. (2.2)

Thesefields are calledchiral fields. A field which itself is a Qtcommutatoracts
trivially on the Hilbert space.It is obviousthat chiral fields form a ring, becauseof

OPEof two of them is Qk-closedand so canbe expandedin termsof chiral fields.
But mostof the elementsthat appearin the productare themselvesQtcommuta~

tors, andthusare trivial operatorsin the topological theory. Since the translation
operator is itself a Q tcommutator (following from supersymmetry)the chiral
fields and their translationsdiffer by Qttrivial operators.Thus we seethat in
order to obtain the topologicalproductof two chiral fields at different points it is
sufficient to take their productat thesamepoint. Thiswill differ from the fields at
different pointsby fields which are Q~-commutators.So to specifythis ring we do
not haveto specifythe points at which we put the fields. If we choosea basis 4~
for the physical chiral fields, we get a ring

= C~k+ Q~-commutatorterms.

This ring is in genericcasesa finite ring. In the contextof critical theory this ring,
the chiral primary ring, wasdefinedand studiedin ref. [4].

The questionarisesas to whetherthereis a natural identification of the states
with the operatorsin the topological theory. This would be obvious if we can
identify a uniquevacuumstate in the topological theorywhich we denoteby 0).

Oncewe havesucha statethenwe simply identify the statesby theoperationof çfi,

on the vacuum

q~1~0)=Ii).

The property(2.2) guaranteesthat the resultingstateis Qtclosedandis thusitself
a topologicalstate.So the main questionis how we identify the vacuumstate. In
generaltherearea numberof groundstateswhich all havezeroenergy(in the LG
casethe numberis equalto Witten’s index) andit might at first soundimpossible
to pick a “preferred” one. If we weredealingwith the SCFTthereis a canonical
choice.Namely in that casewe havetwo U(1) charges(the left andright charges)
which labels the vacuaand we look for the unique statewith minimum (left and

right) chargeand identify that as 0>. All the other statesareobtainedfrom it by
applying the physical fields (chiral primary fields which all have positive U(1)
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charge)on it. Herewe havecrucially usedthe propertiesof the conformaltheory,
andin particularthe existenceof an additional U(1) charge,which is the property
of the critical theory.In the generalmassivecasethereis only oneU(1) chargeand
that countsthe fermion number(the differencebetweenthe left andright charges
at the conformalpoint). In particularthis is not enoughto pick a uniquestate(for
examplein the LG theoriesall the groundstateshaveequal left andright charges
andthus areneutralunderthis charge).

One might be led to believe that a canonicalchoicefor the groundstateof the
Ramondsectordoesnot existoff criticality, but that turns out not to be so. To see
this we can use the spectralflow to give an alternativedefinition of the vacuum
state [4]. Consider the Hilbert space basedon the NS sector, i.e. circle with
antiperiodicboundarycondition for fermions. The spectral flow is obtained by
changingthe boundaryconditionfor fermions continuously from antiperiodicto
periodic.This canbe donebecausewe do havea conservedfermion numberin the
theory evenoff criticality. In this way we can identify eachstate in the NS sector
with a unique statein the Ramondsector.In particularthe uniquevacuumof the
NS sectorwill flow to a unique ground stateof the Ramondsector which we
identify as 0). Note that this descriptionof spectralflow is equallyvalid whether
or not the theory is conformal. So in this way we seethat there is a canonical
isomorphismbetweenthe operatorsin the NS sectorandthe topological states(in
the Ramondsector).

There is a nice way to implementspectralflow in the path-integral language
which will be very useful for us: Considera hemispherewith the standardmetric
andwith some operatorsinsertedon it. The boundaryof thehemisphereis a circle
on which we baseour Hilbert space.The path integralwill give us a state in the
Hilbert space.Now if we were doing the standardN = 2 quantumfield theoryon

the hemisphere,the fermion spin structureis trivial on it, but that induces an
antiperiodic boundaryconditionfor the fermionson the boundary.So the standard
path-integral,if we do not put spin operatorson the hemisphere,will give us a
state in the NS sector as is familiar from the study of SCFTs. The trick is to

consider the topological version of this path-integral.This is equivalent [7] to
putting a backgroundgaugefield which couplesto fermions numberand is set to
be half of the spin connection.In this background,over the spherethe fermion
numberis violated by oneunit, andoverhalf of the spherethe fermion numberis

violated by one half, which is precisely the flow from the NS to R sector. Put
differently, the boundarycondition for the fermionsat the circle boundaryof the
hemisphereis still antiperiodic,but thereis a U(1) Wilson line which couplesto
fermion number.We can get rid of the Wilson line by changingthe boundary
conditionof fermionsby the holonomy

exp if A = exp if F = exp(i~-)= —1,
S’ hemisphere
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i.e. it is equivalentto changingthe boundaryconditionsfrom the NS to the R. This
is the magicof topological theory: it automatically“knows” aboutspectralflow.

The topological description guaranteesthat as long as we put fields which
commute with Q~(i.e. chiral fields) on the hemispherewe get a state at the
boundarywhich is in the topologicalHilbert space,i.e. it is Q~-closed.In fact the
topologicalnature of the theory guaranteesthat the topological state that we get
will not dependon the precise metric we put on the hemisphere.Changingthe
metric hasthe effect of shifting the resultingstateby the additionof a Qtclosed

state.If we wish to obtain the actualground staterepresentativewe will haveto
choose the metric on the hemispherewhich makes it look like the standard
hemispherewith an infinite cylinder glued at the boundaryto it. In this way the
propagationby exp(— TH) for largeT along the infinite cylinder will project the
topologicalstateonto the actualgroundstateof the hamiltonian.

In this waywe seethat for eachchiral field ~ we get a state I i) in the Ramond
sector by doing the path integral with that chiral field on the hemisphere.In
particular 0> is the state associatedto the identity operator.The topological
nature of the theory will guaranteeindependenceof where we put that field
preciselywithin the hemisphere.In particular we canmove it to the boundaryof

the hemisphere,in which caseby operatorformulation we seethat the stateis the
sameas multiplication of the stateby the field ~,

H) =~I0),

thus agreeingwith the previousdefinition. Note that in this equationby I i) we
meanthe topological classof the state, i.e. I i) may differ from an actualground

state of the theory by Qk-closed states.Again if we wish to obtain an actual
groundstatewe shouldpropagatethe statealong a cylinderfor a longtime. From

the abovewe also learnthat

~ (2.3)

whereagainthe equalitiesaremodulo Q ttrivial states.We canthusrepresentthe
actionof the chiral fields in the subsectorof vacuumstatesby the matrix C1

Everythingwe havesaid in the abovecanbe repeatedreplacingeverythingby its
adjoint. In particularthis meansreplacing Q~by its adjoint Q~,the chiral fields
~ by their adjoint antichiral fields ~, and the chiral ring coefficients C with
their complex conjugateC = (C)* for the antichiral ring. In the path-integral
definition of the states,we introducea backgroundgaugefield which is now minus
half the spin connection.In this way we get anothertopological theorywhich is

simply the conjugateoneandwe call it the anti-topological theory.
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It turns outto be crucial for us to havea deeperunderstandingof the relation
betweenthesetwo topological theories.The crucial link betweenthe two theories
turnsoutto be the Ramondsector.Namely, thephysicalstatesin boththeoriesare
in oneto onecorrespondencewith the Ramondvacua,aswe havediscussedabove.
So now let I i) and I j) denotethe actual groundstatescorrespondingto thefields
4, and 4~respectively.In this way we havefound two “preferred” basesfor the
Ramondgroundstates.Of coursewe can write one in terms of the other, so we
must have

(Il = (JIM/. (2.4)

The matrix M definedaboveis referredto as the real structure. It is crucialfor us
becauseit is precisely an intertwiner between the topological theory and its
conjugate. In a senseit allows us to compare a topological theory with its
conjugate.Sincethe Hubertspaceis coming from a quantumfield theorywe have
a CPT operatorwhich is an anti-unitaryoperatorof order 2. Acting on (2.4) with
this operatorandusing its anti-unitarity oneeasily deducesthat the real-structure
matrix satisfies

MM* = ]t, (2.5)

whereM * denotesthe complex(not hermitian)conjugatematrix to M. In order to
completely understandthe structure of our Hubert space, in addition to the
operatorcontentof the Hubert spacewe also need to know its inner product.
Since we have a natural N = 2 field theory underlying our constructionswe
automatically have an inner product. That is simply the inner product in the
Ramondgroundstate.To write it down,we needto choosebases.In particularwe
can use the basis wherethe left and right statesare takento be the chiral basis

(jli) =i,~, (2.6)

or the chiral and antichiralbasis

<hi) ~ (2.7)

andthe complexconjugateof the aboveinner products.Of coursethe two metrics
and g,5 are relatedusingthe real-structurematrix M

g,y = s~~1Mb. (2.8)

Note that we can deducefrom eqs.(2.5) and (2.8) the very useful identity which
relatesg and r~

= (2.9)
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The innerproductof immediateinterestin N = 2 theoriesis the g metric, because
whenwe takethe inner productof stateswe takethe adjoint of astateon the left
andthe adjoint of the state I i) is <~I andnot <i I. In particularthe metric s~is not
hermitianwhereasg is obviously a hermitianmetric. However, aswe shall seesj is
much simpler to compute,andis in fact a purely topologicalobject (it will be clear
as we proceedthat i~ is a symmetricmatrix).

To understandthe structureof thesetwo metricsbetterwe representthem by
path-integrals.The path-integralsare representedby two hemispheres,oneon the
left and the other on the right, joined by an infunitely long cylinder. We need an
infinitely long cylinder to project onto the ground states. In additionwe havea
backgroundgaugefield, which for the computationof is set equal to half the

spin connectionthroughoutthe sphere,andwe insertthe operator ~ on the right
hemisphereand the operator~ on the left hemisphere.For the computationof

on the right hemisphereand the right half of the infinite cylinder we havea
background gauge field which is half the spin connectionwhile on the left

hemisphereandthe left half of the infinite cylinder we havea backgroundgauge
field which is minushalf the spin connection.The fact thethe regionwere the left
and right meet is flat, meansthat the gaugefields glue smoothlyfrom one to the
other, andwe havea well definedgaugefield. Also we insert the field 4~on the
right hemisphereandthe field 4~on the left hemisphere.

From the abovepath-integraldefinition it follows that essentiallyboth metrics
are topological, where by topological we meanif we perturb the corresponding

positionsof insertedfields or the metric on the hemisphere,as longas thereis an
infinitely long intermediatecylinder, with a fixed perimeter13, the result of the

path-integraldoesnot change.This is due to the fact that local perturbationsof
this kind, as noted above,are equivalent to operationsby Q~or on some
state, and propagationalong the cylinder of length T results in exp(—TH)Q~
which goesto zeroasT —~ ~. Howevers~is more topological in the sensethat even
if we changethe length of the intermediatecylinder or evencompletelychangeits
metric, or evenmove the positionsof fields from onehemisphereto the other, the
result will still not change.This follows from the usualdefinitionsof the topologi-
cal theory, as all suchvariationsareQk-commutatorsandsince the fields commute
with Q~we immediately see that the variations do not change the result of
path-integral.Note that since we can exchangethe position of the operators
betweenthe two hemispheress~iis symmetric.The fact that sj is purely topological
allows usto give a simpleclosedform for it in manycases.The result for the LG
theorywill bementionedbelow.This generalnotion of topological invariance,i.e.
without necessitatingan infinitely long intermediatecylinder, would not work for
g11 becausewe get both Q+ and Q — variationson the right andleft hemispheres
respectivelywhich doesnot allow us to completethe argument.In this sense
which is obtained by “fusing” a topological theorywith its complex conjugateis
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only “partially” topological in the sensediscussedabove~. In particular it depends
on the perimeterof the cylinder /3. It turns out that changing/3 is equivalentto
changingthe scaleof the theory, andthe one-parameterfamily of metrics g11 that
we obtain can be viewed as the trajectory of the metric under RG flow. In the

following we set /3 = 1, and implement the change of scale by flow in the
coupling-constantspaceof the theory. Even thoughg looks only pseudo-topologi-
cal, as we shall seelater in this paper the purely topologicalcorrelationsallow us
to completelydetermineit.

It is also easyto seetheseconstructionsin the operatorlanguage.In particular
in this way we can show that eventhoughin the abovedefinitions of s~and g we
haveused the ground statesthemselvesthe metric t~ is independentof which
representativewe choose.This follows by noting that changingfor examplethe
representative<i I is equivalentto shifting it by <a I Q~but this doesnot affect the

inner product <i I]), becauseQ~I j) = 0 (for any representativeof I j)). Note
that the same argument to show independenceof g,1 of the choice of the

representativewould fail andso this quantitydoesdependon the fact thatwe have
to actually choosethe precisegroundstatesrepresentingthe cohomologyclasses.

So far we havebeengeneral.We will now illustratetheseideasin the contextof

N = 2 LG theories.Thesemodelsaredefinedby taking a numberof superfieldsX,
in two-dimensional spacewith two left and two right moving anti-commuting
coordinatesdenotedby U ±and U ~. The superfieldsare takento be chiral which
meansthat

59 3 —

D~X.= —+6— X.=0=D~X.,0U~ 3z ‘ I

and similarly X1 is anti-chiral (andsatisfiesthe aboveequationswith U ± and U —

exchanged).Thenonewrites down a lagrangian

sf=~fd4oK(X~,xj +fd2U W(X~)+h.c.,

which hasN = 2 supersymmetry.This consistsof two terms,the term involving K,
the D-term, and the F-term W, the superpotential,which is a holomorphic
function of X1. If we representthe operatorscorrespondingto D ±and D ±acting
on the Hilbert spaceas

D-~-Q~, ~

* Theconstructionof topological—anti-topologicalfusion canbeextendedto arbitrarygenus.We takea

surfaceconsistingof alternatingregions,supportingthe topological theory andits conjugaterespec-
tively, which areseparatedby infinitely long tubes.However,oncewe know ij, g andC on thesphere
for arbitrary/3 we can write down the correspondinganswerat higher genususing simple ideasof
sewing.
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we canwrite the two supersymmetryoperatorsQ±discussedaboveas

f~±_rI±
~ ~ k~R~

When W is quasi-homogeneousthe IR fixed-point of the LG theory is believedto
describe an N = 2 superconformaltheory [2,3]. Here we will not make these
restrictions, and our discussion is equally valid for the critical as well as the
non-critical (massive)theory. It is easyto find thechiral ring ~ for LG models.In
fact the chiral ring is generatedby the X1 themselves.All we haveto do then is
find the relations in this ring, or put differently, which product of the X1 is
Qtclosed.Theserelationswill comefrom the variationsof the lagrangian,which

are the equationof motion for this theory. Varying the actionwith respectto X1
and doing the U~,O~integralsin the D-termgives us

3,W(X1)= —D~D~31K(X1,x1).

This meansthat the chiral fields containing0,Ware Q~-commutatorsandthus are

trivial in the ring. Thereforewe learn that the chiral ring of the theory is simply

= C[X1]/0~W.

An importantthing to notehere is that W completelydeterminesthe ring (known
as the singularity ring of W) and the D-term K does not affect the ring. In
particular the D-term is trivial in the senseof both superchargesQ ~. This in
particular implies that the variations of K is trivial in the senseof both the
topological theoryandits conjugate.Thus, it will not affect the metricswe defined
above,and so the two metricsjust dependon W. The metric sj turns out to be
particularly simpleto computeandit is simply computableusingthe techniquesof
topologicaltheories.A topological descriptionof LG theoriesandthe computation
of its correlation functions is given in ref. [8]. Alternatively, one can apply
dimensionalreductionto supersymmetricquantummechanics,and computethe
metric ij usingpropertiesof solutionsto the supersymmetricSchrodingerequation
[14]. The answeris

= <4~~)top. <ill) = Resw[~~~1j

in termsof the GroothendieckresiduesymbolRes~[~]definedby

1 ~(X)dX’A...AdX”
Resw[~]= nf = ~ q~(X)~’. (2.10)

(2~i) ,-‘ 31W32W.. . 3~W dW=O

where ~ denotesthe hessianof W: .~ = det 0131W and we are assumingthat the
critical points are non-degeneratein writing the last equality. Note that with the
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aboveresult, underfield redefinition, the fields do not transformas scalars.This

“anomalous” behaviour,is connectedwith the fermion zero-modesin the back-
groundgaugefield whichwe discussedfor the topological theory. This anomalous
behaviourwill also be explainedgeometricallybelow in the contextof SQM.

The computationof g.
1, or equivalentlythe real-structurematrix M, turns out

to be far morecomplicatedandthe studyof its propertiesis the main focusof this

paper.In order to studythesewe needto review some techniquesdevelopedfor
thispurpose.This will be done in sect. 3.

3. General properties of the metric and its variation

The basic method to computethe metric g is to study its behaviourunder
perturbationswhich preserve the N= 2 supersymmetry. In this setup, using
standardperturbationtheory techniques,one can derive differential equations
which are satisfiedby g. The coefficientsof thesedifferential equationsturn out to

be completelyfixed by the chiral ring ~ andthus, in the caseof LG theories,they
only dependon W as theyshould.

The idea that thereshouldbe a differential equationon the coupling-constant

space is not surprising. In fact in the context of non-degenerateperturbation
theory in quantummechanicsit is well known that thereis a canonicalcurvature
on the perturbationspace,and the integral of this curvature leadsto the Berry
phase[201.In thecaseof degenerateperturbationtheory, this leadsto non-abelian
gaugefields on the coupling space[21]. Our caseis genericallyof this type,with
the addedstructurethat we havea holomorphic parameterspaceandthat gives us
someadditional structure.

We will discussthe ideain the generalsetting.Again, our considerationsapply
to conformal and non-conformalcaseswith equalvalidity. We considerchanging
the action by giving expectationvalue to chiral and anti-chiral operators.This
meansthat we vary the actionby

= fd2U ~ + c.c.,

where t1 correspondto the (complex)couplingsin thetheory. As we changet, the
Ramondvacuachange.In perturbationtheoryoneusuallydefinesthe variationof
the stateto be orthogonalto itself (andto the other stateswith the sameenergy).
It is howevermoreconvenientto first allow an arbitrarybasisfor the perturbation
and introducea connectionin the spaceof vacuawhich projectsout the compo-
nentsof the perturbedvacuawhich are not orthogonalto thevacuumstates.Let us
denotethis covariantderivativeby D1. Its basicproperty is that

<hID~Ia)=<3I31-A1Ia)=0,
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wherea, b label the Ramondvacuain someunspecifiedbasis and<b I denotesthe
state adjoint to I b). Put differently, we can define a gaugefield A, on the
couplingconstantspacegiven by

‘~ia~ <~I0~Ia). (3.1)

It is easyto seethat undera coupling-constant-dependentchangeof basisfor the
vacua,the quantityA transformsas a gaugefield. Similarly we can define D, and
A~.Let ~‘ be the space (the vector bundle) of Ramond ground states over
coupling-constantspaceon which g definesa hermitianmetric. Thenit is easyto
see that g is covariantly constantwith respectto the gaugefield we just intro-
duced.In fact, this is how we definedA. One obtains

D~g~8= 3jg~5—Af~gç5—A~g~~= 0 = Dig,

where

Ab=A b~ Az=IA±
ia ~ ib ~. ib

It is naturalto computethe curvatureof theseconnections.We find *

[LI~, i~~j= [fl,, ~j = 0,

[D,, D’] = — [C,, ‘~1 (3.2)

Moreoveronehas

D,C~.= D1C,, D,C1 = D1C,, D~C,= D1C, = 0. (3.3)

whereC, and C1 are the matriceswhich representthe action of çb, and on the
vacuumstates.Since in the topological phasewe can moves fields around, it is
clear in additionthat

[Ci, C1] = 0 = [~,~].

In the conformal limit this systemof equationswas derivedand studiedin the
physicsliteraturefrom manydifferent view points [13,14],andgives rise to what is
called “special geometry”. In fact it has beenshown in the context of Landau—
Ginzburg models[14] that thesevery sameequationsremainvalid evenoff the
conformalpoint. The techniqueusedthereinvolvesa careful studyof the zero-en-

* These equationsare a natural generalizationof equationsstudied by Hitchin correspondingto a

reductionof self-dualYang—Mills equationsto two dimensions.
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ergy solutionsto the Schrödingerequationin the context of SQM. As we will see
theseturn out to be quite generalandapplyto arbitraryN = 2 theories,regardless

of whether they comefrom LG theoriesand they canbe easily derivedfrom the
path-integralviewpoint of fusing the topological theorywith the anti-topological

theory.
In the usual non-topologicalsetup,one can derive incorrect “theorems” by a

naive treatment of supersymmetricWard identities which would lead one to

believethat the metric is constant,independentof the coupling constants.The
“argument”goesas follows:

0
~<~Ih)~fd2zd2U<kI~ Ih)=0,at’ a

i.e. using the fact that the ground statesare annihilated by both Q ~, the

Grassmannintegral seemsto kill the aboveterm. However, this is incorrect. The
difficulty lies in ignoringcontactterms.It fact it is shown in ref. [22] that in the
conformal case such terms are crucial in obtaining the correct Zamolodchikov
metric. In thecritical N = 2 SCFTtheories(correspondingto stringson Calabi—Yau
manifolds), the contact terms were found to be crucial in getting the correct

answer [23]. However, amazingly the topological theory allows us to be “naive”
aboutcontacttermsandignore them and get the correctanswer! This is precisely
becausecontactterms which are UV singularitieshaveno invariant definitions in
the topological phase,as we can move fields aroundwith no consequencefor
correlationfunctions.

Before turning to the derivation of these equations let us describe their
interpretation.The first line in eq. (3.2) is telling us that the gaugeconnectionis
unitary, and the secondis telling us that its curvature is computableusing the
commutatorsof the ring of the topologicaland anti-topologicaltheory. Combined
with eqs.(3.3) one seesthatwe can introduce“improved” connectionswhich are

actuallyflat, namelyconsider*

V= dt’(D~+ Ci),

V=d~’(D~+C,). (3.4)

Then the new connectionV + V is flat,

V2=V2=VV+VV=0. (3.5)

V + V is the analogof the Gauss—Manin(GM) connectionwell known to mathe-
maticians[24]which in the physicslanguageplays a rolewhen we aredealingwith

* One could aswell considerthe dualconnection 3’ D — C, a’ = D — C which is also flat.



