
Lecture 4 
Model Selection &

Development
Joe Zuntz

Evidence

Model Selection
• Given two models, how can we compare them?

• Simplest approach = compare ML

• Does not include uncertainty or Occam’s Razor

• Recall that all our probabilities have been
conditional on the model, as in Bayes:

P (p|M) =
P (d|pM)P (p|M)

P (d|M)

Model Selection:  
Bayesian Evidence

• Can use Bayes Theorem again, on model level:

!

!

• Only really meaningful when comparing models. 
Bayes Factor B:

P (M |d) = P (d|M)P (M)

P (d)

Model Priors
P (M1|d)
P (M2|d)

=
P (d|M1)

P (d|M2)

P (M1)

P (M2)

Bayesian Evidence Values

Model Selection:  
Bayesian Evidence

• Likelihood of parameters within model:

!

!

• Evidence of model:

P (d|pM)

P (d|p)

Model Selection:
Bayesian Evidence

• Evidence is the bit we ignored before when doing
parameter estimation

• Given by an integral over prior space

!

• Hard to evaluate - posterior usually small compared
to prior

P (d|M) =

Z
P (d|pM)P (p|M)dp

Model Selection:
Evidence Approximations

• Nice evidence approximations for some cases:

• Savage-Dickey Density ratio  
(for when one model is a subset of another)

• Akaike information criterion AIC 
Bayesian information criterion BIC  
Work in various circumstances

Savage Dickey
• Applies to two models where M1 is restricted

version of M2

• e.g M1 = LCDM Ω={Ωm, Ωb, …} with w=-1  
 M2 = wCDM

!

• with separable priors

P (d|⌦,M1) = P (d|⌦, w = �1,M2)

P (⌦|w = �1,M2) = P (⌦,M1)

Savage Dickey

• In this case, Bayes factor given by

P (w = �1|d,M2)

P (w = �1|M2)

Posterior,
integrated 

over Ω

Prior

Model Selection:  
Nested Sampling

Z
L(✓)p(✓)d✓ =

Z
L(X)dX

⇡
X

Li�Xi

dX ⌘ P (✓)d✓

X = remaining prior volume

Model Selection:
Nested Sampling

• Also uses ensemble of live points

• Computes constraints as well as evidence

• Each iteration, replace lowest likelihood point with
one higher up, sampled from prior

• Multinest software is extremely clever

• C, F90, Python bindings

Multinest Example
> cosmosis demos/demo9.ini

> postprocess -o plots -p demo9 demos/demo9.ini
--extra demos/extra9.py

Parameters Distance  
Calculation

Supernova  
Likelihood

Saved Cosmological Theory Information Total 
Likelihood

https://bitbucket.org/joezuntz/cosmosis/wiki/Demo9

H0  
Likelihood

https://bitbucket.org/joezuntz/cosmosis/wiki/Demo9

More Samplers

Importance Sampling
• Re-sampling from re-weighted existing samples

• Changed prior / likelihood

• New data

E[f(x)] =

Z
P1(x)f(x)dx ⇡ 1

N

X

Chain 1

f(xi)

=

Z ✓
P1(x)

P2(x)
f(x)

◆
P2(x)dx ⇡ 1

N

X

Chain 2

f(xi)
P1(xi)

P2(xi)

Importance Sampling
• i.e.

• Take a chain you sampled from some distribution P2

• Give each sample a weight P1(x)/P2(x) for some new
distribution P1

• Make your histograms, estimates, etc, using these
weights

Importance Sampling

• Works better the more similar P2 is to P1

• Won’t work if P2 small where P1 isn’t

• So better for extra data than different data

Gibbs Sampling

• Applicable when have >1 parameters a, b, c, … z

• And can directly sample from conditional likelihoods:  
 P(a|bcd…), P(b|acd…), P(c|abd…), … P(z|abc…y)

• Can be very efficient when possible

Gibbs Sampling
• Very simple algorithm - just each parameter in turn

• 2D version with parameters (a,b):  
 
 

for i = 1...

ai+1 ⇠ P (ai+1|bi)
bi+1 ⇠ P (bi+1|ai+1

)

Gibbs Sampling

Gibbs Sampling

Gibbs Sampling

• Multi-parameter case - not as bad as it looks:

!

!

!

• Can also block groups of parameters together and
update as vectors

Gibbs Sampling

for i = 1...

for k = 1...nparam

x

i+1
k ⇠ P (x

i+1
k |xi+1

1 , x

i+1
2 , ..., x

i+1
k�1, x

i
k+1, x

i
k+2, ..., x

i
nparam

)

Defining a pipeline run

Pipeline Definition
• Look at demos/demo2.ini 
 
[pipeline]  
modules = consistency camb planck bicep 
values = demos/values2.ini

• Each module in the list is described lower down -
file path to module and any options for it

• Parameters defined in the “values” file

Building & extending
likelihood pipelines

Managing Code

• Design before you write

• Read about how to code!

• If you don’t use version control you are definitely
making a mistake.

• Learn git. It’s worth it.

Organizing Likelihoods
• Separate theory calculation from likelihood

• Can replace methods and data independently

• Don’t Repeat Yourself (D.R.Y.)

• Use existing distance calculations, P(k,z), etc.

• Libraries, Libraries, Libraries, Libraries, Libraries,
Libraries, Libraries, Libraries, Libraries, Libraries,
Libraries, Libraries, Libraries, Libraries, Libraries.

Connecting Code

Cosmosis Your CodeInterface

Creating