S. Cecotti, C. Vafa / Topological— anti-topologicalfusion 373

marginal insteadof massiveperturbationsof conformal theory. Indeed,whenthe
N = 2 theory is a LG theory which has a if-model interpretation, it is the usualGM
connection(see ref. [14] for details).

In order to prove eqs. (3.2) and(3.3) our strategywill be as follows: Wewill first
show that it is possibleto choosea holomorphicbasisin which a, b run overchiral
indices andwith

A~= gkPA.~= 0.

Oncewe show this (and similarly the conjugateversion of it) the first line in eq.
(3.2) will follow. Similarly, the fact that in this basisC~is holomorphicimplies that

D1C, = 01C1 =0,

which with its conjugateversion will prove the secondline of (3.3). For the other
equationswe will haveto work harder.

Let us start by showingthat in the chiral basis we can choosea holomorphic
gauge,i.e. a gaugein which the antiholomorphiccomponentsof the gaugefield are

zero. As we shall see, the topological path-integralautomaticallypicks this gauge.
By definition of the gaugefield we haveto compute

A~=~<lI~Ij). (3.6)

The matrix elementin the aboveequationcan be convenientlyrepresentedby a
path-integral:We representthe state If> by a topological path-integral on a
hemispherewith a long tube attachedto it with the field insertedin it. This

space(with the long tube attached)we call the right-hemisphereSR. In order to
find 3, I j) all we haveto do is to insert the operator

f d~zd
2U~~=f d2zD~D~4

1
SR SR

in the path integral. To compute the matrix elementin (3.6) we can createthe

state<Il by a topologicalpath integralon a left-hemisphere
5L’ with 4~,inserted,

againwith a longtubeattached,andglue it to the path-integralon the right sphere

5R~This we will representsymbolically by

A
111=~1f D~D~

\ ~R /

Since Q± is a symmetryof the topological theoryand is closedunderit, we can

write thisas

~tQ± f ~
SR I
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This vanishesbecausethe topological theory on SL producesa statewhich is

annihilatedby Q~.Thus we haveseenthat the path integral in the chiral basis
providesa holomorphicbasis for the connectionin which the anti-chiral compo-
nentsof the connectionvanish.This concludesthe first thingwe wished to show.

Now we turn to harderpartsof the derivationandshow how the secondline in
eq.(3.2) canbe derived.To do that we haveto show that

0JA~’k—0~A]~=[c1,~ (3.7)

wherewe haveusedthat fact that in our basisthe anti-holomorphiccomponentof

the connectionvanishes,andthus thereareno commutatortermson theleft-hand
side.In factwe know that eventhe secondtermon the left-handside is identically
zero, but we will keepthis as it cancelssomeof the terms from the first term on

the left-handside andslightly simplifies our analysis.
Usingthe path-integralrepresentationof the left-handside of eq.(3.7) it is easy

to seethat, after someobvious cancellationbetweenterms,we get a path integral
on the spherewhich symbolicallycanbe representedby

O]A~k/— jkt = (~k(fD+D—+~—1)(~RD~~i) ~)
- (~k(fsL D~~)(1RD~j)~t) (3.8)

Now we will show that thesetwo termsgive —C1.C, and C~C1.respectively(up to
termswhich cancelbetweenthem).Let us concentrateon the first term

~

Just as discussedbefore we can move D + to the right where it kills everything
exceptfor D — actingon 4~which convertsthat into 0 (by usingthe factthat D +

kills 4~andusingthe (anti-)commutatorsof N = 2 algebra).Similarly we canmove
D~to the right and again the net effect on the path-integralon SR is to replace
D~with 3. So we are left with *

(~k(~I) (~R3~i)~t).* In orderto more D~andD~we haveusedthefact that thereare two topologicalcharges:Q~andQ+
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Now we can do the integral of the field on the right hemisphereand get a
contribution on the boundarycircle C on the cylinder which separatesthe two
regions5L,R~ We get

- (~k(f~J)(~ 3n~i)~,

where 3,, denotesderivative in the normal direction to the circle C, i.e. in the
infinitely-stretcheddirectionof cylinder. We can replace

0n’l~i= [H, ~].
Since I /~)is the sameas the vacuumstate Ii>, it is killed by H and so we can
write the abovematrix elementas

- (~k(~J) (H~~)l)

We will divide the integral on the left-hand side to two roughly equal parts eachof
which is infinitely stretched,the first part includesthe field 4k and containsthe
curved piece of SL with roughly half the infinitely stretchedcylinder, while the
secondpart includesonly the otherhalf of the infinite cylinder of SL. The integral
on the part further on the left will not contribute to the above matrix element,
becausethe stateone gets propagatesinfinitely long on the secondpart of the
space,andso the net effect is projectionon groundstatewhich is accomplishedby
the exp(— TH) for largeT, andthe final statewe get on the circle C is thuskilled
by H in the abovematrix element.We are thusleft with the secondpart of the
integralon the left which is on a verylongcylinder. Let T denotethe longdirection

on this cylinderand let us take it to run from 0 to T>> 1. Meanwhile the empty
first part of the path integralwill convertthepath integralwith the insertionof 4k

to an actualgroundstategiven by <k I. So we are left with

-<kIfdr~j(r)H~cb~Il),

where we havewritten the integral on the cylinder as first running around the
perimeteron the cylinder at a fixed time T andthen integratingover all i-. Since

the H_kills the ground state on the left, we can replaceH with its commutator
with ~q~(r) which gives us a —0~st341~•Thus doingtheintegralover i- becomeseasy
andwe get the contributionsfrom the boundariesat i- = 0, T. The contributionat

= T is on the samecircle as the one the operator9$4, is insertedandis canceled
by the sametermfrom the secondterm of eq. (3.8). We are thus left with

-<kI~çb
1 exp(-TH)~1Il),
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wherewe haveto sendT—~ ~. This has the effect of projecting the intermediate
statesto the groundstatesof the theory,andwe recoverthe definition of thechiral
ring matrices* andso we get

- (~Cj)k/

And similarly for the secondterm in eq.(3.8) we get the sameas abovewith C~and
C~. exchangedplacesandwith the oppositesign. We thus get the commutatoron
the right-handside, thuscompleting the proof of the secondline eq. (3.2). Using
very similar techniques,whichwe hope the readerwould be ableto reproduce,one
canverify the validity of the first line of eq. (3.3).

On closingthis section let us note that in this holomorphicbasis,we canwrite
everythingin termsof the metric g andthe holomorphicchiral ring elementsC,~.
Namely from the fact that g is covariantlyconstantandthat the antiholomorphic

componentof the gaugefield vanisheswe have

A/k = —gk](0/g

Moreover,just from the definition of the basis we have

(C1)~= (gCfg ‘)~.

Puttingeverythingtogether,the zero-curvatureconditions(3.5) becomedifferential

equationsfor the metric g. We get

~(g0~g~) — [c’, g(C~g~]= 0, (3.9)

0~C1—01C~+ [g(01g~), C1] — [g(~g_1), C11 = 0, (3.10)

all other conditionsbeing either trivially satisfied,or consequencesof thesetwo
togetherwith known propertiesof the topological functions C’~~and m1.

As we shall see in more detail in subsequentsectionstheseequationshave
“magical” properties, making them a natural generalizationof the so-called
Special Geometry which plays a key role in understandingthe geometryof the
moduli spaceof N = 2 conformal field theories(related to CY manifolds).One
importantmiracle is alreadyevidentfrom this discussion:our non-lineardifferen-
tial equationsare always in the form of a consistencyrequirementfor a set of
linear equations,i.e. they always admit a zero-curvature(Lax) representation.
Insteadof eq. (3.9) and (3.10), we canstudythe associatedlinear problem

Vili=V~Is=0. (3.11)

* We havetaken theperimeterof thecylinder /3 to have unit length.otherwisethecommutatorswill he

accompaniedwith a factor of /32~
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In this abstractsenseour equationsare always solvable. As we shall seebelow,

becauseof this Lax representation,for simple models the equations have a
tendencyto reproducecelebratedequationsof mathematicalphysics.More sur-

prisingly, generallyspeaking,to solvablemodels in the world-sheetsense,models
which leadto infinitely many conservedcurrentsandconnectedwith factorizableS
matrices,we find solvable (classical)systemsfor the dependenceof ground state
metric as a function of coupling-constantspace(the “target” space). Moreover
theseequationstend to be of the sampletype! (Quantumaffine Todatheoryas the
world-sheet theory, and classical affine Toda theory of the same type (or its
reductions)as the equationssatisfied by the ground statemetric!) This bizarre
duality betweenworld-sheetand targetphenomenais reminiscentof what one
finds in the caseof critical N= 2 string theories[17].

Not all the solution to the above equationscan be acceptedas ground state
metrics. There are other conditions to be satisfied. First of all, g should be a

positive-definite hermitian matrix. Furthermorethe metric should have all the
symmetriesof the problem and in particular in the LG case,it inherits all the
(pseudo)symmetriesof W. Moreover,as mentionedbefore we havethe “reality
constraint”

There aresome generalpropertiesof the metric which follows from the above
equations.Takethe traceof eq.(3.9) which givesus

~ log det g = 0,

i.e.

det g = I f(t) 2 with f(t) holomorphic.

In particular,we can find a holomorphicbasissuch that det g = 1.
Anothergeneralpropertyof g which shouldbe consistentwith our equationsis

that the metric shouldnot dependon t°, the coupling associatedto the operator
11. Indeed, adding a constant to the lagrangian in chiral superspacedoesnot

changethe model becausethe Grassmanintegrationover superspacekills it. This
is consistentwith our equations.In fact, C0 = 1. and hence it commuteswith
everything.This simple remark has a very useful generalization.Sometimesthe
N = 2 theory has a (pseudo)-symmetrysuch that the spaceof vacuaviewed as a

representationof a subring ~ of ~ generatedby some 4~decomposesinto
orthogonal representations.Then if in a given irreducible representationsome
non-trivial operator reducesto a multiple of unity, (ill) (Ii) in the given
representation)is (essentially)independentof the correspondingcoupling.
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At this point a natural question arises. Are these conditions sufficient to
uniquely determinethe metric or not? A priori, onewould think that the above
differential equationshouldbe supplementedwith boundaryconditionsin order to
predict g. However, the analogywith the geometricalcase(the variationalSchot-
tky problem)which is the geometricalinterpretationof thesein the context of
marginal operators of conformal theories suggeststhat generically the above

conditionsalreadyleadto a veryoverdeterminedproblem.Thenjust oneboundary
conditionwould give a solution satisfyingall the requirementssimultaneously.In
this sense,the equationspredict their own boundaryconditions.Althoughwe do
not havea generalproof of this statement~,below we shall show in manyexplicit
models how the equationsare strong enoughto predict their highly non-trivial

boundaryconditions.In particular the OPEof conformal theoriesarepredictedby
consistencyalone and they agreewith the results previously obtained. As a
by-productwe shall also reproducesome deepmathematicalresultsin the context
of isomonodromicdeformationtheory (togetherwith somegeneralizations).

4. RG flow, Zamolodchikov metric and c-function

In the context of perturbingquantumfield theoriesone usuallydefines a one
parameter family of quantumfield theoriesrelated to eachother by a change in
scale.This definesa “flow” on the spaceof quantumfield theorieswhich is known
as the renormalizationgroup flow. Conformal theoriesare precisely the fixed
points of this flow. For a given theory characterizedby a point on the coupling
constantspace,one definesan UV (ultra-violet) and an IR (infra-red)fixed point
defined as the short-distance,and long-distancelimits of that given theory.
Genericallyonestartswith a theorywhich is obtainedby relevantperturbationsof
conformal theory so that the UV fixed point is the theorywe startedwith. The
infrared fixed points are generically infinitely massive theories;however, if one
choosesthe perturbationof the quantumfield theoryjudiciously, onecanend up
with anotherconformalfield theoryasan IR fixed point. The studyof thiskind of
situation in 2-dimensionalquantum field theorieswas given a big boostby the
work of Zamolodchikov[25]. In that work a function wasdefinedon the parameter
space,the “c-function”, which has the beautiful propertyof decreasingalong the
renormalizationgroup flows, andwhosecritical pointscorrespondto fixed points
of RGflow, i.e. CFTs.MoreoverZamolodchikovdefineda metric on the parame-

ter space,usingthe two-point function of perturbingoperatorson the planeat a
fixed distance.

As we havebeenstudyingperturbedN = 2 SCFTsin this paper,it is naturalto
ask how the RG flows look in this context.Someaspectsof this hasbeenstudied

* Even in the geometrical (conformal) case there is no generalproof.
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[26]. We will focuson the caseof Landau—Ginzburgtheories.The non-renormal-

ization theoremsof N = 2 theorycometo our aid in the study of RGflows. These
statethat the superpotentialW of N = 2 theoriesdoesnot get correctedperturba-
tively. We will take this to be true non-perturbatively.In fact it appearsthat the
non-perturbativenon-renormalizationtheoremcan be provenalong the following
line of argument.In flat space,wherethe spin-connectionvanishes,the functional
measurefor the LG model is identical to that of the topological theory with a
certain gauge-fixingterm.The topological theory is not renormalizedjust because
there are no local degreesof freedom~. Then its quantum effective action F
shouldhavethe form

F=T~1+s~1F,

where s is the topological Slavnovoperator.In the LG context this equationis

interpretedas the N= 2 non-renormalizationtheorem. Indeed,the usual super-
diagrammaticproofof this result [27] consistsof a loop expansionof this equation.
Forotherviewpoints,seesect.4 of ref. [5].Anyhow, someevidencefor the validity
of this kind of conjectureis the correctnessof some of its consequences[2,3]. To
be moreprecise,eventhoughwe takeW not to change,the actionwill pick up the

supervolumefactor. If we take z—f Az, U —~ A - ~
2Uwe get

fd2z d2U W(X~)~~~Afd2zd2U W(X~).

This overall factor of A canbe gottenrid of in theleadingtermsof W (the highest
degreesof fields) by a field redefinitionwith the effect of rescalingthe rest of the
couplings. In this way the rescalingof W by A generatesa flow. The IR limit is
when A —~ ~ and UV is obtained when A —‘ 0. This we take as our working
hypothesisas to what the RG flow is for us. Needlessto say the D-termsare
expectedto get correctedin a much more severeway, but as we haveseenin
previous sections, luckily our computationsfor the ground state metrics are
independentof that ~.

Now it is naturalto seewhetherwe cancomputethe form of themetric g in the
UV and IR limits. Thesewill also be a kind of “boundary condition” for the
differential equationswehavediscussed,eqs.(3.9), (3.10). In the UV, as A —~ 0, we
start from a conformal theory. In otherwords, in this limit we can take W to be
quasi-homogeneousby rescalingof the fields. ForN = 2 LG theories, this problem
hasbeensolved in ref. [14] which shows how the differential equations(3.9) and
(3.10) andother basicpropertiesof the metricdiscussedabovelead to the answer.

* The topological Greenfunctionsarecomputable.From their explicit form the non-renormalization

is obvious.
** In the formulation of topological—anti-topologicalfusion of sect. 2, the perimeter /3 of the

intermediatecylinder canbe identifiedwith A.
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It turns out that the answercanbe written in a simpleclosedform thatwe will now
discuss.Let 4~(Xk)be a basisfor the chiralprimary fields of the LG theory. Then
the metric can be given by finite-dimensionalintegralsover the variables X,. For
instance,if j~(X~)is relevant(i.e. q(4~)< 1) one hasthe very compactformula

~ (4.1)

We haveto be a little carefulwith this integral. For one thing for largevaluesof
fields it is typically a highly oscillatory integral. Of courseour intuition saysthat

thesehighly oscillatory partsshouldnot contributeappreciablyto the integral.This
intuition canbemademorepreciseby defining the aboveintegralusingsurfacesof
constant W. Alternatively, we can define the above integrals by demanding
Riemannbilinear identitiesto hold: Let B ~ C~denotethe asymptoticregionsin

C” where Re W—~±cc.Here n denotesthe numberof variables.Let ~ label a
basis of equivalenceclass of the n-chainsin C’, whoseboundary59y.±C B±,in
other words they definea basis of the relativehomologyclasses

Y~EH~(C~,Bk).

Moreover,let C,1 denotethe intersectionmatrix betweenthesecycles

= ~ n y~.

Then applying the ideaof the Riemannbilinear identity to the aboveintegralwe
comeup with the following result *:

gij~e1ev.=f~~Xk) exp(W)Ctmf ~l(Xk) exp( — W). (4.2)

The residuecan also be describedin this way. Onehas

= f 43i(Xk) exp(W)C1mf±~I(Xk)exp(—W)

for q(4,) + q(~1) ~ c/3

= 0 otherwise. (4.3)

Note that the aboveintegralsare well definedby the choiceof the cycleson which
we integratethem. In appendixA we derivetheseformulas,by showingwhy they
provide solutionsto eqs.(3.9) and (3.10). It is importantto notice that eq.(4.2) is

* Technicallyspeaking,the symbols Yk~representlocally-constantfamilies of homology cyclesrather

thangivencycles.This remarkappliesthroughoutthepaper.
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valid only at the conformal point where W is quasi-homogeneous.For more
general W the story is far more complicatedand cannotbe describedby such a
simple integral. However, using SQM, even in thosecasesone can write similar
expressionsbutone hasto replacethe fields in the aboveby the exact solutionsto
Schrodingerequation.This will be discussedin sect.5. Insteadeq.(4.3) is valid for
arbitrary W’s. More precisely,the generalformula is

~II=f~/(Xk) exP(W)C”~f~~1(Xk) exp(—W). (4.4)

Howeverherethereis a subtlety.Whereasbothsides of theseequationstransform
the sameway undera changeof basis in ~, they transform differently undera
changeof the representativeof BRST-classes

cb/(Xk) —~4/(Xk)+ Eh~(Xk) 0,W.

Theneq. (4.4) holds only for special representatives.The specialoperators~, are
thoseassociatedto the specialcoordinatesof TFT [10,28].Thesecoordinatesare
discussedin appendixC. There eq. (4.4) is proven. With genericrepresentatives,

the r.h.s. of eq. (4.4) would differ from s~i becauseof spuriousmixings of the
operatorsof chargeq with thoseof chargeq — k (k a positiveinteger).Modifying
the definition as in eq. (4.3) we disentanglethis mixing. Theneq. (4.3) holdsfor all
choicesof the operators~. Seealso ref. [29].

In the casethat W= 0 defines a Calabi—Yaumanifold in weightedprojective
spacetheseresultsare all consistentwith what is known as special geometry. In
factthe integral representationof the metric (4.1) is very reminiscentof the period
integralsof specialgeometry,but now in the context of generalLG theory. We will
seemoreconnectionsbelow.

We can vary W by marginal operators,and remain in the classof conformal
theories.Then it is natural to ask what is the relation betweenthe g we have
computed,andZamolodchikov’sdefinition, which gives a naturalmetric on moduli
spaceof conformal theory. As we have discussedspectral flow relates chiral
operatorsto the groundstates,andso the metrics that we havecomputedmustbe

relatedto the metric that Zamolodchikovdefines.This relation is quite precisein
thecasethat the perturbationsare marginalandpreservethe conformal properties
of the theory. In particularusingconformal Ward identities it is easyto show that
what we havecomputedin this caseis

g,1=

evaluatedon the sphere.This is not precisely the metric that Zamolodchikov
definesfor two reason:The importantreasonis that 4~and are not themselves
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the perturbingoperators,but ratherf d2U~
1and the complexconjugateof it are

the perturbingoperators.That is easyto implement,as again the superconformal
Ward identitiesrelatetheseto the abovecomputationby multiplicationby a factor

of q/ where q, is the U(1) chargeof the field ~, (which we assumeto haveequal
left andright charge— otherwisewewould get q,Lq,R). Note in particularthat the

identity operatorgets projectedout once integrationoverGrassmanncoordinates
is performed. For marginal operatorsthe chargesare all 1 and so this doesnot
affect the abovemetric at all. The other point to bearin mind is that Zamolod-
chikov’s definition is the expectationvalue of two operators,and we need to

choosea correctnormalization for the vacuumby dividing out by <0 10>. So for
conformaldeformationswe seethat the Zamolodchikovmetric G is relatedto our

g simply by (the index 0 labels the identity operator)

G,1 = g11/g00, (4.5)

where i, j run over the marginaldirections.
It turnsout that quite generally,onecan showthat the metric G for the metric

on moduli spaceof N = 2 SCFTsis Kähler.This is in fact true for arbitraryN = 2
SCFTsand not just LG theories. In the conformal limit we havean extra U(1)
symmetry,with respectto which all chiral primary states,exceptfor the identity
operatorwhich is neutral, havepositive charge.Then by chargeconservationwe
have

gok=gko=O for k~0,

(gC,~g~)~°=0for k~/=0.

Let the indices i, j correspondto marginal perturbations,i.e. chiral primary fields
of chargeq = 1. Thenfrom (3.9) we find

—3101 log(0 10) = [0j(g01g’)]0° = (C1)0kg~/C~tg00=g11/g00 = G11,

where we used that ~ = C~= ,~k Let I p> be the Ramondstateof maximal
chargedual to lO) with respectto the pairing ~jk~ Usingeq. (2.9) we seethat

0j0, log<p I p) = —3j0~log<0 0).

So we get

G
1~=31i91log<plp>.

Thuswe find that in the N = 2 casetheZamolodchikovmetric (alongthemarginal
directions)is Kähler with potential K = log(p I p>. This is a result dueto Periwal
and Strominger[30].
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In the caseof LG theoriesthe integral representationof the metric(4.1) implies
thatwe canwrite the Kähler potentialas anintegral

goo=e~”=ffldX~ dX, exp(W—W). (4.6)

In the casethat W is of a form to be directly relatedto Calabi—Yaumanifolds [31],
i.e. with integerê and the numberof variablesn = ê + 2, thendoing the integral
above with respectto one of the variables(with a suitable changeof variables)
results in ö(W) in the integrand.It wasobservedby Greenethat if one continues
this formal integration one more step one endsup with fw A ~i, where w is the
representativeof the (ê, 0)-form on the manifold W=0 defined in weighted
projectivespace.So in this casewe have

e~= fw A ~,

which is a well-known result due to Tian [32]. One shouldemphasizethat (4.6) is
valid regardlessof a Calabi-Yau interpretationof the LG theory. From the other
equationsin (3.9) we get additionalconstraintson thisKähler potential. It is easy
to show that they reproducetheconditionsvalid for a variation of Hodgestructure
on the algebraichypersurfaceW= 0 in weighted projectivespace,which may or
may not be a CY manifolds.This was discussedat length in ref. [14].

All we havesaid so far is only valid at the conformal point, i.e. the limit where
A —~ 0. Now we wish to discusswhat is the form of the metric in the IR, i.e. when
A —* ~. In sucha casethe critical pointsof W, i.e. dW = 0 which arethe minima of
energy,becomeinfinitely separatedfrom eachother, andto leadingorder do not
see eachother. In otherwords to leadingorder the metric becomesdiagonalin
basis of chiral fields correspondingto excitationsnearthe vacua.So we can base
our physicalvacuumby shifting fields to correspondto eachone of the vacuawe
wish to study. If the critical point is not a simple zero of dW, then the field
configurationsnear that critical point will still describea (massless)conformal
theory andwhat we said aboveaboutthe computationof g remainsvalid for this
part of the metric. Howeverat the critical pointsof W for which dW hasa simple
zero, we endup with a massivetheory. In the limit that A —* ~ the massgoes to
infinity proportionalto A. Again in this casethe metric is trivial to computeusing
free massivefield theory.

Thesevacuawill not completely decouplefrom eachother, in the sensethat

there are instantoncorrectionswhich tunnel from one vacuum to anotherand
provide off-diagonal elementsfor the metric which are exponentially small as

A —~ ~. In order to describethis situation,let us takethe casewhereall the critical
points of W are simple, i.e. that they all give rise to massive theories. It is
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convenientto usethe “point” basis for aA~.Two holomorphicfunctions f1(X) and

f2(X) representthe sameelementin ~ iff

fl(Xk)=f2(Xk) VXk,

where Xk are the critical points; this follows from the residueformula (2.10). So
we can label eachequivalenceclassby its valuesat the critical points.We denote
by

4~kthe classsuch that we get 1 at Xk and 0 at Xh (h ~ k). In this basis,as
A —~ we get

6kh
gk-h— I~(Xk)I

where ~ denotesthe hessianof AW evaluatedat the critical point. In the caseof

onefield, onecan also give a generalform for the first correctionto this classical
limit. One finds that if thereis a primitive soliton connectingthe two vacua,the
condition for the existenceof which has beenstudiedin ref. [33], one obtainsa
correctionof the form

gk-h 1/2 _akh(4~kh) exp[—2zkh] k~h, (4.7)

(gk-kg,,i~)

where

zkh = Al W(Xk) — W(Xh) I,

and ak% is a phasefactor. Here2zk/I is equalto the massof thesoliton connecting
the two vacua.This result is discussedin appendixB.

Having discussedthe two limiting casesof UV and IR, it is natural to ask what
can be said in generalabout the propertiesof the flow in between.In particular,
doesthereexist a natural “c-function” for us? What is the relation of Zamolod-
chikov’s metric to our ground statemetric g away from the conformalpoint? We
will now addressthesequestionsin turn.

The central chargeof the SCFTis proportional to the maximum chargein the
ring of chiral primary fields [2,4]. Indeed

c/3 =ê=q~~~.

in the Ramondsectorthe chargesare shifted by — ê/2, andtheyare symmetrically
distributedbetween—3/2to 3/2. It is naturalto try to definethis charge,evenoff
criticality, andview it as a “c-function”. We should in fact beableto do more:The
chargesq,< of the chiralprimary fields areall on the samefootingfrom an abstract
point of view. So we mustbe able as well to define q-functionscorrespondingto
the chargesof all theseoperators.In fact thereis a theoremin Singularity Theory
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[34] stating that all thesefunctions would satisfy a “c-theorem”. More precisely,
supposewe perturb a singularity (which correspondsto a given N = 2 critical
theory) in order to get a simpler singularity (which is interpretedas the corre-
spondingIR fixed point). Let LI denotethe numberof chiral primaryfields. Order
the chargesof the chiral primary operatorsin a non-decreasingsequence

0=q1~q2~...~q~=c/3,

thenone has

(4.8)

where the primed quantitiesrefer to the JR fixed point and ~ = LI — LI’ is the

differenceof Witten indicesbetweenthe UV andthe IR theories.
Motivated by these observationsone naturally looks for a definition of a

“charge” matrix. Note that by a changeof phaseof the Grassmannvariables,we
seethat the phaseof A is not a physical degreeof freedom and all quantities
dependon IAI. Let

A = e~.

In other words, the metric and all the other physical quantities dependon T

throughits realpart r + ~. Now we are to definea notion of a chargematrix, using
the only quantity available to us, namely the ground state metric g. Near a
conformalpoint g becomesdiagonalin a basisof groundstatevacuawith definite
charge.Onecan easily seeusingthe Ward identitiesthat, in the basis definedby
our path integral,as A —~ 0 g behavesas *

— —q —n/

2g,,’-.’(AA)

where here q, denotesthe chargeof the ith Ramondvacuum.We thus seethat
nearthe critical point the matrix

g3~g’ —n/2

is a diagonalmatrix with eigenvalueequalto the chargesof the Ramondvacua.In
particular the maximum eigenvalue of this matrix reproducesc/6 = 3/2 near

criticality. So let us definethe Ramondchargematrix q as

q=g3,g1 —n/2, (4.9)

i.e. the “gaugeconnection” in the direction of flow minus the “anomalous”part.

* The shift of q, by n /2 is relatedto the behaviourof ~ undera rescalingof W (which is a kind of

“anomaly” arising from the Fermi zero modes). Indeed, from eqs. (2.9) and (2.10) we have
det[g}= Idet[sill JAI~.
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This q hasa simple field-theoreticalinterpretation.Since nothingdependson

the D-terms,we fix them to be the “standard”ones

K= ~X,X1.

If W is quasi-homogeneouswe have a conservedU(1) current J~,,and we must
have

dulh).

Noether’stheoremgives the following expression* for

J~=J~+ UIA,

where

J,L

5= ~

U= ~q
1X1X,.

Since U I AR is a Q-commutator,we have

~

Considernow a genericsuperpotentialW. The current is still partially con-
served.Indeed,it is only softly brokenby the superpotentialW

_3,.,J~=ifd2U+W_ifd2U_W. (4.10)

Henceit makessenseto considerits matrix elements.Thenthe naturaldefinition
of the off-critical chargeis

Ih>.

This definition agreeswith the previousone, eq. (4.9). To seethis we compare
(4.10)with the path-integraldefinition of the connection.In our context,eq.(4.10)

shouldbemodified. Indeed,in order to producethe correctvacuumstatewe have

* U I A~meansthe vectorcomponentof the superfield U.
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introduced a background gaugefield in the right hemisphere.Then the axial
current developsan anomaly

—o~J~=ifd2U±w_ifd2U_W+ (n/2~)F.

Considerthe connectionalongthe flow

A~kh=—<hI0TIk)=<hl(3T—0s)Ik).

It hasthe following functional representation:

i<~hI f D~D~W_fDDW ~k)

= _<&I(fS[3(12/2~J)~k)

=

which shows that the two definitions agree. This also guaranteesthe “gauge
independence”of theeigenvaluesof q, which is not manifestfrom eq.(4.9). Under
a “gauge transformation” the variation of the anomalousterm compensatesthe
changein the connection.From the OFTviewpoint it is manifestthat the spectrum
of q is real and symmetric aboutzero. This follows most clearlyin a basiswhere
‘tj =~ =~‘. Thenfrom eq.(2.9)we seethat

qrj = —*~q.

Now we canshow that the criticality of q as a function of couplingsoccursonly at
the conformal points.This is an easyconsequenceof eq. (3.9), namelywe have*

~q= [Ci, gC/g’],

and at the conformalpoint the matrix C~is representedby multiplication by W,
andsinceat the conformalpoint W is quasi-homogeneous,it follows that W itself
is in the ideal generatedby dW andthusis trivial in .~. ThereforeCT = 0 precisely
at the conformalpoint andthusfrom the aboveequationwe seethat q is critical
precisely at thesepoints.This is also true the other way around,namely, C = 0
implies W is quasi-homogeneous[35]. This is the algebraiccharacterizationof a
fixed point, in the sensethat whenthis happensthe chiral ring hasthe properties

* Becauseof reality of the eigenvaluesit is enoughto checkstationaritywith respectto thecouplings t,.
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prescribedfor a critical point. Whetherit is actually a fixed point is a moretricky

questiondepending,of course,on the D-termtoo.
At criticality eq.(3.10) reducesto

[C1, q] = C,,

which merelystatesthat only perturbationsby operatorsof charge1 are compati-
ble with conformal invariance.

From this definition of the q-functionit is not obviousthat this quantitysatisfies
a “c-theorem”.This shouldbe globally true, in the sensethat the inequalities(4.8)
betweenthe eigenvaluesat the UV andJR pointshold true. What is not manifest,
is that pointwisealong the “RG-trajectory” the derivativeof thesequantitieshasa

definite sign. However,experiencewith concretemodelssuggeststhis is also true.
Moreover, usingthe connectionwith SpecialGeometryit is easyto show that i~ is
non-positiveneara critical point. So, at leastour versionof the “c-theorem”holds
in perturbationtheory.

There is anotherway of gettingthe q-functionwhich is more convenientsinceit
holdsin an arbitrarybasis(providedthe operators

4k do not dependexplicitly on
the t’s) without needof a compensating“anomalous” term. Considerthe matrix

Qkh =

where G is the above normalizedmetric. It is easy to seethat near the critical
point this definition of chargeQ gives the list of the chargeof chiralprimary fields

andin particularthe rangeof the eigenvaluesgoesfrom 0 to c/3 = ê. Threetimes
the maximal eigenvalueis thena candidatec-function. Obviously, the two defini-
tions agree. We will refer to this function as algebraic c-function. It would be
interestingto seewhat is the precise relationshipof this c-function with that of
Zamolodchikov.

Now we turn to the questionof the relationbetweenthe Zamolodchikovmetric

off criticality with the groundstatemetric g. If we wished to write the Zamolod-
chikov metricfor bothmarginaland relevantperturbations,at the conformal point
all we haveto do is to multiple G by factors of chargementionedabove.It is now
clear that we cannotexpecta simplerelationbetweenour metric g andZamolod-
chikov’s metric G off-criticality, becausewe alreadyseethat evennearcriticality
we haveto know thechargesof fields in order to relatethe two, andthe notion of
U(1) chargesof fields is well definedonly at criticality. It is naturalto suspectthat
given the off-critical definition of chargediscussedabovetheremight be a way to
define a natural metric which is related to Zamolodchikov’s definition. Even
thoughthereare someobvious guesses,we leave a carefully studyof this for the
future.
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5. Reductionto SQM

Thereareotherusefulpointsof view aboutthe ground-statemetric. In ref. [Slit
was shown that g can be computedby dimensionalreductionto one dimension
(i.e. in SupersymmetricQuantumMechanics).Roughly, this follows from the fact
that one can find a susy(but not Lorentz) invariant D-term which suppressesall
the non-zeromodesin the Fourier expansionof the fields. Thus, independence
from the dimensionsis a special instanceof independencefrom the Kähler
potential. Although the computationscan be done directly in 2 dimensions,the
reductionto SQM is useful for two reasons:first of all, here one has an explicit
constructionfor the isomorphism of primary fields and statesin the Ramond
sector in terms of the wave functions of the SQM vacua. This also naturally
encodesin a geometricway the “anomalous” transformationunder field redefini-
tions,which as we mentionedis related to the violation of fermion numbersin the

topological description of the theory. The second reason is that we can give a
general solution to the linear problem (3.11) in terms of the vacuum wave
functions. This also turns out to be very closely related to the generalizationof
special geometryin the contextof massivetheories.As customarily,we identify
SQM wave functionswith differential forms via

~ 0)

~ .~,(X1)dX” A ... A dX” A dXk A ... dXk.

Thenin the Schrodingerrepresentation,Qj~is representedas

Q~=3+dWA

and Qj~is representedas

Q~=0+dWA.

The isomorphismbetweenthe realizationsof W-cohomologyon fields and states
becomes

fl/2~k dX A ... A dX + QR~k.
(-2ir)

Note that this isomorphismtakesinto accountthe topologicalviolation of fermions

numbermentionedbefore. In fact from the path-integraldescriptionof sect. 2 it
shouldbe clear that oncewe seewhy the identity operator can be represented
cohomologicallyby dX’ A ... A dX” the abovefollows, andthat representationof
the identity operatorcan be shown by taking a very tiny hemisphere,represented
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by a little disc andperformthe topologicalpath integral. In the languageof SQM
it is manifestthat undera field redefinition the Ramondstaterepresenting4k

should transform as a (n, ))-form rather than as scalar.This is the origin of the
“anomalous”jacobian.Clearly,

Q=Qt+Q~~exp[—W(X)_W(X)}dexp[W(X)+W(X)I,

where d is the exterior differential. Since the vacuumwave-formswk are annihi-

latedby Q andits adjoint Qt, the modified forms

wk—exp[W(X) + W(X)Iwk,

wk=exp[-W(X)-W(X)] *

are d-closed.They representsome kind of cohomologyof the d-operator.Obvi-
ouslythis cannotbe the usualdeRhamone,sincefor C~it is trivial. In fact, these
formsare representativeof relative deRhamclasses.For &k the relevantcohomol-
ogy is H~(C~,B), where B c C” is the regionwhere Re W is greaterthan a certain
(large)value.The 0~1kcorrespondto the dual cohomologyspace.This dual space*

can be identified with (equivalenceclassesof) n-chainsy/ such that on we
haveRe W = + ~. We put

OJk. (5.1)
-yJ+

One checks that H~is finite and det[H] * 0. From ref. [14] one seesthat there

exists A,k suchthat

D
1wk = (0 + dW A )Ajk,

where

(3+ dWA)A~k=OIWwk — (CI)2wh.

Thenone gets

D,H~= — (C,)2H~, Da11/,~= —

that is

VH=VH=0. (5.2)

* This dual spacecanbeviewed as providing an integral basisfor thevacua.
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The matrix H gives the general solution to the linear problem (3.11). These
remarksgive a simple descriptionof the geometryof the bundleover the parame-
ter spacediscussedin sect. 3. Indeed,we seethat the vacuumwave-forms,after
projection into the relevant relative homology, representsectionsof the bundle
discussedthere.

The real-structurematrix Mh has a simplemeaningin SQM. The Schrödinger
equationis real, and hencethe complexconjugateof a vacuumwave-form wk is
againa vacuumwave-formandshouldbe a linear combinationof the üh. If the ~

0k

correspondsto the basis 1k’ we have

(oik)* =M~wh,

from which the reality constraintis obvious. In particular,we have

H* =MH M=H*H~, (5.3)

which gives an alternativeway of computingthe metric from the solution of the
linear problem.

In SOM, eq.(2.8) follows from the definition of the ground-statemetric

<~Ih)=f*w~Awh, (5.4)

and the cohomologicalidentity

f * w~A = ResW[4ik4h] 1lkh’ (5.5)

which is a consequenceof the Bochner—Martinelli theorem(see the appendixof
ref. [14] for details).In analogywith (5.1) we write

HJ~_Jk,

where y; are cycleswith Re W = — ~ at the boundary.Using the fact that

D
1H=C1ñ’, DJ~=C,1~,

one can easily show, using the uniquenessof solutions to linear differential

equations,that

= ~khP~(H)i,
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where p3’ is some pairing * of the above cycles which is independentof the
couplingst’. Then(5.3) gives

~=flpHT, g=ñ’pHt,

which are a kind of Riemannbilinearidentitiesfor the integrals(5.4) and (5.5).
This SQM viewpoint is quite suggestiveof the geometryof a variation of Hodge

structure(specialgeometry in the physicslanguages).Indeed,the matrix Ii is just
the period map for the relative classes6k~ Note though, the similarities are
somewhatmisleadingin that the periodmatrix which is holomorphicin thecaseof
specialgeometry(or variation of Hodge structure)has the distinctive propertyof
not being holomorphic in terms of couplings t,. And even though we have an
integral representationfor the metrics in terms of solutions of Schrodinger

equation,it is not possibleto give a closedform answerfor them as integralsof
simple objects, as it was the case in the quasi-homogeneous(conformal) case
discussedin the previoussection. In this sensethe problemis much moredifficult
to solve in the massivecase.We havealreadymentionedthat 0 can be identified
with the Gauss—Maninconnection.In fact eq. (5.2) can be seenas the defining
propertyof the GM connectionin termsof periods.So, the structurearisingout of
N = 2 susyis a generalizationof specialgeometry.

The SQM viewpoint is very useful from anotherview point, and that arises
when one considerschangesof variables. Indeed it turns out that one can do
non-invertiblefield redefinitionsandstill be ableto relatethe metrics betweenthe
two models.That this is possibleis essentiallywhy the formal argumentsin ref. [31]
relatingLG theoriesto geometryof CY can be justified — at least as far as the
metricson the moduli spaceis concerned[14]. Moreover this will also justify, to
the extent of getting the samemoduli metric, the more recentwork on relating

different LG theorieswith eachotherby non-invertiblechangesof variables[36]. It
turns out that for many of the applicationsthat we will considerthis is a very
importanttechnique.

The simplestway to understandhow it works is in the languageof SQM. We

will use a mathematicallanguageas it is most convenientto describeit in that
setting,where we sometimesrefer to the nice propertiesof non-invertiblechanges

of variables as “functoriality with respectto branchedcoverings”.Let 50k (k =

1,.. .,LI) be the vacuum wave-forms for some superpotentialW(X). In this

superpotentialwe makea substitution

* Justas in the conformal case,pi is simply the inverse of the intersectionmatrix y/ fl yJ. It is

possible to show this by multiplying the integrand in eq. (5.4) by one representedby exp(W+
W) exp( — W— W), and using the Riemannbilinear identity.



S. Cecotti, C. Vafa / Topological— anti-topologicalfusion 393

where the map f is holomorphicbut not globally invertible (otherwisewe would
get just an irrelevantfield redefinition).Thenconsiderthe new superpotential

= w(f,(Y1))_f*W

For the superchargesonehas

Q+ ...~jAjJJ =f* +

R,f f —J R’

Q~f=3+dWfA _f*Q

so that the forms f*w satisfY

QR~ff~wk = Qi~,ff Wk= 0.

IN the case of just one field, theseequationsimply that f w, (k = 1,. .., LI) are
vacuumwave-formsfor thesuperpotentialW1. (Recall that if n = 1 the wave forms
are independentof K asform, notjust as cohomologyclasses).In the generalcase,
the new wave functionsare

~k =f ~ + ~

where the dependenceon the Kähler metric is hiddenin A and .~. The ~k’~ are
manifestlycohomologousto the pullbacks of the forms

t~0k•Indeed,if W is not
degenerate,~ is a continuousoperatorin the (n — 2)-form sector.Of course,
thesefunctionsarejust a subsetof all vacuumwave-formsfor W~.since LI

1> LI for
a branchedcover. Now for n = 1, one hassimply

<kIh)~wf=f *~Af~w1

=(degf)f*~Awk=(degf)(kIh)lw. (5.6)

(for n = 1, the Hodgedual * on 1-formsdependson the complexstructureonly).
The equality is true for the generalcaseas well, the only differencebeing that in
order to proveit onehasto usethe full machineryof the cohomologicalcomputa-
tion for overlapintegrals,seeref. [14]. Alternatively, functoriality follows from the

(conjectural)uniquenessof the solution to our equations.Indeed,the topological
functions q,1 and C11k are trivially functorial, andhencethe equationsthemselves
behaveas expectedundernon-invertible change of variables.Therefore,if we
know the ground-statemetric for U/f we can get the metric for W just by
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restrictingourselvesto the cohomologyclasses4k dY1 A ... A dY” (with 4~k~~f)

which canbe written as

4’k dY’ A... A dY” _f*(~ dX’ A... A dX”), ~k E3/’. (5.7)

Note that in thisway we automaticallyreproducethe “anomalous”jacobian.
The presenceof a jacobian in the transformationhas anotherimplication.

Supposethat both W and f arequasi-homogeneous.Thenso is U/f. Both models
are critical and we can speakof their central charge. Then using the fact that
hessianis the maximum chargedelement in the ring with chargec/3, eq. (5.7)
implies

c=cf—6q
1(J), (5.8)

whereqf(J) is the U(1) chargeof thejacobian

det[0f1/01~.]EA’f.

The insertion of the jacobianjust soaksup the excessof vacuumchargeof the

branchedmodel with respect to the original one. Note that we can use this
techniqueto relatedifferentconformaltheoriesevenwith different centralcharges,
as far as the metric on chiral primary fields areconcerned.It would be interesting
to investigate the precise relation betweenthe full conformal theories in such

cases.

6. Lie-algebraic aspects

Our equations have an interesting group-theoreticalmeaning. This is well
known in the conformal casewhere W is quasi-homogeneous,whereit is related
to the Lie-algebraicaspectsof the period map of the correspondinghypersurface
(or the Lie-algebraicstructureof the Variation of Hodgestructure).It turns out
that the Lie-algebraicpoint of view is veryusefulevenfor massiveperturbationsof
our theoriesas well and they help us understandthe geometricalcontentof the
equationsaswell as to actuallysolve them.Our discussionhereis modelledon the
classical one for the topology of algebraichypersurfaces(which arises in the
conformallimit). This casewe will referto as the “geometricalcase”below.

Webegin by discussingthe reality conditionon the metric (2.9). Onecanfind a
“special” holomorphicbasis such that the residuepairing is independentof the
couplings t’ and

~7*=~_i =~
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Suchspecialbaseshavebeenconsideredbefore in the contextof topological field
theories [10]. Their existence is a deep property of TFT and they are also
technically convenient. See appendixC for details. In such a basis, the reality

constrainton the metric becomes

g?.,gT =

i.e. g is orthogonalwith respectto the realmetric ~. Then, g 3g’ belongsto the
correspondingLie algebra,namely g(3g 1)~~is antisymmetric.Thus the first term
in eq. (3.9) is skew-symmetricwith respect to ~. This is consistentwith our

equations.Indeed,the topological3-point functions C,~are n-symmetric(that is,
Cilk C/Il/k is symmetric. So is gC~~g~(since i7M = (M_l)TIl*). Then
[C,, gC~g’] is also ~-antisymmetric. Note that,without lossof generality,we can
chooses~= 11., so g is orthogonalin the standardsense.Of course,g belongsto
the complexifiedorthogonalgroup,not to the usualcompactform.

To go on with the discussion,it is betterto rewrite the linear problem(3.11), in
a more convenientway. Let g = exp[~’] and put e = exp[.~”/2].We perform the
gaugetransformation

-~ eT.

Then the linearproblem becomes

[a—(0e)e~+e1Ce}T=0,

[a+ e~(0e)+ eCte_1]T=0. (6.1)

From now on, by T we mean the fundamentalsolution, i.e. T is the matrix

solutionsuch that T(0) = IL By addingan irrelevantconstantto W, we canassume
that tr C = 0. Then from (6.1) it is manifest that T belongsto SL(LI, Il). This is
similar to what one finds in the geometrical case,where however there are
additional algebraicrestrictions coming from the topology. They reflect the so-
calledRiemannbilinearrelations.Undercertaincircumstances,similar restrictions
apply to the massivecaseas well. They arequite important, since restricting the
Lie group in which T takesvalues is a crucial step in solving the equationsfor
particular models. Let G be this group and H be the subgroupgaugesby the
connectionfor D, D. Onehad H CK, where K is the maximal compactsubgroup
of G (this follows from the fact that the connectionis metric — or put differently,
from the eq.(6.1) andrecallingthat e is hermitian). Of course,g (ande)belongto
H~(i.e. theyare complexgaugetransformations).The importanceof identifying G
andH is bestunderstoodby realizingwhat the equationsbecomefor specialG and
H.

Supposewe havea family of superpotentialsdependingon just a singlecoupling
t. Thiswill be the caseof most interestfor us in the restof thispaper.The simplest
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caseis when H is the maximal torus of G. In this caseeqs.(3.5) arejust the usual
Lax-representationof a Toda system(indeed,consistencyalone implies that the
matrix C5 is the sumof an admissibleset of roots for G). Theneqs.(3.5) reduceto
the standardequationsof Todafield theory.

The Gauss—Maninequations for the variation of Hodge structure for an
algebraicmanifold X (of dimensionm) arealso of the form (6.1) with

k—l
G=SO(b,~,b,~), H=SO(hk~~~)~ U(h

m~”) m=2k,
p=0

k

G=SP(bm,l~1), H= ® U(hm~’~)m=2k+1,
p=0

where ~ (resp. bm) are the Hodge (resp.Betti) primitive numbersand

b,~+ b,~= bm, b,~— b, = T (Hirzebruchsignature).

In this case C, is the class in H’(�I) of the complexdeformationcorrespondingto

an infinitesimalvariationof the parametert’, seenas the matrix of the endomor-
phism in Hm(X) induced by wedge product (where �~representsthe tangent
bundle).

In particular, if we have a Hodge (sub-)structuresuch that for some integer a

hm~°”~=1for Im—2pi~a

= 0 otherwise,

and (0~W)2* 0 in ~, then the GM equationsreduce to those of the G-Toda
molecule(i.e. the non-affineversion).The simplestexampleof thisstateof affairs
is the torus. The if-model on a torusis equivalentto an orbifold of the LG theory
[31] with superpotential

w=x/ +x~+x~+ tX
1X2X3.

in this caseh
1’°= h°” = 1 andhenceG = Sp(2, l~)andH = U(1). In otherwords,in

this casethe monomial X
1X2X3 generatesa nilpotent subringof order2, andthat

is how we end up with Sp(2, 11). Solving the linear problem one gets(for details,
seeref. [371)

<q==1/2Iq=1/2> — 1 dT
2

<q=-1/2Iq=-1/2>4IImr(t)I2 dt
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for someholomorphicfunction T(t). This is preciselythe general(real) solution to
the SL(2)-Todaequation,i.e. the Liouville equation

<q=1/21q= 1/2)
= exp[ 4Liouville 1.

<q= —1/21q= —1/2)

However, in the LG language the function T(t) is further restricted by the
boundaryconditions. It turns out that this function is just equal to the period for
the torus W = 0 as it shouldfrom the generalcorrespondencebetweenLG theories
and geometry [2,31]. Indeed, one can use the degenerationstructureof the
algebraicsurfaceto find out what r(t) exactly is.

This examplecanbe generalized.Take the CY manifolds ~ associatedto the

superpotentials

W= Xj~’+ X
2” + ... +Xnn + tX1X2 ... X,,

and considerthe Hodgesubstructure(i.e. the subsetof al/’) correspondingto the
subspaceof H”

2(~) invariantunderthe automorphisms

X
1—*exp[2iria1/n}X1 ~a1=0 mod n.

(It is preciselymoddingout the LG theoryby this symmetrythat hasbeenshownto
be a beautiful exampleof mirror symmetry [38].) The ring invariant under the
abovetransformationis generatedby X~... X,,. In this casethe equationsonegets

for the metric g is the same as Toda molecule with G = Sp(n— 1, l~)(resp.
SO(n/2, n/2 — 1)) for n odd (resp.even).Thesefollow very easily from eq. (3.9).
In particulartheseTodatheoriesemergeas a ~2 reductionof sl(n — 1) Toda,with

_1...k,,yx1...x,,r)=expq~

with 0 ~ r ~ n — 2, and oneidentifies thevector v in q,. — q,._1 = q,v’ with a simple
root of sl(n — 1). The Z2 reductionfollows from (2.9) implying q,. + q,,_2~ = 0. It
is the nilpotent structure of the ring generatedby the symmetric monomial
X1 ... X,, which directly reflects the sl(n — 1) Toda molecule structurein these
equations.

The generalcaseof arbitrarydeformationsof algebraichypersurfacesis a very
natural generalizationof the Todamolecule. In ref. [14] the groundstatemetric
for quasihomogeneoussuperpotentialswas written in terms of holomorphiccoun-
tour integrals.This explicit representationis just the extensionto the moregeneral
caseof the standardLeznov—Savelievalgorithmto solve Todaequations[39]. (This
is common knowledgein AlgebraicGeometry).Indeed,this algorithmreducesthe
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solution of the Toda molecular to finding a triangular holomorphic matrix H
satisfying

0,,Trsk = C/’(t)H1/’.

The period integralsof ref. [14] (after filtration a la Griffiths) give the special H
matrix satisfyingthe correctboundarycondition. Of course,this methodworks for

all variations of Hodge structure, even if H is not abelian and we have a
multiparameterfamily.

Now we comeback to the moregeneralcaseof massiveperturbations,andwish
to determineG andH. There is a simplemethodto determineH. Decomposethe
vacuumsubspace~ of the Hilbert spaceinto orthogonalsubspacescorresponding

to different irreduciblerepresentationsof the (pseudo)-symmetriesof W. A priori
from the above discussionit is clear that H is a subgroupof product of U(NR)
where NR denotesthe dimensionof the representationsin question.However Il~
which is of order2, actson the representations,andbecauseof theeq.(2.9) relates

theU(NR) for eachpair andso cuts the numberof U(NR)by half. Also, if Il maps
a representationto itself, eq.(2.9) implies that the correspondingH is in SO(NR).
Put differently, an irreduciblerepresentationwe call real if it is realwith respect

to the real-structureM. Then, a real subspaceof dimension Nr contributesa
factor SO(Nr) to H, and a conjugatepair of complex subspacesof dimensionN~
contributea factor U(N~).I.e.

Hc ®U(Nc)®SO(Nr).
pairs real

In particular,H is abelianif all complexsubspaceshavedimension1 andthe real
ones at most dimension2. In the geometricalcaseH is given by this recipewith
~ Hm(X), the relevantsubspacesbeingH~”(X)andundercomplexconjugation
p ~-* q.

The problem of determining G is more deep. A typical casewhen we have
specialrestrictionson this group is in the presenceof a special ~2 symmetry P;
this occursin a theorywhich has the propertythat for all valuesof the coupling t,

PW=-WP. (6.2)

Sucha symmetryoperatorP appearsin the geometricalcaseas well and is called
the “Weil operator” [40]. This operatoris order 2 as far as the NS is concerned,
but sincethe vacuaare in the Ramondsectorand two Ramondstatesproducean
NSstateP

2 actingon Ramondstatescanendup being ±1. Sincethe spectralflow
from NS to NS is equivalentto productof two Ramondvacuumstates,andthis is
accomplishedby the hessianof W, we learn that the phaseof P2 is simply the
sameas the phaseof ~ underP. Let uswrite
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Working in the holomorphicbasiswe representP by

PIk)=P~Ih>.

Note that we have

Il~ (_1)mpTIl.

This follows from the fact that a state and its dual with respectto Il transform
underP the sameway up to the phase(—1)” which is the way the spectralflow
(given by the hessian)relatesthem.We thusseethat

=

is symmetricfor m evenandantisymmetric(a symplecticform) for m odd.Now if
we consider

=

where~, is the solution to the linear problem in the holomorphicbasis(3.11),and
note that eq. (6.2) implies that PC1 = —C,P we seethat *

acP=ä~=0 cP=fl.

Thenfor m even(resp.odd) i/i is orthogonal(resp. symplectic)with respectto the
constantpairing Li. If the signatureof Li is (r, s), G c SO(r, s). The geometrical
caseis just of this type,with LI = bm, r = by,, and s = b,~(of coursewe can rewrite
all thesein the othergaugefor T).

7. Minimal models perturbed by the most relevant operator and related models

In the remaining sectionsof the paperwe shall discussparticular classesof
Landau—Ginzburgmodelsfor which the computationof the ground statemetric
canbe done explicitly. We do this both for the intrinsic interestof the “solvable”
modelsin various physicalapplicationsand also in order to illustrate the general
phenomenaof the previoussections(in particular, the overdeterminatenatureof
the problem).

Among the perturbationsof conformal theoriesby relevantoperatorsZamolod-
chikov [41] found a techniqueto find which directions give rise to integrable
models.The integrability is in the senseof having factorizableS-matricesfor the

massive excitations of the resulting theory. The idea is to look for an infinite

* We are mimicking thegeometricalcase.In that casethe bilinear form J’l is the intersection in H”

(X, a).
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number of conservedcurrentswhich survive the perturbationsaway from the
conformal point. These ideas were applied to N = 2 minimal superconformal
theoriesin ref. [33] where it was found that thesemodelsperturbedby the (last

componentof the) chiral primary field of lowest (non-trivial) dimension,i.e. most
relevantoperator,leadsto an integrabletheory. Moreoverit wasfound that there

is a beautiful interplay betweenthe structureof the superpotentialW and the
solitonsandtheir masses.Thenessentiallyself-consistencyalonefixes the S-matrix

in thesemodels. It was shown in ref. [42] how thesemodels(andtheir generaliza-
tions) can be realizedin terms of quantumaffine Toda field theorieswith very
specific couplings.Also, the geometryof solitons and their conservationlaws for
specific perturbationsof certain Kazama—Suzukimodels (and in particular the
grassmannians)hasbeenuncoveredin an interestingrecentpaper[43].

As we will seeit turns out that preciselytheseperturbations(andsomenatural
generalizationsto bementionedbelow)which canbe describedby N = 0 quantum
(affine) Todafield theories[42] leadto equationsfor thegroundstatemetricwhich
as a function of the perturbingparametert (which canbe identified with RG flow

parameter)satisfy classical (affine) Toda equationsof the sametype (and their
naturalreductions).This is an intriguing connectionbetweenthe quantumtheory
and the correlation functions of that quantumtheory, which begs for a deeper
understanding.That we should get Toda equations is already clear from the
discussionof sect. 6. In fact that discussionwill help us organizewhat we should
expectfor our equations.The generalargumentsof sect.6 canbe explicitly verified
in the concreteexampleswe study in this section.The modelsof the present
sectionare basicallytheonesfor which the equationscanbe recastin a Todaform
by elementarytricks. In sect. 9 and 10 we shall considerothermodel which are
relatedto Verlinderings whoseequationsare reducedto Todayby more sophisti-
cated techniques.

Herewe limit ourselvesto a discussionof the relevantequations.However, the
real magic of the subject stems from the unique properties of the solutions

correspondingto the actualmetric rather than from the fact that the equations
themselvesare amongthe nicer ones in mathematicalphysics. Part of the magic

will be discussedin somedetail in sect.8.

7.1. THE A,, SERIES

In the LG approach,the A,, minimal model correspondsto the superpotential
W = X” + ‘/(n + 1). The (non-trivial) chiral field of lowest dimensionis X. Then
we considerthe superpotential

n +1

W(X, t)= n+ 1 —tX, (7.1)
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and look for the dependenceof the groundstatemetric g on t. As a basis on

C[X]/(X~ —t)

we choose

1, X, x2,...,x~1.

The vacuumstateassociatedto Xk will be denotedby I k).
The model describedby (7.1) hasthe discretesymmetry

X—* exp[2iri/n]X, (7.2)

underwhich the state I k) picks up a phaseexp[’iri(2k + 1 — n)/n]. Then (k I h)
= 0 for k ~ h, i.e. g is diagonalin this basis(from heretill the endof the paperwe

havechangedour notationandtake (k I to be the adjoint of I k)). Thereforethe
groupH definedin sect. 6 is abelian.From the discussionthereit follows that our
equationsare of the Toda type. This systemis ratherpeculiar in that the metric
belongsto an abeliangroup just on symmetrygrounds,i.e. beforeusingthe reality
constraintto further reducethe numberof independentelementsof g. Imposing
the reality constraintwill leadto a consistenttruncationof the Todasystemto one
with less degreesof freedom.Such consistenttruncationsare well known in the
Todatheory [44] andareunderstoodalgebraicallyas foldings of the corresponding
Dynkin diagrams.

To startwith, ~i takesvaluesin SL(n) andhencethe equationfor the t-depen-
denceis that of some A,,_

1 Toda system.Which one dependson the admissible
root systemto which C, corresponds.Multiplication by operatorX is denotedby
the matrix C, given in the abovebasisof vacuumas

010~~~ 00

001~” 00

C, = : : :
000~~~ 01

tO0~~~ 00

i.e. (up to conjugacy)C5 is the sum of primitive roots of sl(n) minus the longest
root. Thenwe get the affine A,,_1 equation.

To seewhat the truncated“real”. Today systemis, it is better to distinguish
betweenevenandodd n. If n is even(= 2m) we havea “Weil operator”P. This is
just the generatorof the symmetry X—~—X. This is an elementof the group in
(7.2). From the phasea statepicks up undersuch a transformation,we see that
p

2 = —1. Then, accordingto the discussionin sect.6 we have

G = Sp(2m,If~),
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i.e. we get the ~2mTodaequations(for m = 1 this is A1 and for m = 2 this is B2).
This canbe checkedexplicitly usingeq. (3.9) aswe will show below.

The situationfor n = 2m + 1 odd is less simple. The truncatedTodaequations
areassociatedto a root system(denotedby BC,,,) which do not correspondto any
Lie algebra.The correspondingequationsare called the generalizedBullough—
Dodd equations,since the first equationin the seriesis precisely the usual BD

equation.
Let usseehow they arise.In our basis,the residuepairing is independentof t.

The only non-vanishingentriesare

Ilk,n—1—k = 1.

Thenthe reality constraintreads

(klk)(n—1—kln—1—k)=1.

In particular,if n is odd (n = 2m = 1) one has

(mlm)=1 forallt.

In this way we reduce to [n/2] unknown functions, namely (k I k) for k =

0, 1, . . . ,[n/2] — 1. In particular, for n = 2 or 3 we have a single unknown function.
Writing

q11og(ili), i=0,...,n—1,

and using the explicit form of C5, eq. (3.9) becomes

0t31cPo+ e~’~°~— It I 2 e~°~”-’~= 0,

+ et*+l~~)— et*~*i_)= 0, i = 1,..., n — 2,

+ It 2 e~°”’~— e ,,-1~,,_2) = 0. (7.3)

To put theseequationsin standardform, we put (i = 0,.. . , n — 1)

2i—n+ 1

2n logltI2,

n

n+1

We extendthe definition of q, to all i’s by setting

q~,, ~q

1.
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Theneqs.(7.3) takethe standardform for A,,_1 Todaequations

3~32q1+ e --~‘~~ — e~””’~= 0. (7.4)

However, we have still to use the reality constraintwhich in the new variables
reads

q + q~_,= 0.

If n is even(n = 2m), using this constraint we reduce to the CmToda theory. To
write it in the canonical form, just write (notations as in ref. [45])

2i+m
q,= —24~+~+2(m_1)l08

2~

z —~21/2(m_l)z.

Then eqs.(7.4) become

2034~= e~2) — 2 e44’,

20B4~= e2~’~’~— e2’~i~ j = 2,..., m — 1.

23194m = 2 c44” — e2~”’4”~.

For n odd (n = 2m + 1), the redefinition
q.= ~2~j+1~ ~(2~~1 ) log2

z —~2_l/2(2m~)z

putsthe reducedequationsinto the canonicalBC,,, form

20/hf
1 = e

2~1~2)—2 e44’,

233~~= e2’~’~’~— e2~’-’~, I = 2,..., m — 1,

= c24” — e~”-’~”~.

Of course,not all solutions to the above equations are acceptable as ground
statemetrics.At least two additional conditionsare needed:first of all, <k I k)
shouldbe real, positive, andregularfor all valuesof thecouplings,andsecondthe
solutionshouldnot dependon the phaseof the coupling t sincethis phasecanbe
re-absorbed by the field redefinition

t —~ e’~t, X—~e”~’~”X,U —s e’~”~’~’~2U.
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Then only solutions invariant under rotations of z are acceptable.This property
applies to all modelswe considerin the presentsection.

There is strong evidencethat thesetwo conditions uniquely fix the solutions.
This will be discussedin sect. 8.

7.2 THE D,, SERIES

In the D,, casethe most relevantperturbationof superpotentialreads

xn-1W= +XY2—tX.
n—i

As basisfor ~ we choose

1, Y, y2, x, x2,.. ., x~3.

This model has two symmetries, namely

X—~exp[2~i/(n — 2)]X Y—sY,

x-*x Y-*-Y.

It follows, that in this basis the only non-vanishingoff-diagonal elementof g is

KY2 Ii). Onehas

Res[X”] = ~a,n—2’ Res[Y~)Xd]= 0 for b, c * 0,

Res[Y2k~]=0, Res{Y2]= —~, Res[Y4]= —it. (7.5)

Then,decomposing~ accordingthe representationsof thesesymmetries,for n
even(resp.odd) we have n/2 — 1 (resp. (n — 1)/2— 1) one-dimensionalcomplex
orthogonalsubspaces,I (resp.2) one-dimensionalrealsubspace,and 1 two-dimen-
sionalrealsubspacespannedby (1, Y2). Then(cf. sect. 6)

H = SO(2) ®

is abelianandwe get againa Todasystem.
If n = 2m+ 2 is even, the generalargumentsof sect. 6 uniquely fix the Toda

systemour equationscorrespondto. Indeed,we havea “Weil symmetry” P,

P:X-s -X.

This time P2 = It. Indeed, the hessianof W is evenwith respectto P, not oddas
in theA-case.On ~ (neglectingthe “decoupled”state I Y>) the + 1 eigenvalue of
P hasmultiplicity m + 1. Then,

G = SO(m + 1, m),

and we have the ~m Toda system. Instead, the Toda for n odd does not correspond
to a root system and cannot be deduced by symmetry arguments alone.
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Explicitly the reality constraint reads

Kxa Ixa>Kxn_2_aIn2_a>=~, a=i,...,n—3,

KY I Y) = ~, <11 Y2) = ~tK1 Ii), KY2 Ii> = ~K1 Ii>,

1 It12

2<Y21Y2)= 2<111)

The coefficients C, are

xIxa)=Ixa~), a=0,...,n—4,

X IY> =XIY2) = 0,

XIX”3)=tIl)+ 1Y2).

Let n = 2m+ 2 — s with s = 0, 1. The independententriesof g are Kx” I X”) for
a = 0, 1, .. . , m — 1. In terms of thesevariables,our equationsbecome

KXIX)
-~ logKiil)= Kill) - ItI2KiIl)KXIX),

KX2IX2) KXIx)
-3,3~logKXIX) = ______ - <111) - ItI2KXIX)K1I1),

I xa+l) Kxa I xa)
—33- lo Kxa Ixa>= — _________

~ g Kxa Ixa) KxQ~ix~>’

1 ~ Kxm_lIxm_l)
_a,a~logKX”~~I xm_l) = (2Kxm_l I ~m1>) — Kxm2 I xm_2)~

(7.6)

To put theseequationsin canonicalform, we define

4~=logKXIX)±logKiI1>TF(ItI)+(i±l)logItI,

~
1=log<XJ±l xJ+l>log<xi 1X

1)+F( tI), (j=2,...,m—2),

~m-1 = —(i +s) log<Xm_l I X’~’) + (1 +s)(m — 1)F( It I) —(1 +s) exp It I,

i+s B
22~ 1+(i+s)B’
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where

1
B= 2[1+(m—1)(l+s)]

and

F( It I) =2B[(1 +s) log( ItI/2) +log(i +s) —log 2].

Theneqs.(7.6) become

33cfr~=2 e4~—e4’,

= 2 e4’ — e4~—e4— e42,

334Q =2 e4*_e4*_1_e4**1 (a =2,...,m —3),

33~m_2=2 e4~-2_ e4m-3_(2/(1+s)) e4m-,

= 2 e4”’ — (i +s) e4~2.

In general,the Todaequationscan be written in the form [44]

= Cab e4~,

where Cab is the Cartan matrix of some root system. From the above explicit
formula, we see that for s = 0 (n even) we get the Cartan matrix of B,,,, as
expectedfrom the general argument. Instead for s = 1 (n odd) we get the
transposeCartanmatrix. This is the Toda systemdenotedby DT(SO(2m+ 1)) in
ref. [44].

7.3. THE E-SERIES

The only new model is E
7, sinceE6 and E8 canbe obtainedas tensorproducts

of A minimal models. In the E7 case the most relevant perturbationof the
superpotentialreads

w= ~x
3+ ~XY3 — tY.

As basisin .~ we take(i= 1 7)

= (1, y, x, y2, xy, x2, x2fl. (7.7)

This model has a ~ symmetry

X—’eX, Y—se3Y, e7=i.
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Under this symmetry no two fields in (7.7) transformthe sameway, andhencethe
metric g is diagonal.So H is abelianandwe haveagaina Todatheory.

In the above basis the residue pairing reads

= (1 — 4~l,4)61+1,8’

andthe reality constraintreads

KiIi)K8—iI8—i)=1, i*4,

<414) =3.

ThenH = U(1)3. The non-vanishingelementsof C, are

c
1

2=C
2

4=C
3

5=C
6

7=i, C~’=C
7

3=t, C
4

6= —3.

Putting

~ = logK3 13) + ~ log It 12 + 4 log 24,

2~
2=—logKiI1)—4logItI

2—log2+4log24,

2~3= —logK2I2) —4 log tI2 + log 6—4 log 24,

7
z = _______(24Y/’7t8/7

8V /

one getsthe equationsin the form

2aa~~= e2~i~2) — 2 e4~
1,

233~2= ~(

2~2~3) — e2~’ 2)

23/hp
3= e

24~— e22~3~’,

which is the BC
3 Toda in the notationsof ref. [45] (i.e. GD(H3) in the languageof

[44]).

7.4. THE A,, MODELS PERTURBEDBY NEXT RELEVANT OPERATOR

Next we considerthe models

x~+
1 x2

w=
n+i 2



408 S. Cecotti, C. Vafa / Topological—anti-topologicalfusion

For ,/~‘Pwe usethe basis 1, X,...,X”’. Thesemodelshavethe discretesymmetry

X—’ exp[2~ri/(n — 1)]X, U —s exp[—~i(n + i)/(n — 1)]U.

This implies

KkIh)=0 for k*h exceptfor Kn—1IO) and KOIn—l).

Since the two-dimensionalsubspacespannedby 1 and X” is real, H is still

abelianandthereforewe get againa Toda system.In fact one has

H = SO(2) ® U(i)Rn_2~’21.

In the present casethe residue pairing is

= ~k±/,,n—1 + tôk,n_lôh,n_l,

so the reality constraint becomes

KkIh)Kn—1—kln—I—k)=I for k*0,n—1,

KOIn- 1)= 4tKOIO), Kn- 110> =4tKOIO),

1 1t12
Kn—lIn—1)= <010) +—KOIO).

If n + 1 is even (= 2m) the model can be reduced to already solved ones.

Indeed,

W(X) = W
0(X

2)

with

Y,n

W~(Y)= n + 1 —

so the “odd” states

12k+i> (k=0,1,...,m—2),

are just the pullbacks of the vacua for the Am — minimal model perturbedby the
most relevant operator. For our purposes, these states decouple from the others

and, by functoriality, the correspondinggroundstatemetric

<2k + 1 I2h + 1)

is the solution to a Sp(m — 1) or a BC,,..
1 Toda system according to whether m is

odd or even.
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Instead, the metric for the “even” states 12k> is equal to that of the Dm+j
model. This follows from the fact that the D models are the orbifolds of the A2k

ones with respect to the symmetry

X-s -X.

Then for the even states we get B(m_l)/2 or DT(SO(m+ 1)) Toda according
whether m is odd or even.

On the contrary, when n is even (= 2m) we have no “Weil operator” and hence
we expect a Toda theory associated to a generalizedCartanmatrix. Indeed,let

m+1
q1= —logK2(i— i) 12(i— i)) for i= 1,2,..., 2

m+1
=logK2(m—1)+1I2(m--i)+1) for ~ 2 +1,...,m.

Then the equations become

33q1 = 4 ~(~—~2) — ~I t 12 ~—~I+~2

aaq2 = 4 ~(~2~3) — 4 ~(qjq~) — ~I t 12 ~—(oI+~2)

33q1 = 4[e~’~’~’~— e~°’’~)] (i = 3,..., m — 1),

aaq~=41t1
2 ~ 4

which, after an obvious re-interpretation of the symbols, is the same as eqs. (7.6).
Then by a redefinition of the variables it can be recast in the standard DT(SO(2m

+ 1)) Toda form.

7.5. PERTURBEDGRASSMANNIAN COSET MODELS

The Landau—Ginzburg description of some of the superconformal models
proposed by Kazama and Suzuki [46] has been found in ref. [4] *~ As another
application of our techniques, we will focus on an interesting subclassof such
models given by the level-i superconformal grassmannian coset models

3 nm
Y/Z=SU(n+m)/SU(m)®U(n), c=

1,

perturbedby the most relevant operator.Again, thesemodels are solvable as
quantumfield theoriesand relatedto N = 0 quantumTodasystems[42].

* Actually this hasbeenconjecturedfor manycasesbut not proven in full generalityyet.
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Let us summarizeit in a way convenientfor our purposes.We assume,with no
loss of generality, that m ~ n. We startwith n fields Yk (k = ~, n) with charge
q = i/(n + m + 1) andconsiderthe elementarysymmetricfunctions

Xl=O~(Yk)m Y
11Y,2...YJ, (i+i,...,n). (7.8)

l~<1~<l2<...I~<n

Thentakethe function

W (Yk) = EYm~.
n+m+1 k

By the fundamentaltheoremon symmetric functions, it can be rewritten (in a
uniqueway) as a quasi-homogeneouspolynomial in the u,.(Y), i.e. in termsof t he
X, onefinds

~ f*W(X)

where the map f is given by eq. (7.8). The function W(x) so obtained is the

superpotentialfor the grassmannianmodel. Thus the canonicalbranchedcovering
of the grassmannianmodel is just n copiesof theAn+m minimal model. To check
this picture of cosetmodels,let uscomputetheir centralcharge,usingthe formula

for the changeof c undercoveringmaps,eq.(5.8). Onehas

ax.
J=det ~ =LI(Y1,...,}~,),

where LI(Y,) is the Vandermonde determinant. Then

n(n—i) 3nm
q(J)= =~ c=

2(n+m+i) n+m+i

as it should.
As perturbed superpotential we take

W(x,, t) = w(x,) — tX1. (7.9)

By going to the canonical covering, we get

~
Wf(Yk, t) f*w(x t) = k~l (n ~ m + 1 — tYk).

Thus the perturbedmodel goesover to n copiesof the alreadysolvedperturbed
A,,+m minimal model. The ground statemetric for J4’~is just the productof the
known onefor eachfactor.
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Now the metric for the grassmannianmodelscanbe obtainedusing changeof
variables.Let Pr(X,) (r = 1,... ,(n + M)!/n!m!; i = 1 m) bea set of polynomi-
als making up a basisfor the chiral ring ~ of the modelsin (7.9). Then eq.(5.6)
gives,

<P
5 I P,) = (i/fl!)KLI(Y)Pr(0(Y)) I LI(Y)P5(o1(Y)))f

(here <. H >f denotesthe known metric for J4’~).
By thesametoken,we canalso solve the grassmannianmodelsperturbedby the

operator(X/ — 2x2). Indeed,

N yfl±fn+l
f*[w(xyt(x

2_2x)} = k=1 n+m+i

andwe are reducedto n copiesof the model we solvedin subsect.7.4.

7.6. PARTIALLY ABELIAN MODELS

In additionto the modelsthat canbe reducedto Todaysystemsthereare those
for which the ground statemetric decomposesin two “non-interacting” sectors
oneof whichcanbe recastin a Todaform. Many of thesemodelscanbe relatedto
theoriesleading to Toda equationsby a simple changeof variables. Then the
sectorarisingas thepull-back of the simpler theory“decouples”andhasthe Toda
form.

There are however,other moreinterestingexamples.We makeno attemptto

completeness,but we merelymentionan exampleto show how it works.
Considerthe model

w=x4/4 + Y4/4+ Z4/4 — tXYZ.

It has a 7L(4)® 7/(4) discretesymmetry.Using the rulesof sect. 6, onefinds

H = S0(3) ® U(2)3 ® SO(2)3® U(i)3.

The part of the metric correspondingto the “abelian” part of H, SO(2)30 U(i)3,
(correspondingto 12 chiral primary operatorsout of 27) decouplefrom the rest,
andhenceit is Toda,What is remarkable,is that thegroundstatemetric for these
12 operatorsis a rational function of the metric for the theorywith W=X3 — tX.

8. Themagicof the solutions

Up to now we have just discussed how equations take, for special models, the
form of interesting differential systems of mathematical physics, typically Toda
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equations.However, the real magic of the ground stategeometryappearsonly
whenwe considerthe correspondingsolutions.

In particular,we want to illustrate how the conditionswe havealreadystated

uniquely fix the metric. Basically, the requirement that g is a non-singular
positive-definite metric will fix it uniquely. Thus, in particular, the boundary

conditionsfor the differential equationsare predicted.Theseboundaryconditions
correspond to the values of the ground state metric for the unperturbed conformal
theory which is well understood. For the models of sect. 7, this implies that the
absolute normalization of the OPE coefficients for, say, the minimal models can be
deducedfrom our equationsas the uniqueboundarycondition allowedby regular-
ity. This will be shownhereand,in a more generalclassof examples,in sect.9. On
the other hand, the behaviouras I t I —~~ should be the semiclassicalone, as

describedat the endof sect.4. Thus the equationsalso encodein a beautifulway
the geometryof solitonsin thetheory. Finally, the uniquesolution shouldalsolead
to the correctbehaviourfor the algebraicc-function.

8.1. THE MODEL W= X
3/3- tX

Considerthe first model in (7.1). The equationin this caseis A
1 Toda, i.e. the

sinh-Gordonequation.We know that the metric is a function of It I only. Let

It 12 = x and y(x) = Kill). Then the equationbecomes

d d
x~1ogy =y~—~.

dx dx y

Consistency requires that, as t —s 0, we get back the result for the A2 minimal
model, i.e.

2 t=0 = Kill) = 32/3 1(2/3) 2 (81)

y <010) 1(1/3)

On the other hand, as t —s ~, the two classicalvacua at x = ±VT decouple.
Denotingby I ± thecorrespondingchiralprimary operators(the “point” basis)we
must have

1
Kl±Il~)=2ItI

1/2 ~

f3
Kl±Il~)=

11l/2z~
2exP[—2z]+...

where

z= IW(VT)-W(-VT)I =4ItI3~2~4x3~4,
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and /3 is some numericalcoefficient. /3 is realby “Weil symmetry”. Its sign would
be predictedby the “c-theorem”. Since

1 =l~+I_, x= VT(I~—l_),

we get

y2(x~)~[i_2/3y~x3/8exp(_~x3/4)+]

We write

y2(x) = ‘/i~Y2(4x3”4), (8.2)

where Y(z) satisfies *

(Y’)2 Y’ I
= ____ — — + Y3— —. (8.3)

Y z Y

This is just the specialthird Painlevétranscendentequation(Pill). The general

form of this equationis

(Y’)2 Y’ 1 6

Y — + —(csY2+f3)+
7Y

3+ ~,

the specialcasecorrespondsto s = /3 = 0, y = —6 = 1.
Our metric y(x) shouldbe regular,realand strictly positiveon the positivereal

axis. The solutionsto this equationwithout poleson the positiverealaxis arewell
known. Following ref. [15] we introducethe function

u(z) = 2 log Y(z).

u is a solution to the self-similarsinh-Gordonequation

u~~+~ =4sinh(u).

In ref. [15] it is shownthat this equationarisesfrom an isomonodromyproblem. In
fact, it turns out that the associatedisomonodromy(= zero-curvature)problem is
nothingelsethanour linear problem(3.11), for the model at hand.Indeed,let

z = 4x3~4, A = — 2 (~)3/2~

* It is assumingthat this very sameequationis satisfiedby thespin—spincorrelationfunctionsof the 2d

Ising model off criticality [47].
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andmakethe “gaugetransformation”

—s (i/V~)u3(i + if2) e+’73 log

In the new variables,the linearproblem becomes

3zu/1 =

3A1/J = 0,

with

3 zu’(z) z2 1
4 u

1+i-,~-if3coshu(z)—~sinhu(z),

= ~— + 4u’(x)o~1+ 4izAa-3,

which is the isomonodromyproblem discussedin ref. [15]. The relevant mon-
odromy which remainsconstantis preciselythe monodromyof the period-mapH
for the SQM vacuumwave-formsintroducedin sect. 5. In fact, this is true for the
general case.The linear problem ( the generalizedGauss—Maninconnection) is
alwaysan isomonodromyproblem for the SQM period map H. Exploiting this
interpretationof the equation,onefinds the propertiesof its solutions[15].

The realsolutions(for which the origin is not an accumulationpointof poles*)

areclassifiedby their asymptoticbehaviouras z —~0

u(z) ~r log z+s-i-O(z
2~’) for IrI <2,

u(z) ±2logz±2log[—(log 4z+C)] +O(z4 log2z) (r= ±2), (8.4)

(C is the Euler constant).For eachpair (r, s) with I r I <2 thereis a solution.A
real solution is regular(no poles on the positive realaxis) if and only if the two
boundarydata r and s are relatedby the equation

1 — ‘r

)

2 4 (85)
2’F(4+4r~

So, requiringregularityfixes s as a functionof r. Note that a regularsolution Y(s)
has no zeroon the positive real axis. Indeed,Y is also a solution of eq. (8.3),

with just theoppositesignsfor r and s. Since(8.5) is invariantunderthischangeof
signs, Y hasno poles andhenceY no zeros.

* By “pole” we meana pole of the associatedPainlevétranscendentof the third kind Y(z).
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The connectionformula for Pill statesthat the asymptoticbehaviourof these
realsolutionsas z —~ ~ is

a(r)
u(z)—’—j~-exp[—2z], z—s~1s, (8.6)

where

ct(r) = —

From eq.(8.2) onegets

u(z) =2 logKlIl)(z) —4 log($z).

Since the groundstatemetric is regularand non-zeroas z —‘ 0, we have

r= -4,

s=2logKili)I,~o—4 log 4.

Using the regularitycondition(8.5) onegets

<~> 32/3[~](1 +O(ltI2)),

in agreementwith eq. (8.1).
More generally, all the elementsof g for the A,, minimal models can be

obtained(in fact in manyways)from regularityconstraintson the solutionsof our
equations.

On the other hand,the asymptoticbehaviourpredictedby eq. (8.6) precisely
matcheswith that predictedby semiclassicalarguments(cf. appendixB). The sign

of the asymptoticbehaviourof u may be surprisingat first, since a naiveclassical
picturemight suggestthe oppositeone.In fact, theintuitive picturewould apply to
the leadingsemiclassicalcorrection,which in this casejust vanishesby supersym-
metry. The sub-leadingonehas a sign which cannotbe inferredby classicalideas.
However, the sign is fixed from the pointof view of the c-theorem.Let uswork in
the point basis,normalizing 1 ± so that det g = 1. Thenthe metric reads

g= exp[—u(z)u3/2],

By the redefinition x—~t
3~2X,we put W in the standardform with an overall

coupling A = t3”2. Then the chargematrix q introducedin sect.4 becomes

3u(z)
q=~o-

3z
3z
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So the algebraicc-function is

~ 19u(z)

c = — ______

3z

as z —‘ 0, we get c —~ 1, andas z—~ ~, c —~0, as expected.The derivativeof c with
respectto the scaleis

3c
— = —6z sinh(u).
3z

c is stationaryonly if z = 0 or u = 0. u = 0 implies

<1±lI~) =0,

i.e. the “classical” theory. In between,c is obviously monotonicwith the scale.
Sincefor z —~~ we havec = 0, for large,but finite z, c shouldbe a small positive
number.Using the asymptoticexpansion(8.6) we get

c~(3/v~)z1~’2 exp[—2z]>0.

If the leadingbehaviourof u had the oppositesign, c would be negativein this
regime.Thusthe c-theoremexplainsphysically thepeculiarsign of the “instanton”
correction.

8.2. OTHER MODELSLEADING TO SPECIAL P111

In the list of modelsdiscussedin sect. 7 thereareotherwhoseequationscanbe
reducedto specialPill.

The first one is

x4
W(X)=-~---~X2.

Again we put x = It 12 and y(x) = (KOI)Y’. Thenthis equationbecomes

~_(x~_log ~)= 1(~2 ~4). (8.7)

By the redefinition

y=V~Y(z), z=4x

we reduceeq. (8.7) to the standardform of specialPIll, (8.3).
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For t = 0 we have

<212) 1(4) 2

= <010) 21(1)

The soliton massis

2IW(VT)-W(0)I =4ltI2~2z.

As in the abovemodel we put

u(z) = 2 log Y(z) = 2 log y(z) —log z.

So u(z) is the solution to PIll with

r=

s = 2 log y(O) 2 log 2 + 2 log 1(4) —2 log 1(4).

These numbers satisfy the regularity condition (8.5) (i.e. y2(0) is predicted by
regularityalone).The large-t expansionis

tI [~2
Y(ItI’)~~(i+y_ UexP[_ItI/2]+...)

in agreementwith the semiclassicalanalysis.
By the sametoken as in the previousmodel,the c-function reads

a
c= —4z-—u(z). (8.8)

In this case,as z —~0 we get c = 3/2, as we should.The commentsaboveon the
sign of the “instanton” correctionsapply to the presentmodel as well.

Note that theboundarydata r is (essentially)the centralchargeat the UV fixed
point. That is, the UV central chargeis a monodromydata (basically, the Stokes
multiplier). The condition I r I <2 is just

c <3,

i.e. restrictsto theminimal models!Thenthe PIll regularitycondition(8.5) canbe
seenas sayingthat in order to havea regularsolution exp[s] shouldbe the OPE
coefficient appropriatefor the given central charge. Theseremarkswill become
clear in full generalityin sect. 9.

Anothermodel that canbe reducedto specialPill is

x6
W(X) = — - -x2.

6 2
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The matrix elements

Kill) and <313)

canbe obtainedfrom the x3/3 — tx modelby a changeof variable

f: x—~x2. (8.9)

Thenthereremainsa singleunknown function

y(x) = (K0I0))1,

whichsatisfies

~_(x~_log y)4y±1i-.
At t = 0 we must have

2 0 = <414> = 62/3(6) 2

<010) ,~ 1(4)

Putting

y~/~y2(z) z=4x3~4,

we get againspecialPill for Y(z). Then

u(z) = 2 log Y(z) = log y —4 log z —4 log 3 + log 2.

which gives

2r=

s=log y(O) —4 log3+log2.

Since r is as in the cubic model, Y(s) — if regular — shouldbe the same. Thus
regularity implies an algebraicrelationbetweenthe two independentelementsof

the groundstatemetric.
One has

lW(t~)—W(0)I=4Itl3~2—z,

so the large-t behaviouris againthe correctone.
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By the sameargumentas above,we have

a
c= —3z—u(z).

3z

(The factor 2 with respectto eq. (8.8) is due to the fact that now (<010))—’ is
proportionalto Y2(z)ratherthan Y(z)).So, as a function of z the centralcharge
is just twice that of the perturbedA

2 model which, pulled backby the map(8.9),
gives the presentmodel. In particular,for t = 0 we get c = 2, as we should.

There areothermodelswhoseequationscanbe reducedto specialPill. A very
importantclasswill be discussedin sect. 9. There area few other modelsthat we

omit for brevity. We have explicitly checked that all thesemodels satisfy the
regularityandconsistencycriteria.

8.3. THE MODEL W=X
4/4—tX

Next we consider the model leading to BC
1 Toda. Putting y = <2 12) and

x = It I 2 we get

(y’)
2 y’ y2 1

____ — + ——,

y x x y

which is again a special caseof the third Painlevé equation,with a = —6 = 1,
/3 = y = 0. This is the so-called“degenerate”Pill. Putting

T = -j~i,X413, log y = u(T) + 4 log(~r), (8.10)

we recastthis equationin the form of the self-similar Bullough—Doddequation

(TUT)T = e” — e2u.

The propertiesof the asymptoticallyregularsolutionswere studiedin ref. [16],
againby the isomonodromicdeformationmethod.It turns out that thesesolutions
areparametrizedby four complex numbersg

1, g2, g3, and s satisfying

g, +g2(1 —s) +g3= 1, g2
2—g

1g3=g2,

so we havea two-dimensionalmanifold of solutions.From eq.(8.10) we seethat
regularity implies that, as r —s 0,

const.
exp[u] T

1~4
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This selectss = 1. In this case,onehas

C
exp[u] ~ T’~

4 T 0,
C

0

where(for s = 1)

C2 8 1(4)

C0 — 33/2 1(4)’

r1 =g3—g1 + (1 —i)(g1 —g2).

To fix the residualambiguityof the solution, we require that, as T —s ~, there are
no exponentiallygrowing terms(i.e. no negative-masssolitons).Thenone gets

g~= g2 = 0, g3 = I r1 = 1,

and the solution is uniquelyfixed.
At this point, both the value of the metric at t = 0 and the strength of the

“instanton” correctionare predicted.Onegets

F(~)
K2I2)I5o=2~(~)~

the expectedvalue.The asymptoticalexpansionfor T —* is

exp[u(T)] ~1+ ~~(3T)’~~ e_2~+

This is the correctstrong-couplingbehaviour,because

z I W(t~
3)— W(e2~’/3t1/3) I = It ~ =

and the coefficient in front of the exponentialagreeswith the soliton picture
discussedin appendixB.

Again one has

au 3u(T)

c(r) = —3z— 6Taz

As T —s 0, we get c = 3/2, the correctvalue. To the best of our knowledge,no
mathematicianhas everstudiedin detail the propertiesof the higherequationsin
sect. 7. However, we can easily work the other way around, namely, start from the
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knownphysicalpropertiesof the metric anddeducethe correspondingmathemati-
cal theorems,analogousto the aboveonesfor the A1 and the BC1 cases.In some
sense,this is just what a mathematicianwould do. In fact, the known resultsare

obtainedby exploiting the isomonodromicmethod,which is somehowbuilt-in the
physical approach.

9. Models associatedto Verlinderings: theSU(2)k case

RecentlyGepner[18] has shownthat the Verlinde ringsof somerational CFTs
have the samealgebraicstructureas the chiral rings of the N = 2 LG models,
namelytheyare polynomial rings modulo the ideal generatedby the derivativesof
a certain superpotentialW(x,). This hasbeenconsideredfurther recently[48,49].
The main caseconsideredin ref. [18] is that of SU(N)k theories.From the N = 2

viewpoint, the correspondingsuperpotentialscorrespondto particular (relevant)
perturbationsof N= 2 cosetmodels. Thenit is natural to askwhether,for these
specialperturbations,the equationsfor g (aswe vary the RG scale)are “solvable”
in the sensethat they canbe reducedto Toda.The answerto this questionis yes!
Moreover,the trick to solve them is basedon theinterpretationof the correspond-
ing ~‘s as fusion rings. In particular, for the model associatedto the SU(N)k
Verlinde ring thegroundstatemetricis written in termsof k linearly independent*
solutionsto the (self-similar)affine SU(N)Todaequations.

In this sectionwe discussin detail the SU(2)k situation,the generalizationto
arbitrary N being discussedin sect. 10. In this case,the superpotentialsare the
Chebyshevpolynomials[18]

WK(X) =ATk+l(X), where 1,,(cosY) =cos(mY).

Rescalingthe field X, we see that as the coupling A —s 0 one gets back the
minimal model Ak, which is equivalentto the grassmannianmodel at level I

SU(k+ 1)1/U(k).

The fact that one gets Chebyshevpolynomials is remarkable,since for these
polynomialsthe SQM Schrodingerequationis separable,and hence the ground
state metric is computable by brute force. In fact, separability for the SQM
Schrödingerequation (with one field) is equivalent to separability for the 2d
Helmholtzequation(relatedin turn to SU(2) Toda). However, the corresponding
wave functions are not very managable,so it is more convenientto use the
information coming from separability to simplify our equations,rather than to
compute g directly. It has not yet beenshown, in the senseof having infinitely

* However, the reality constraintgives non-linearalgebraicrelationsbetweenthesesolutions.
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many conservedcurrents,that the Chebyshevperturbationof minimal modelsis in
that class,but the fact that we find an affine Toda equationeven for this case

suggeststhat this must be true. In fact for the A,, model W=X”~1 it has only
been shown that X and x2 perturbationsare integrable [33,42], and it was
suspectedthat perturbationby X” ~ is alsointegrable.Chebyshevperturbationto

leadingorder (as A —s 0) is of this type.So what we are finding is that this is, to
leadingorder,integrablebut to get it to be fully integrableit mustbe “dressed”by
lower-dimensionoperatorswhich makeit becomeprecisely the Chebyshevpolyno-

mial. It would be very interestingto verify this by studying perturbationtheory
nearthe conformalpoint.

The methodwe use for solving the Chebyshevmodelsis againusingthe change

of variablestrick discussedin sect. 5. This will in fact allow to solve them all at
once.We take

W= AT,,(x),

f= cos(Y/n) X,

l’Vf(Y) =A cos(Y). (9.1)

Then, if we are ableto computethe ground-statemetricfor the N = 2 sine-Gordon
model, Wf(Y),we get all Chebyshevsuperpotentialsat onceby truncationto the
operators4~kE~f of the form

t~k(Y)=Pk(cos(Y/n))sin(Y/n),

where Pk(X) are polynomialsof degreek <n — 2.

9.1. N= 2 SINE-GORDON

For the sine-Gordonmodel we identify an elementof ~ with the set of its
values at the (non-singular)critical points (the “point” basis).For Wf(X) the

critical pointsare

Xr=irr, rEt,

andwe identify an element4 E/~’fwith the sequence

{(~)r~c6(~Tr), rE~}.

The ring operationsact componentwiseon 4. Onehas(using definition (2.10))

Res[~]= i ~ (_ly~1(~)r.
A re~
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We chooseas basisin the elementsak (k E 1) suchthat

(ak)r=6kr. (9.2)

In this basiswe have

(k+1)
Ilkh(1)

(CA)2 = (~i)k6~.

The superpotential(9.1) is invariant (up to phase)for

T: Y-sY+~-,

P: Y-s -Y.

Then, in our basisone has

g
1~,,~-1=g11,

g_,,_1=g,1. (9.3)

Given an integer i, thereis a uniquedecomposition

i=Ki)+2{i}, with Ki)=0,i.

Using (9.3) we write

g1~= g<1)~J)({i)—

andintroduceits Fourier series

=

Next, we considerthe 2 x 2 matrix (0 < U < 2ir)

g00(U) g01(U)

g10(U) g11(9)

Eq. (9.3) implies

g00(U) =g11(O),

g01(U) = e’°g1~(U),
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and

g00(U) =g00(—U),

g10(0) = e’°g10(—U).

Thenwe canparametrizethe metric as

g(U) = A(O) e’°~
2B(O)

e’°/2B(U) A(U)

where

A(U) =A(—U), B(U) =B(—U).

The transposeandthe conjugateof the groundstatemetric in terms of the 2 X 2

matrix g(U) read

gT(O) = [g(-U)]T, g*(U) = [g(_U)]*.

Then

gt(U) = [g(U)]t,

and g(U) is hermitian in the 2 x 2 sense.Therefore

A(U)=A(U)*, B(U)=B(U)*.

Moreover,A(e)> 0, sincethe metric is positive.

Finally, we must imposethe “real structure”constrainton g(U), namely

~~1(o)g(U)(~*)~l(U)g*(U) = It. (9.4)

In the 2 x 2 notation,one has

l/_i 0
0 ~

CfO\_(i 0

A’, ~ 1

So eq.(9.4) reducesto

IA I 2(A(o)2 - B(U)2) =1.
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Therefore,we canparametrizeg(U) in termsof a singlefunction of x( = I Al 2)

A(x, 0) = (1/V~V) cosh[L(x, U)],

B(x, U) = (i/V~V) sinh[L(x, U)].

Puttingeverythingtogether,we get

g(x, U) = (i/V~V)U(U) exp[cr1L(x, U)]U(U)
1,

where

U(U) = exp(4iUu
3).

Now,

ax[g a~g_1~(U)= —Uf~U’
3A 3A-L(x, U),

[GA, GA](U) = —2Uo-
1U

1 sinh[2L(x, U)],

andthe final equationreads

3A 3~L(x,U) = 2 sinh[2L(x, U)],

i.e. for eachU, 2L(x, U) is a self-similarsolution to the sinh-Gordonequationand
we areback with our old friend the specialPill. To put the equationin canonical
form, let

2L(x, U) = u(z, U) where z = 2x~2.

For z —s 0 we havethe asymptotics(cf. sect.8)

u(z, U) —r(U) log z+s(U) + ..., with Ir(U) I <2,

that is

L(x, U) 4r(U) log x + 4[s(U) + r(U) log 2] +

whereasfor x —~~ we get (cf. (8.6))

a(U) exp(—4x1”2) a(U)
L(x, U) ~ 2~IA 11/2 e4~.

Notice that the exponentis preciselythe soliton mass

2ILIWI=2IAIIcos(k~)—cos((k+i)~r)l=4IAj,

in agreementwith the semiclassicalpicture.
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To specifycompletely the metric for N = 2 sine-Gordon,it remainsonly to fix
the boundaryconditions, i.e. the function r(U). This will be done below.

In termsof L(x, U), the point-basismetric reads

gkj(x) = ~ f~dOet0(1_~2{exp[L(x, U)] + (_
1)(Jk) exp[—L(x, e)]}.

(9.5)

Since g(O) is periodicwith period 2~,onehas

L(x, U + 2’ir) = —L(x, U),

L(x, —U) =L(x, U).

In particular,

L(x, ‘~r)=0.

9.2. BACK TO CHEBYSHEV

Now we returnto the original Chebyshevsuperpotentials,

W=AT,,(X).

Thecritical pointsare

/ r’rr \
xr=cosl—I r=1,...,n—1.

\n I

Againwe work in the point basis.We denoteby I~the chiral field with value 1 at
the rth critical point and zero elsewhere.From each ‘r’ ~ pull-back, we get a
chiral primary operator in the sine-Gordontheory. Taking into account the
jacobian,we get(j = 1,.. . , n — 1)

1 /‘T \f *1. = — —sinf —j ) ~ [a2nr+j — a20~_~],
n ~n ‘rE7L

where ak is as in (9.2).
Theneq.(9.5) gives

26(0)Kl
7lk) = —~s~n(~~)sin(~k)

x ~ [g
2nr+j,m-i-~-g — g2,,,—J~T1T— g2nr+j,~~~~T+

r,s ~ 1
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where2 6(0) is the degreeof the cover.The sumsin the r.h.s.can be computedvia
the Poissonformula

1 “‘ ( 2irr
~2nr+j,~/~k= ~6(0) E e’~~”~expL x,

r,s~ 2nyx r=0 n

-. 2~rexp[_L(x, —~-—)IY
Putting everythingtogether,we get the ground state metric for the model W=

AT,,(X),

1 ‘IT
<131k) = 3 ,— sin —j sin —k

nVx n n

~ ~: sin( _rk) sin( ~r~) [e~~tx2~ + ~
1)(k_J) eL2~/~~)], (9.6)

which expressesthe metric as a combination of a finite numberof solutions to
specialPill. All thesesolutionsareboundedfor x —s andregularon the positive
realaxis. Taking into accountthat

L(x, 2~r—a)= —L(x, a),

we seethat the metric for the 1k-modelinvolves [(n — i)/2] independentsolutions
to Pill. In particular,for n = 2 we havejust elementaryfunctions,andfor n = 3, 4

we have a single Painlevé transcendent.This is in full agreementwith previous
work, since T2 is equivalent to the free theory, W=X

2/2, T
3 is equivalentto

w = x
3/3 — tx, andT

4 to W = X

4/4 — tX2/2. Theselast two modelshavealready
beensolved in sect. 8 in termsof a singlePainlevétranscendent.In fact, by going
throughthe field redefinitionsneededto put thesesuperpotentialsin the standard
form (payingattentionto the“anomalous”jacobian)onechecksthat for n = 2, 3, 4

the aboveresults reproducethe resultsof sects.7 and8. For brevity, we omit the
detailsof this check.

9.3. REGULARITY VERSUSBOUNDARY CONDITIONS

As in sect.8, the boundarycondition r(U) is fixed by requiringthat the metric is
finite and non-zeroas A —s 0. Thenthe valueof s(U) is predictedby the condition
of no pole on the positive real axis. We recall that for W = Y” the groundstate
metric reads

k+1 I k+1Kyk IYk)=F( n )/nI(i_ ) (k=0,...,n—2). (9.7)
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Onehas

T,,(X) = 2°~X~ + k,,_2X~
2+

The field redefinition

Y~2(A/2)’~”X,

putsthe superpotentialin the form

W= A1,(X) = Y” + O(A2/”).

Consistencyrequiresthat, as A —~ 0, the Chebyshevmetric reproduces(9.7).
The critical points for 1~,(x)are xk = cos(k~-/n).Thenin the point basisthe

monomials xka~readas

n1 k

Xk= ~ ir (k=0,I,...,n—2).

Taking into account thejacobian,one has

<yk I yb> = [
2(x/2)t/f]k+i[2(A/2)1/flh+1Kxk I Xh>.

Let usdefinethe sums

Ak, = :~icosk(~ir)sin(~r)sin(rrt),
Bk,= rEi(1)’ cos”(~r)sin(~r)sin(~’rt).

Explicitly, one has

A0, = 4n[5(,), —

and, for k * 0

n (k+t)1f( k k

Ak,=~[l—(—l) i\~4(k+t—1),, — 4(k+t+i),,

where(a),, is a short-handnotationfor the uniquenumber0 < (a),, <2n, which is
congruentto a modulo 2n. Moreover,

Bk, =Ak,+fl.
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Puttingeverythingtogether,the metric in the monomialbasisreads

<yk I yh) = n3IA I [
2(~/2)1/n}~[2(A/2)1/nI(h+1)

x ~ [Ak,Ah,, e
1’~’2~’~”~+ Bk,Bh,e_[L2~t/~~~].

The coefficients Ak,, Bk, satisfythe “selectionrules” (for 0 <t <n)

Ak,=O for t>k+i,

Bk, = 0 for t <n — 1 — k, (9.8)

The first non-vanishingcoefficientsare

Akk±1= _Bk,fl_l_k=n/2k~. (9.9)

A consequenceof the selectionrules is that Kill) is equal to (up to trivial
factors)exp[L(x, 2’IT/n)], i.e. it is expressedin termsof a singlePainlevétranscen-
dent.Moregenerally,the matrix element<Yk I Y”> involves,at most,min(k + 1, h
+ 1) transcendents.

The asymptoticbehaviourof the diagonalelementsof the metric as A —s 0 is

<yk (i/n3)(

21_1~/2)

2~~H2 IA I ((2k±2)/n)—1

n—I

x A~,(2I A I) r(2~1/n)/2e2~’/”V2

+ ~ B~,(2IA I) —r(2~1/n)/2 e2~t/~~V2].

Usingthe selectionrules,the requirementthat the r.h.s.hasa finite non-zerolimit,
gives

r(~1t) =2(1 - ~)(t= i,...,n-1). (9.10)

Note that in particular I r I <2, as required by regularity. Assuming that the
solutionsare regular,we get (8.5)

exP[4s(____t)] =2(4t_2~~)1’~F(__)/F(i_ -~_).
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This, using(9.9), implies

<yk I yk>~IA~o= (i/n3)2~” 1X2k+2)/n[ A~,k++ B~,fl_k_,]
2(n—2k—2)/ne[5(

2~/”V2]

k+1 I k+1
=(i/n)(F( n )/1(1 n ))‘

in full agreementwith eq.(9.7). Moreover,the off-diagonal elements

Kyklyh) k*h,

go to zero in this limit, as they should. Thereforeregularity implies the correct
boundaryconditions for Chebyshevsuperpotentials.It is amusingthat all the

normalizationcoefficientsof theAm minimal modelscan be deducedfrom regularity
theoremson Painlevétranscendentsof third kind andvice versa.

It remains to specify the boundaryconditionsfor the solution of the N = 2

sine-Gordonmodel. We assumethat r(U) is a continuous(albeit not smooth)
function of 0. From eq. (9.10) we know it at all rationalvaluesof U/IT. Then it
shouldbe

U
r(U)=2 1—— for 0<0<2w.

‘IT

Outside this interval, the function is obtainedby using

r(8) = —r(U + 2ir), r(U) = r( —U).

Thenthe bound-statemetric for the N + 2 sine-Gordonis completelydetermined.

Note that I r(U) I <2, and that all the regular solutionsto specialPill appearin
the metricfor the N + 2 sine—Gordonmodel.The points U = 2~k where I r(U) I =

2 coincidewith the pointswhere r(U) is not smooth.Theseare also the points
whereL(x, U) even if continuousin U changesits asymptoticbehaviourfor A —s 0
(cf. sect. 8). At the se points one has “logarithmic violationsof scaling”. This is
preciselythe boundaryconditionsatisfiedby the Ising model correlationfunctions
[471.

9.4. STRONG-COUPLINGLIMIT

Let us take the limit A —s ~. in this limit the variousvacuaat different critical
points, Xk = cos(~k/n),decouple (up to exponentially small correctionscorre-
spondingto soliton corrections).Thenwe musthave

1
Kl~’lk) + J _____e4~

IW”(Xk) I ~/~ü7~(xJ)w”(xk)~ V2IAI
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for certain constantsa3~,.Since

( —

w”(x)= An
2k

sini —k

we must get

sin(irk/n) sin(~j/n) 1
= n2 IA I (61k + aik V2 IA I e4t~ +...). (9.11)

Usingthe asymptoticsof u(z, U), eq.(8.6), andthe identity (valid for j, k = 1, . . . , n
—1)

I [i + (— i)~~]~
1sin( _rk) sin(r~)= ~kJ,

the r.h.s.of eq.(9.6) for largeA hasthe behaviourof eq.(9.11) with

aJ,k= ~ — ( —i)”’~] :~:sin(isk) sin(~sJ)a(U =

1 2n—I ~ \ (‘IT (‘IT
= — [i — ( — i)(k_J)] ~ sin( —skI sinf —sj cosi —s

2nV~ s~0 \n I ~n

1
=

in agreementwith the resultsof sect. 8 and appendixB.

9.5. THE c-FUNCTION

Nextwe considerthe c-function.By the sameagreementas in sect.8, for the 7~,
model we have (z 2 IA I)

a
c(z) = 4z-~---u(z,2ir/n),

(in particularfor n = 2, c is identically zero, andfor n = 3, 4 it is just what we got
in sect. 8). This follows from the fact that the Ramondoperatorassociatedto 1 is
the one with lowest charge.As z goesto 0, we get for the UV centralcharge

2ir 2
c~~=4r =31——

n n
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which is the well known resultfor the A,,_1 minimal model.The leadingcorrection
to this result is of order I A I ~ i.e. the modulussquareof the perturbation.

The “running” U(1) chargesof the Ramondgroundstateare

a
q~(z) = 4z—u(z,2irk/n) (k = 1,2,.. .,n —1).

As z —s 0, we get backthe result of the A,,_1 minimal model, whereasas z —s ~

they all go to zero, asthey shouldsincethe IR fixed point is trivial.
For the N = 2 sine-Gordontheoryitself, we have

a
c(z) = 4z-~—-u(z,0),

which in the UV limit gives c = 3. However, now the correctionsare logarithmic,

3

c(z)~3+ , z-~0.
2(log z + C)

It is temptingto speculateabout the relationof this logarithmic scalingviolation
with the onesappearingin 2d gravity at c = 1. This is in particular tempting in
view of the conjectureof Li [9] about the relation of topological N = 2 minimal
modelswith 2d quantumgravity.

All the discussionin sect. 8 on the properties of thesec-functions applies
word-for-wordto the presentgeneralcase.

9.6. VARIATIONS ON THE THEME

One interestingaspectof the equationsfor g is that they have a tendencyto

reproducenice field equations.For example,abovewe got the equationsof 2d
sinh-Gordon.There are othermodelsleadingto evenmore suggestiveequations.
As a divertissementwe presenta classof model which lead to 3d chiral models.

We considerthe multicritical sine-Gordonmodels. By this we meana model
which hasthe samecritical points as the sine-Gordonone,but with a multiplicity
j.t> 1. All the critical points are assumedto have the samemultiplicity p.. For
simplicity, we assumep. to even(= 2m). Thenthe superpotentialis

W(X) =Afsin2mX dX

m —kA ~2m)! A m— ~,—l) 2
= ( -k) (~)sin[2(m-k)x],(m.) k=0 m
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which hasthe pseudosymmetries

X-’X+k~-, X- -x. (9.12)

An element 4 E F is uniquely specifiedby its (2m — 1)-jets at the critical points,
i.e. by the set of data

{~(k~)~~ (2m—~ IkE

(the “point” basis). Then F is identified with this set of numbers written as a
two-indexobject

~m(~t~)k,r kEy, r=1,...,2m.

In this notationthe ring productreads

2m

(cbc~)k,r=L (~)k,s(~)k,r-s

s= 1

Considerthe groundstatemetric in sucha basis gi,r;J-l. From (9.12)we have

gi±i,r;j-~-~—l=gi,r;j~,

(r+s)
= ( — 1) gi,r;J,s’

As abovewe introducethe Fourier transform

gj,r;j-~ g~,5(i—I), g,5(0) = ~ e”°g~(k).
k

The 2m X 2m matrix g(U) satisfies

g(—0) =~3g(U)~3, (9.13)

where

.~3=diag(i, —1,1, —1,...,l, —1).

In this notation, the residue pairing is

17(0) = (i/A).~1,
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where

~ ) ii =
6i +j,2m±P

As in the sine-Gordon case, we have

[g(U)]t =g(0).

The reality structureconstraintreads

* 1

.~
1g(U).~1g(—0)=—~I1

Let ~‘(0) = I A I g(U). Thenthe aboveequationbecomes

or, using eq. (9.13),

~(0)Q~(0)T =

where

~‘~= ~I~3

is a symplectic matrix. Hence

E Sp(2m).

The matrix CA reads

(2n)!
(CA)2~

or, in the U basis,

(2m)! d
CA= Z’IT —.

22m(m!)
2 dU

To saveprint we put

(2m)!
z=A

22m(m!)

Thenthe equationsbecome

a2[~(6)az~(UYh]=

2d
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Putting

= Re z, x2 = Im z, x3 =

and using the fact that ~‘ is invariant under rotations in the (1, 2) plane, this

equationis rewritten as (p. = 1, 2, 3)

a[.~’a~’] =0, .~‘ESp(2m),

which are the field equations of the (complexified) Sp(2m) principal chiral model
in threedimensions.This is the model correspondingto the lagrangian

2’ = Tr [a .~‘ a ~,—

Of course,the metric is a very specialsolution to thesefield equations.~‘ should
be a positive hermitian matrix, invariant under rotations in the (1, 2) plane,
periodicwith respectto translationsin the orthogonaldirection, andsuch that

~( x1, x2, —x3) = ~ x1, x2, x3)~3.

Nevertheless, it is amusing that we get a formal “unification” of the coupling

constantA with 0 which labels the different critical points!

10. Generalization to SU(N)k

In this sectionwe generalizethe results of sect. 9 to arbitrary SU(N)k. The
groundstatemetricof the associatedmodelswill be expressedasa finite combina-

tion of (self-similar) solutionsto AN_i Todatheory.

10.1. N CHEBYSHEV POLYNOMIALS

We start by describingthe superpotentialscorrespondingto SU(N)k Verlinde
rings, i.e. the generalizationof Chebyshevpolynomials to arbitrary N. These
superpotentialsare closely related to those for the grassmaniancost modelsof
sect. 7, andindeedreduceto them in the UV limit.

Following Gepner [18], we introduce the variables q (i = 1,..., N). These
variables are subject to the constraint

N

flq~=1. (10.1)
1=1

As in sect. 7, we denote by a~~(q,) the rth elementarysymmetricfunction of the q1.
Obviously, o-~(q~) = 1.
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The superpotentialcorrespondingto the SU(N)k Verlinde ring

wN,k(xl,x2,...,xN_l)

is the uniquepolynomialsuch that

A N

WN+k(cJl(q),c72(q),...,crN_l(q))_ ~~~Lqt+k,

the only differencewith respectto the grassmanniancase being the constraint
(10.1). Of course, this is a major difference since it spoils quasi-homogeneity.
Thesepolynomialsaremutuallyorthogonalwith respectto theL

2-measuredefines*

by the weight /~~1(q~)and obey the recursion relation

(m +N)W~+N(XJ.)+ E(—1)’X~(m +N_i)wm±N_l(Xj)+(_i)Nmwm(xj)=0.

Let us parametrizeq, as (m= N + k)

1
q~=exp—(4~—~~_

1)i=i,2,...,N,
m

with the understandingthat

= ‘t-~N 0.

Let f(m) be the map

Xr= (f(m)(cbj))rrp[(~j~il)/m1).

Then,

A N-2
f(~)Wm= e

4 + E e’4’~’4’~+ e4~-’
m

which, up to an obviousfield redefinition, is just the N = 2 SU(N) Todasuperpo-
tential. Then, by a changeof variables,to solve the problem for WNk(Xl) it is
enoughto computethe ground statefor the supersymmetricToda models. The
jacobianis again~(q

1), the Vandermondedeterminant.

* As in sect. 7, ~i(q,) is the Vandermondedeterminant.
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10.2. N=2 TODA THEORIES

We arereducedto computethe groundstatemetric for the N = 2 SU(N) Toda

theories,

A N-2
W(41, ~ = -~ e

4’ + ~ e(<+14i)+e~N_1

This model hastwo symmetries:

2~

~rr

7~1*+

2’IT11r, with k=0, 1,...,N— 1, l~E7L,

and

-s

The critical pointscorrespondto the orbit of the origin with respectto the first
symmetry. Then a critical point is labelled by the numbers

(k, l~, 12,. ..‘lN_l)’ k = 0, 1,..., N—I, irE ~.

As usual, we denote by a(kl) the chiral operatorwith value 1 at the given critical

point andzero elsewhere.The valueof W at the critical point (k, l~) is

11/ — 2~ik/Nr

So,

ff~ \(h,nl,) — 2irik/Nc(h,m)
— e

and the residuepairing is

=C ~N (k,lr);(h,m,)’

Here CN is a numerical constant depending on N only

(CN)~ = (i/N)N~ det[Cab],

where Cab is the SU(N) Cartanmatrix.
The abovesymmetriesimply the following conditionson the metric

K(k, l~) I(h, m
5)) = K(k, lr +a~)I(h, m5 + as)), arE Z,

k+p k+p
K(k, l,)I(h, m,))= (({k+P)~ l~+ F N Jr)~({h+P}~m~+[ N ]~))
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(p = 0,.. ., N — 1), where(a) is the uniquenumberbetween0 and N —1 which is
congruentto a modulo N. Moreover,

K(k, Ir) (h, m5))= K(k, —k— lN-r) I(h, —k—mN_S)>.

The first propertyallows usto introducethe Fourier transform

gk-h(
01,.. . ,U~_~)= EexP(iElr0r)K(h~0) (k, ir)).

Thenthe other two propertiesread

~ (forO<k, h<N—2),

gk±1,p(O)

= exP[iEror]~NI~(o)~

g~~(U
1,02,. ..,ON_i) = exP[—i(h —k) EUrJ~k~(

0N-1’ 0N-2’~’ —Ui).

To put the equationsin the Toda form, we haveto diagonalize the N X N
matrix g(O). It hasthe structure

gk~(O)=A(h_k)(O)+ exP[_iErUrJAtN±h_k)(O)~

where

for h=0,1,...,N—i
~0 otherwise.

Given the peculiar structureof g(0), its diagonalizationis elementary.We
introducea new basisin ~ =0,...,N— 1)

~k(0) = EexP[IV(2’ITk+ ~sUs)Iar(0),

ar(0) = l~E2Zex~[i~ls0sIa(rl).
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In this basis,the groundstatemetric is diagonal,indeed

K~ík(0)~iJh(0))—6(0 — O’)6h kN~exP[~(2~k + ~s0s)]A/(0).

In the new basis,

W~/Jk(O)=

i.e.

(C~(o)=

Therefore, for each value of U1,.. ~‘°N—1 the groundstatemetric ~‘k(0),

K~I’h(O)~I’k(O))— 6(0’ —

satisfies the AN_ 1 Todaequation,

~k+I)(0) ~‘k(0)
—3-3 log [4’k(O) = ________ — ________A A ~‘k(0) ~k_I}(0)

However,in this basis the residuepairing is ratherinvolved,

N1

1ir

Res[~/Jk(0)I/1h(O’)] = 6(0’ — O)CN ~ exp~~ 2ir(k + h + I) + 2LsU
5

r~() s

so the reality constraint is not as simple as in sect. 9. Notice that —contrary to the
SU(2) case—the reality constraint gives .~‘( — 0) in termsof .~‘(0)instead of putting
a condition on the metric for fixed 0.

This completesthe argumentshowing that for N = 2 quantum SU(N) affine
Toda, associatedto SU(N)kVerlinde rings, the groundstatemetric canbe written
as a finite combination of solutions to the classical AN_i (self-similar) affine Toda
equation.Herewe seethe groupSU(N) in operationin threeseeminglyunrelated
ways!

11. Conclusions

We haveseenthat the metricon the spaceof groundstatevacuaof N = 2 QFTs
can in principle be determinedby solving certaininterestingdifferential equations
which expressthe flatnessof certain holomorphicand antiholomorphicconnec-
tions for the vacuum bundle over the parameterspace.Not surprisingly, this
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flatness condition reduces in special cases to well known systemsof equationsof
mathematicalphysics(of theToda type) which are expressiblein the Lax form. in
examples which lead to equations which had been studied by mathematicians, we
were ableto reproducesome of their results,derivedfrom isomonodromicdefor-
mation techniques,from a purely N = 2 OFT point of view. The generalizations
that this N= 2 point of view would naturally leadto, areyet to be verified using
the isomonodromicdeformationtechniques.

The systemof equationsthat we haveused doesnot distinguisha “preferred”
direction of perturbation,and in a sensetreats all the directionson the same
footing. This is partly a surprise, because only very special directions are integrable
OFT’s in the senseof having infinitely many conservedcurrent ~‘. It is precisely in
these cases that our equationsreduceto equationsof the Todatype. Nevertheless
it is natural to study the full space of perturbations. In particular it should be

possible to flow from one conformal theory to another conformal theory and see
how the OPE of the two theories are predicted by self-consistency, and in
particularby the absenceof singularityin the solution to the differential equations.
The examplesleading to affine Toda are alwaysmassiveat the IR, and unfortu-
nately do not provide any examplesof this type.

We have seen that some examples of N = 2 theories whose rings are the same

as the rings of RCFT (SU(N)k) lead to affine Toda equations.Is this a general
property? Is it true that each case where Verlinde ring of a RCFT can be
represented by the chiral ring of an N = 2 theory the equationswe get are

integrable and lead to Toda equations? Is it true that each time our equations are
of the toda typewe caninterpretthe ring as thatof a RCFT?Thesearemysterious
links betweena conformal theory (RCFT) and a massiveN = 2 theory, which

deservea seriousstudy. Could it be that N = 2 theories lead to knot invariants in
threedimensionsthrough this link? (if this were true singularity theorymight be

connectedto knot invariants).Do the N = 2 theories admit a direct three-dimen-
sional interpretation?

We have seen that the affine Toda equationsthat characterizethe metric
encodea lot of the information about the solitons in the theory. Can one derive
the soliton scattering amplitudesfrom this viewpoint using the techniquesof
thermodynamicBethe ansatz[51]? The discussionin appendixB points in this
direction.

Many of our constructions work for Donaldson theory and is worth investigat-
ing. This might lead to a simpler derivations of Ward identities in the context of
N = 2 supersymmetricYang—Mills theories[52]. Thiswould be interestingto study.

It would be interestingto see if onecan imbed this in an integrablesetupby infinitely extending the
numberof couplings,similar to whatonehasin matrixmodels1501. We would like to thankauthorsof
the first referencein [501for discussionson this point.
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It is our distinct feelingthat we haveonly found thetip of an iceberg.Thereare
too many different thingsbeing relatedin too many seeminglyaccidentalwaysfor
therenot to bea biggerstory. We hope that thiswill motivatefurther studyto find
this biggerstory.

We havebenefittedfrom discussionswith many people.In particularwe wish to
thank L. Bonora,S. Coleman,L. Faddeev,P. Fendley,K. Intriligator, A.R. Its, A.
Kitaev, M. Martellini, S. Mathur,H. Ooguri,V. Periwal, N. ReshetikhinandA.B.
Zamolodchikov. The researchof C.V. was supported in part by A.P. Sloan
Foundation,PackardFoundationand NSF grants PHY-89-57162 and PHY-87-
14654.

Appendix A. The ground state metric in the critical regime

At a conformal point W is quasi-homogeneous.In this caseonecangive explicit
representationsof the metric in termsof integralsof holomorphicforms.Basically,

this is the generalizationof Gepner’s correspondencefor minimal models: at
criticality an N = 2 model is related to a f-model and thus can be studiedby
complexgeometrytechniques.There are three(equivalent)formulationsof these
integralrepresentations:

(i) In termsof the integrals({4k} a holomorphicbasisof ~)

~k3=f+e~kdXIA...AdXfl. (A.i)

(ii) In terms of the period integrals for the pure (p, q) componentsof the
groups

H~~2(E
1)0 H~

1(E
2),

where E1 are the (weighted)projectivemanifolds

E1: W(x~)~~0,
E2: W(X~)+x,~.,= 0. (A.2)

(iii) For marginal operatorsthe ground state metric is Kähler. The Kähler
potentialhasthe representation

e”=fd”X d”X exp[ W(X) —W(~)], (A.3)
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which canbe rewrittenas a bilinear form in the integralsof point i) asexplainedin
sect.4.

To simplify the argumentsnotice that (without lossof generality)we canassume

W to be homogeneous.Indeedlet the fields X1 haveU(l) chargeq1 = r,/d. Then
makethe changeof variables

In terms of the new fields W is homogeneous,andthe original groundstatemetric
is related to the new oneas in sect. 5.

A part of the above statementsis elementary, Indeed,we known that (for
marginaldeformations)the metric is Kähler. Thenit is elementaryto show that

e~~tU= E IkhXk(ta) [~h( tb)] ~

k,h~I

where ‘kh is theintersectionmatrix andXk(ta), Xk(ta) are holomorphic.In fact (cf.
sect. 4) exp[—K] = <010), and(sect. 5)

<010) = EPhk f eW~w0f e~W~W* woI. (A.4)
h,k Yk

Thenit remainsto show that

f e~Wo~, f e~W~W* wo, (A.5)

are holomorphic.Indeed

o=aJ e~’~’~~’*~0’~afe_W_W* (00,

since (Ca)~= 0 by charge conservation.The same argument (using the dual
connectiona’) works for the other integral in (A.5).

According to the discussionin sect.4, to proveeq.(A.3) it remainsto show that
in (A.4) onecanreplacethe integralsof thevacuumwave-formswith thoseof the

corresponding holomorphic forms. The proofs are hidden in ref. [14]. Here we try
to presentthem in a more “physical” form. We havealreadymentionedthat the
basicflatnessequations

aH=3H=0, (A.6)

havethe samegeneralstructureas Toda’s. In the caseof (quasi)homogeneousW
they are analogousto the non-affineToda, andhencecan be solved by the usual
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Leznov—Savelievmethod[39]. Onestarts from the Gaussdecompositionof H,

H= e’13AB

(here B is an upper-triangular * matrix, A is a lower-triangularone and D is

block-diagonal). In terms of B one gets simpler equations

aB = 3D = 0,

(a + e’~Ce’~)B= 0. (A.7)

The crucial point of the method is that, once we are given an upper-triangular
matrix B satisfying(A.7) (for some D), we can reconstructthe full solution by
Lie-algebraictechniques.

A direct computationgives

(~a+ Ca)VJ = La~~ (A.8)

with La zero abovethe diagonal.Now, considerthe Gaussdecompositionof ru,

tzr=e’3AB.

Eq. (A.8) implies that B is a solution to eq.(A.7) (with D = D). Thus, out of the
periods w’ we can reconstructa solution to our equations.The hardpart of the
argumentis to show that this solution coincideswith the onegiven by the SOM
“period map” H. We postponethe discussionof this point to the end.

Then onehas

H=e’~Mzzr, (A.9)

with F block-diagonal and holomorphic and A’ strictly lower-triangular, i.e.
.1K = 1 + Z, with Z decreasingthe chargeby one or more units. The first compo-
nentof (A.9) gives

* ~0 = exp(F~(t))f e~’dX
1 A... A dX,,.

Analogously,

jeW~7w31= exp(E3?(t))j ew dX1 A ... A dX,,.

* By upper-(lower)triangularmatrix we mean the identity plus the matrix of an operator which

increases (decreases) the U(1) charge. It is actually block-triangular.
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Then

~ A

AdXn[fe_WdXI A ... AdXfl]. (A.10)

This, togetherwith the discussionin sect. 4 shows property (iii). (The factor in
front of the sum can be re-absorbedby a Kähler gaugetransformation).That p
can be identified with the inverseintersectionmatrix C’3 canbe seenby the same

argumentused in appendixC to show eq.(4.4).
A slight generalizationof this argumentleads to eq. (4.1). Let ~

1(X) be the
relevantchiraloperatorswith U(i) chargesr3/d (0 <r3 <d). Considerthe auxiliary

superpotential

W,UX(Xk, Y; ta, s,) = W(Xk, ta) + yd + Ls141(x)Yd_rj.

~ is quasi-homogeneousandthe couplingss~aremoduli. Sothe aboveanalysis
applies.As sj —s 0 the field Y decouples and then

(~yd_ri~yd_r)~ = (~~)K~d_rJyd_r)d (A.11)

where K ... )d denotesthemetric for the Ad_I minimal model. On the otherhand,

the l.h.s. of eq.(A.11) is equalto

—<0 I0)aux a~,a~logKO I0)aux~~~.

Replacing the integral representation(A.3) for <0 I 0>aux and neglectingterms
which vanishby symmetryreasons,we get

g~=(~~)=fFIdx1dX1 ~~(Xk)cbI(Xk) exp[W(X) - W(X)]. (A.i2)

In this form the equality holds only for relevantoperators.Let us explainwhy the
irrelevantonesaredifferent. First of all, it would be contradictoryto assumeeq.
(A.12) to be true for all fields. In fact, K4~4,)= 0 if q1 * q3, whereasthe r.h.s.of
eq.(A.12) doesnot vanishfor q1 — q3 integral. In other words, the bilinear form in
the r.h.s. mixes operatorswith chargesdiffering by an integral amount. More

precisely, an operator 4, of chargeq~gets mixed with operatorsof lower charge
— 1, q, — 2 Only the relevant operators are well defined, whereasthe

marginal ones can mix only with the identity. In this last case,the problem is
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solved by taking the “connected”part of the integral in eq.(A.i2), i.e. one takes
the logarithm of the integralas Kähler potential.The fundamentalreasonbehind
this mixing is the dependenceon the choiceof a particularrepresentativefor the
classesin ~. Under a changeof representatives(preservingtheir U(1) charges)

~

the periods w changeas

~ -* w~

where the matrix Z decreasesthe chargeby an integral amount.Then mixing in
unavoidableunlesswe have a preferredrepresentativeto start with. Insteadthe

SQM period H is unambiguoussince it is defined in terms of given forms. A
changeof representativesis compensatedin eq.(A.9) by a changein the matrix ./‘K.

Restrictingto operatorswith 0 <q < 1, in eq. (A.9) we can replace~V by 1 and
henceeffectively identify theperiod ~ with the SQM periodsH (F is absorbedin
the conventions). This explain why for relevant/marginal operators we get nice
formulae andwhy they do not hold for q> 1. In fact in thegeneralcasethe metric
can still be written in terms of w though not so explicitly ‘~. The mixing abovehas

deepmathematicalmeaning.Someaspectsarediscussedin ref. [14]. To do better
than this one hasto leave the elementarymethods.Luckily the mixing — which at
the elementarylevel is a nuisance— at a more sophisticatedlevel turns into a
welcomesimplification.

We just sketch the idea of how one can compute the metric for irrelevant
operatorsout of the periods TIT. More details can be found in ref. [14]. Basically,
one hasto reconstructthe completesolution of the linear problem (A.6) from its
triangularpart e’°B.In the Todacasethis is done by Lie-theoreticalmethods[39].
The sameapplieshere, but since in our case H is not abelian(in general)the
reconstructionis a bit less elementary.It is convenientto presentthe tricks in a
slightly more abstractlanguagethan in the abeliancase.From sct. 6 we know that
~i(t, ~)is an elementof the group G. So it can be seenas a map from coupling-
constantspaceto the group G. However, it is more convenientto project it to a
mapg into the cosetspace** G/H. G/H is an opendomain in GC/B whereB is

the group of lower triangular matrices (in our sense). This space is obviously a
homogeneouscomplex manifold. In fact, it is the classifying spacefor complex

flags of giventype.Over GC/B we haveuniversaltautologicalbundlescorrespond-
ing to theseflags. They are homogeneouswith respectto the action of G~and
holomorphic.They havea uniquehermitian metric < I ~)which is homogeneous

* However, for operators with ê— 1 ~ q ~ ê one also has nice expressions.Indeed they can be

connected to the relevant ones by the reality Constraint. Then for ê ~ 2 elementary methods suffice
to get all g.

** H is assumedto act on the left.
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and such that G acts by isometries.Correspondinglythereis a unique universal
connectionwhich can be constructedby Lie-group techniques.EmbeddingG/H
into GC/B enlargesthe “gaugegroup” from H to B. Then~/‘andits triangularpart
are relatedby a gaugetransformation,i.e. define the samemap *

~: couplings—s GC/B.

In the triangulargaugei/i is holomorphic.Hencethe map~ is holomorphic.Now,
the crucial point is that the ground state metric is precisely the pullback of the
universalone via the map g. This is a consequenceof the fact that the group G
actshomogeneouslyon the ground statemetric andhence g mustcorrespondto
the unique homogeneousone ~. Since the universal one is known, we can
reconstructthe full g out of the mapg. But thetriangularpartof i/i is sufficient to
specifythe map.

In fact g is not just a holomorphicmap, it is also horizontal.By this we mean

that it satisfieseq.(A.7). Horizontalmapsarevery rigid. Thenin various situations
we haveuniquenesstheoremsfor the metric g. Usingtheseresultsonecan show,

e.g. that the map ~ is the direct sum of the periods maps for the projective
manifoldsE1 andE2 definedin (A.2) [14]. Herewe want to exploit them to prove
that the mapg definedby the SOM periodmap coincides(at criticality) with the
one defined by the periods tu. A typical rigidity theorem for horizontal maps
[24,40] states that two such maps are equal if: (i) they transform the same way
under modular transformationsand (ii) they agreeat a single point in moduli
space.

Then everythingis provenif we canshow that: (1) undera modulartransforma-
tion the chiral primary fields transform as the periods w (equivalently, as the
periodsfor the projectivemanifoldsE,) and(2) that at a particularpoint in moduli
spacewe haveequalitybetweenthe groundstatemetric andthe metric computed
out of the above integrals. Point (1) has been discussed in detail for ê = 1 in ref.

[53]. The general proof is very easy. It is enough to check the equality of the
monodromy action in the topological theory. In the topological case one can

indeedidentify the chiraloperatorswith the integrals~ (see appendixC). Hence
the equality is manifest.To show (2), we assumeW to be homogeneousof degree
d. Thenwe considerthe family

7t7(X~,t; s) =sW(X1, t) +(i—s)EX~.

* ~ is the period map in the Griffiths sense [40].

** The readermay wonderaboutthe overall normalizationof the metric. It is also fixed. Indeed,we
know alreadythat, restrictingto marginal deformations,the metric is thecurvatureof a certainline
bundle.Then its overall scaleis fixed topologically.
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It is enough to check equality at s = 1. In this casewe end up with a bunch of
decoupledAd_i minimal models. For the A-series the equality was explicitly
checkedin ref. [14].

AppendixB. Semiclassicalconsiderations

In this appendixwe discussthe leading semiclassicalcorrectionsand show the
result quoted in eq.(4.7). So we are interestedin the limit wherethe superpoten-
tial AW hassimple critical pointswhich areveryfar from eachother(in the limit
of large A) and to leadingorder decouplefrom oneanother.

On general groundsone can argue that the leading off-diagonal semiclassical

correctionto the metric, which to leadingorder is diagonalin the basisof critical
points is a “universal” function of the mass of the soliton interpolating between
critical points (in units of inverse length of the cylinder) if there is a soliton
connectingthe two points.The massof the soliton hassimple dependenceon the

superpotentialand is given by

m = 2 I A I I I.

In the case of just one field, which we will mainly concentrateon, a precise
statementof this universality is as follows ~. Assumethereis a convexdomain
12 CC containing only two (distinct) critical values W(X~)and W(Xk). Suppose
that thereis a simply connecteddomain 12 C C containingonly two critical points
(_= classicalvacua),X~.and Xk, such the WCf2) = Si. Finally, assumethat the two

Milnor vanishingclassesassociatedwith thesecritical points havean intersection
number ±1 (i.e. in the Dynkin diagramof the polynomial W(X) the two points
correspondingto and Xk are connectedby a single link). Theseconditions
imply in particular that thereexists a soliton connectingthe critical points. As
before let jl~)label the critical point basisof chiral fields, i.e. up to topologically
trivial termsthey are eigenstatesof X with eigenvalueX1. Then, as A —s ~

IA I [—W”(x1)~”(Xk)} Klk I

=U(21A1 IW(Xk)—W(X~.)l)+O(exp[—p.lAI]), (B.1)

where

p.=min{4 inf IW—W(Xk)I,4 inf IW—W(X~.)I}~
WE3Q WE,9Q

* More generalargumentsare availablebut, unfortunately,theydo not give more detailedresults.
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and U(m) is an universalfunction. Comparingwith the known W = X
3 —X case,

we get

dp 1
U(m) = —f exp(_~/p2+m2)= — —K

0(m). (B.2)
_~2~p2+m2

Thenas m —* ~ we havethe asymptoticalexpansion

1
U(m) — ____ 1 + ‘ [(2k —1) !!]2

~2~m k=1 k. (8m)

Since h A~
1,the various termsin this expansioncanbe seenas loop corrections

to the one-instanton(soliton) process.It is remarkablethat all the perturbative
correctionsareuniversal.

So stated,universality can be proven in many ways. We will concentrateon
threedifferentways: Thefirst, andthe mostdirect way, is to useour equation(3.9)
in the asymptoticregion. The second,is to useWKB approximationto write down
the overlapof wave functionsbasedat different critical points — this canbe done
both in the path-integral languageas an instanton sum or in the Schrodinger
equation.The third one is not as rigorous,but has the advantageof giving the
overall normalizationin a simple wayand suggestinga physicalpicture of how the
correctionsto the metric might be related to a kind of partition function in the
soliton subsector~. This is very much in the spirit of the thermodynamicBethe
ansatz[54]. Wewill discussthesethreedifferentview points in turn.At the endof
this appendix,asan example,we discusst he leadingcorrection of the metric for

W=x~~/(n+ 1) —x in the asymptoticregion.
We first show how this universality property can be shown starting from our

basicequations(3.9). We presentthe details of the argumentsince it canbe easily
extendedto prove more general“universality theorems”for multi-instantonpro-

cesses.Assumethat all the zerosof W’ aresimple. In this point basis,we rewrite
the metric as

g=n exp[y]nt,

where

n~= 6~’
~/AW”(Xk)

At the classicallevel y = 0. As A —s ~, y is dominatedby the (leading) 1-instanton
contribution. Neglectingterms exponentiallysuppressedwith respectto the lead-

* We wish to thankA.B. Zamolodchikovfor encouragingus to take this interpretationseriously.
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ing instanton,wecanwork to first order in y. In this approximation(3.9) becomes

dIAI2HdIAl2~) = lW(XJ)-W(X~)I2yJk.Putting

Yjk = Yik(zik),

Zik—2IAIIW(XI)W(Xk)I,

one gets

d d
~y(z) =zy(z). (B.3)

dz dz

The generalsolution to this equation(vanishingas z —s o~)is

YJk _131k1<0(hik), (B.4)

anduniversality is provenup to an overall constantf3jk~ That this argumentdoes
not fix the overall constantwas to be expected.In particular, in this argumentwe

did not use the fact that thereis a soliton connectingthe critical points. If there
were no solitons connectingthe two critical points, the correspondingf3jk would
haveto vanish.However, in casethereexists a soliton connectingthe two critical
pointswe would still like to determinethe overall constantandshow its universal-
ity. We accomplishthis by showingthat in such a casethe constant131k is the same

we got for the X3 — X model (which doeshavea soliton connectingthe critical
points).

Considerthe auxiliary superpotential

W(X; s) = p.~JWk
1(X)+ s[W( X) — p.kJWk~(X)j,

where

W’1,~1(X)=
4x3_4(Xi+xk)x2+(xixk)x,

~ki = [W(Xk) - W(X
1)]/[ WkI(Xk) - WkI(X.)].

As s —s 1 we get backthe original superpotentialW(X), whereasfor s —, 0 we get
a cubicone ~. Note that for this superpotentialthe massof thesoliton2 I ~iW(X; s)I
is independentof s.

* The limit s —~0 is not smoothin general(the Witten indexjumps). However, thelimit is smoothfor

the quantitiesof interesthere.
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Assume that W(X) is suchthat, for A large enough,we canconsistentlyusethe
linearized approximationin the whole range 0 <s < 1 (this in particular means
that there is a soliton in the original theory at s = 1). Then the linearized

equationsread

~ 3AYik = ~ 3sYik= 0,

or, usingeq. (B.4)

35f3ik = 3sPik = 0.

Since f3jk is independentof s, it takesthe samevalueas in the cubic case,namely

I3~k= — 1/ir. It is easy to check this universality result in the modelsexplicitly
solved in the main body of the paper.

The second method uses WKB approximation.We first sketchthe proof using
SOM, omitting technicalities. One writes the restrictions to 12 of the wave
functions associatedto the states I i~)as

1
~ ~~/~(x~) f

1*~0+6~1,

where~ is a certainuniversalfunction and f~is a model-dependentfield-redefi-
nition.

6çli~ is the deviation with respectto exact universality. Then one uses
residue-liketechniquesto rewrite

Il6tftjII~~fI6qfjl2(Banydomainin 12),

in terms of the valueof the wave function on the boundaryof B. To evaluatethe
error one makesby replacing the true wave function i/j~ by its universalcounter-
part, we can usedomainsB suchthat their boundariesremainat a finite distance
from the critical points.Thengo to the semiclassicallimit, A —s ~. We know that
the WKB approximationto the wave functionsis reliable in this limit only as long
as we are away from the critical points, one cannotcomputeKI~Ilk) directly by
WKB methods,since thereis a non-negligiblecontribution to this quantity from
regionsof radiusO(~)aroundthecritical pointswhereWKB is totally unreliable.
However,the tricks aboveguaranteethat we canevaluatethe errorwith respectto
the universal answer using only the values of ~/j~ away from the critical points.
Thereforein theformula for the error we canusethe WKB wave functions.In this
way we get the result statedabove.We will now investigateWKB approximationin
moredetail from a slightly differentviewpoint and showwhy the leadingsemiclas-
sical correctionis of order

o( V~JXII~wl exP[_2IAIl~wl1)
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(unfortunately,we are not able to get the numericalcoefficient in front by this
method).This is a tricky point. Indeedat a first glanceonewould ratherexpecta
vanishingresult for <l~Ilk) (I * k). In fact, from the topological—anti-topological

fusionpoint of view, ignoring the two hemispheresat the two endsandconcentrat-
ing on the infinitely long intermediatecylinder with circumference/3, onewould
(naively) identify Kl~Ilk) with

Tr(i,k)(_1)F exp[—f3H],

the trace being over the soliton sector correspondingto the path integral with
boundaryconditions

X(+cc)=X1, X(—cc)=Xk.

In the soliton subsectorall stateappearin supersymmetrymultiplets (see e.g. ref.
[33]) anddueto the(~iY~in the aboveexpressionwe seemto be gettingzero.So
it seemswith this naiveinterpretationof the topological—anti-topologicalfusionwe
are getting a paradox.

The point is that the identification of l~)with the vacuum I X3), correspond-
ing to the boundarycondition X(T = — cc) = X3, is correctonly at h = 0. Indeed,
the “point” basis, which the topological theory gives, is defined as the one which

diagonalizes ~, i.e. for any holomorphicfunction f

F(X) Ili) =f(X~)Ili) + Q+ Isomething).

There is also an anti-pointbasis,obtainedfrom the anti-topologicaltheory, which
diagonalizesthe Q-cohomologyring

F(X)~l1)=f(X.)~l.)+Q~Isomething).

For h * 0 I i~,)* Il’) becausethe chiral andanti-chiral rings cannotbe diagonal-
ized simultaneously. Instead, the definition of the vacua I Xi.) is symmetric
between Q~and Q-cohomologyand hence it is real with respect the real
structureM. In otherwords, the state I X3) is a “real” admixtureof topological
and anti-topological states. The correct identification has the general form (using
resultsof sect. 5)

2j X1) = v~w”(~)Ili) + (~/Aw”(~.) )*m]k Ilk)

+ sub-leadinginstantoncorrections. (B.5)

SusypredictsKX3 I Xk) = 0 for I * k. This is consistentwith eq. (B.5). Indeed

KX1 I Xk) = ~[(e~)kI + (e~)lk+ 26ik

1 + = 61k + 0(y2),
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and hence (at least at the one-instanton level) there is no tunnelling between
distinct classicalvacua I X1). ThereforeKl~Ilk) is non-vanishingnot becausethere
is a “physical” tunnelling processbut becausethe topological states Ili) are
combinationsof different classicalvacua.

Despite the fact that <i~l1k) is not an instantontunnelling amplitude in an

obvioussenseits evaluation is quite reminiscentof an instantoncomputation.We
will now make this connectiona little more clear.Our finding supportsthe idea
that loop corrections in an instantonbackgroundis responsiblefor the leading
semiclassicalcorrectionto the metric. For the sakeof comparison,we recall what
we would havefound in an actual instantoncomputation._Wewould_get a factor
exp[ —2 I A I I ~iW I] from the classicalaction, a factor ~/4~ I A I I I from the
integrationover the position of the centerof the instanton,no determinantfactor
(by susy) and, unless we soak them up, a factor 0 from the Fermi zero-modes.

For definitenesswe considerthe model W= (X
3/3 —X), andcompute<11 I1~)

as A —* cc~There are two (equivalent)techniquesavailable, one can use WKB
eitherin the path integralor in the Schrödingerequation.We choosethe second
one since using explicit wave functions the identification of the various vacuum
statesin simpler.In this framework, <11 112) is just the overlapintegral for the two
vacua.Howeverasmentionedabovethereis a difficulty. In SOM we computesuch
overlapsby residuetechniques.This requires only the knowledgeof the leading
behaviourof the wave functionsat the critical points of W. But theseareprecisely
the points where the WKB approximationbreaksdown! In other words, for the
vacuumwave functionsthe limits X —s and h —s 0 do not commute.This is why
making reliablesemiclassicalcomputationsis very hard. Of course,we cantry to
computethe overlapby integratingthe WKB wave functions in the regionwhere
they can be trustedbut, as we shall see, thiswill give us only a rough estimateof
the amplitude.

We parametrizethe wave form correspondingto 1~as

1 ~ — —

= [A~
1(x) dW+Acb2(X) dWj.I ~ ~2IAIlW(X)-W(1)I

From the Schrödingerequation we know that the functions 4~(X)have the
properties

+ � e’°) e_iarg[W”(l)]/

2 e~~°+ . . .

~2(1 + c e’°)= — [~~(1 + E e~°)]* +

Moreover,WKB methodsgive

I4~I=1 +0(1/lAl) (B.6)
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bothnearthe critical point X = 1 and in the regionwhere

IAI IW(X)—W(1)I >>1,

provided we are away from the other critical point by at least 0(1/ I A I). It is

crucial that the 1/I A I correctionsin eq.(B.6) cannotvanishidentically.
The wave form for 112) is

1 e21”’ W(X)+W(1)~ — — — —

= ~
1’~J~II W(X) + W(1) I [A~1(x) dW+ A~2(X)dW].

by “functoriality”

c~~(X) içb1(-X), ç~2(X) = -icb2(-X).

The idea is to evaluatethe overlapby integratingonly over the intermediate
regionbetweenthe two critical points where(apartfor pointsvery nearthe critical

ones)the WKB functions are reliable enough.This region dominatesthe integral.
We mustcompute

f * (01 Aw2=const.IAI

xf[~ +~2~2]

The argumentof the exponentialis of order A. Since we are interestedin A —s cc,

we canevaluatethis integralby saddle-pointmethods.In otherwords,the integral
is dominated by the minima of the “action”. It is convenient to work in the
W-plane.In this plane the “action” at a given point is the sumof the distances
from the points W(i) and —W(1), and hence it is minimal along the segment
connectingthesetwo critical values.Then, in doing the d

2 W integral,we integrate
in d(ReW) between — W(1)and W(1), whereaswe use the gaussianapproxima-
tion for the integral in d(Im W). To quadraticorderin Im W the exponentialis

(Im W)2
exp —4IAIIW(I)I—-2IAIIW(1)I 2 2

W(i) -(ReW)

Integratingoverd(lm W)we get

const.vT~Te~~~W(1)~fl~’(l)~ + ~2uI)2] d(Re W).
- W( 1)
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This formula is consistentwith instantonphysics.Apart for the factor involving the
4’s (relatedto the fermionic part of thewave function and the sub-leadingWKB
corrections)this is what we expect:a factor exp[ —S] from the classicalactionand
a factor ~iT~T from the integrationover the collective coordinate.Moreover,
the computationrealizesmanifestlythe idea[33] that the soliton is the segmentin
the W-planeconnectingthe two critical values.The phasesof the ~‘s aresuch that
on this segmentone has

~ +~q5
2=O(1/IAI).

The fact that to leading order this vanishesjust reflects the presenceof Fermi
zero-modes.However,the sub-leadingtermsneednot vanish(in fact, the Schrödi-
ngerequationsuggeststhey arenot zero).Thenwe get

<11 112> = o( ~ e
4~ II3’(1)I) (B.7)

as claimed. The constant in front cannot be computedby thesemethodsboth
becausethe sub-leadingcorrectionsare poorly understoodand becauseregions
where WK.B fails may also give contributionsof this magnitude. Anyhow, this
constantis predictedby our differential equations.

The third ideain gettingthis universalresultis suggestedby the form (B.2) that

we wrote the universalcorrectionto the metric in. IndeedU(m) is related to the
contribution of a single particle of mass m in two space-timedimensions to
Tr exp(—/3H)(wherewe fix a point in spacein taking the trace) * where m is the
massof the soliton connectingthe two critical pointsand we haveset /3 = 1. Note
that in particular the normalization (up to the phase) is easily predictedin this
way. So this meansthat the naivepictureof soliton partition function,which led to
the paradoxmentionedabove, is essentiallyright, butwith taking the contribution
of one soliton from each supersymmetrymultiplet to Tr[( —iY~exp( —pH)] to
avoid vanishing.Somehowthe ioop correctionsto the instantonsare responsible
for giving this “effective” soliton description.It would beworthwhile understand-
ing this connectionmoreclearly. In particularthis may allow oneto computethe
scatteringmatricesof solitonsfrom solutionsto our equationsusingthe thermody-
namic Betheansatz.In fact the asymptoticsolution to Pill equation,given in the
secondreferencein [47] canpresumablybe interpretedas giving an exact multi-
soliton contributionto the Tr exp(—pH)for the A(X3/3 —X) model (and simi-
larly for the Chebyshevcase).In particularthe quantitydefinedin eq.(1.4a)of that

* We would like to thank P. FendleyandK. Intriligator for a discussionon this point.
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referencewhich is simply relatedto our functionscanbe viewedas computingthe
contributionof soliton in the form

G= ~ g2,,~1, (B.8)
n=0

where g2,,+ (after specializing to our case and a suggestiveredefinition of
variables)takesthe form

2n+I dp. exp(_~/p~+m2) 2n ______ _______ -t ~

g2~+1= f ~ ~ +rn
2 [~, (~/~+ m2 + ~p~+i + m2) fl(p~2j)j

which shouldclearly havethe interpretationof the contributionof 2n + 1 solitons
whosecontributionto the partition function hasbeenmodified from the free case
by the presence of “interaction” encoded in the above equation by the terminside
[...]. It would be interestingto connectthis to the S matrix of the N= 2 theories
computedin ref. [33], usingideassimilar to thermodynamicBetheansatz.

As anotherexamplelet us consider

xn+ 1
w= —x

n+1

consideredin this paper.Let I Ir) denotethe critical pointsof W as r runs from 0
to n — 1 with an appropriatephasefactor to cancelthe hessianterm appearingin
eq.(B.1). Let I Xr) denotethe usualchiral basisfor thevacua.Let (0= exp(2~-i/n).
We have

1 n—i
Ixs) = ~ wr(s+1/2)I[)

Vfl r=0

Usingeq. (B.1)we seethat the phase_ofthe leadingcorrectionto Klr Il,+~)is i,
and its absolutevalue is exp(— m)/V2irm, where m is the massof the soliton
connectingthe nearestcritical points

m = 2lA( W(r + 1)— W(r)) I = 4IAI sin IT/n.

Computing q
1 defined in sect. 7, as logarithm of K x’ I x’), we seefrom the above

that (for n> 2)

IT
—2 sin —(i+~) exP(—4lAlsin—)

l/8ITIAI sin—
n
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It is easyto check that to leading order this satisfieseq. (7.4), where z defined
thereis the sameas A here.

Appendix C. Specialcoordinatesand all that

in this paper we used a coordinate-independent formulation of generalized
specialgeometry.However, in the physicsliterature it is moreusual to formulate
this geometryusing somespecialcoordinatesin which the formulae look quite

simpler. The only drawbackof thesecoordinatesis that onehasto work hardjust
to define them. In this appendixwe describethe constructionof suchcoordinates

in our frameworkandusethem to simplify the proof of some technicalresultswe
claimed in the main body of the paper.To avoid all misunderstandings,we use
Greekletters to label the variouschiral fields in the model.

The basicformula, arising from SQM perturbationtheory, is (cf. subsect.9.1 of
ref. [5])

Da41k=
3af,~+ Ta~4.ii,, (C.i)

where

~ uz_,rxzt. ç’hj.

0ak aV~’ — a”Yk ‘ak’Ph’

and Ta is the “torsion”. The two termsin the r.h.s.of eq.(Cl) havevery different
origins. The first is the true variation of the topological operatorwhereasthe
torsionarisesbecauseof the specialrepresentativesof BRST-classesoneneedsto
usein order to get the actualvacuumstates~.

Ta has the form

Ta = [Z, Ca],

with

3aZ~~~a, Z

17=’qZ’.

Hence,

Ta71= _17TT,
3aTb= [~a,C’bI’ (C.2)

The first of eqs.(C.2)justifies the nametorsionfor Ta: It is the antisymmetric part

* Here the tricky point is that, since Q~dependson t,,, the derivativeof a Q~-exactstate is not
Q ~ in general.Then computing the derivatives the actual representatives matter. In the

definition of D~they are uniquely fixed by the vacua. This is why a torsion appears.
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(with respectto ~1)of the connection.The secondone shows that our curvature
originatesfrom the torsion. In fact

[ba, Dh]~k =3
2(Dh4k) = (3aTh)kh4hj,.

Now, considerthe connection*

~aT)aTa (~a~’a)’

With respectto g, ~ is not metric any longer.But it is still metric for 37. Thiswas
to be expectedsince from a purely topological point of view the two connections
differ only by a gaugetransformation.Next we considera “curved” basis for s~,
i.e. of the form

4)aaa

Thenone has

ffa”baaH”” aawabw C~’j~a~w, (C.3)

thus o-,,’~,= ci~,or

~a~I~b ~h’I~a’

Moreover,

=

3a3bW— da’~acW,

which gives

c = .,~‘ C

a!, ha~

Thus d is torsionless.Then it is the Christoffel connectionof 37. Let us compute
its Riemanncurvature.One has

[ga’ ~ (C.4)

From eq.(C.3) one has

(~a17i~’c ~!,0,~)3,,l4”~ 3a[(~hO~ + Ca~f~d— (b ~ a)],

(q~bfa~c+ Ca~ff~)a~w=~a~h~c - (CaCh)~çbe.

* In ref. [5] it wasshownthat ~,, is theGauss—Maninconnectionin thesenseof versal deformations of

a given singularity.
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Then the r.h.s. of eq. (C.4) is in the jacobian ideal, and hencethe curvature

vanishes.Thenwe canfind (local) coordinatesta suchthat

17=const. d=0.

This result is a standardmathematicalfact [55]. Theseare the so-calledspecial

coordinates.They are characterizedby

aaah~”_aa0ab (C.5)

with u,~as in eq.(C.3). Beforegoingto moreusefulcharacterizations,let us show
that for n = 1 this formula reproducesthe results obtainedin ref. [10] by KdV

flows considerations.
In the one-field case

0abW” = 3aW3bW’ Ca~3cW,

or

a. =a JJJ,
V ±

where(...)~ meansthe non-negativepart. Theneq. (C.5)becomes

aa~b=ax( ~a~b)

which is equivalentto eq.(4.45) in ref. [10].
Put

t7af~°~3aJ4’dXi~thVn (C.6)

Usingeq.(C.5) we find

aa~bj= ±Ca~t77c~ (C.7)

This is a characterizationof special coordinateswhich is more convenientfor

computations.Since det[tu ~]* 0, we can definethe matrix Cj”~ by

C = (~+)_1
37[(~_)T] -i.

Thenfrom eq.(C.7)

3aC()[17J_Ca17][(~)T] 1=0.
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Thenwe havethe generalformula for the residuepairing

— ±~k —17ab — ~ai ~bk

with C3k a constantmatrix. Now we can show that this matrix is precisely the
intersectiondiscussedin sect.4. In fact,we show it for the “good” cases,where in
the UV limit we get a non-degeneratequasi-homogeneousW, although it is
plausibly true in general. Since Cjk doesnot dependon A, we canlimit ourselves
to quasi-homogeneousW, and henceto homogeneousones.Thenwe considerthe
homogeneoussuperpotential

~77(X, t; s) =sW(X, t) + (1 —s) EX,”.

Cjk is independeniof s. So we cancompute it for s = 0, i.e. it is enoughto show
our statementfor FermatW’s. in this caseour periodsfactorizeinto the product
of Ad_I minimal model periods.That in this lastcaseCj” is the inverseintersec-
tion matrix canbe seenby a direct computation.

We end this appendixby showingthat our “perturbative” characterizationof
the specialcoordinatesagreeswith the mathematicalone[28,55]. Indeed,define

1 ~
ukl(A) = Tf dggA~rJ~J(g),

2IT1

where

~kl(~)f e~kdX
1A...AdXfl.

y1(g)

(~± v~(±)). Eq. (C.7) generalizesto

a~TTr~(g)=gCa~v7~(g).

Taking the Mellin transform,in terms of ukl(A) this becomeseq.(55) of ref. [28].
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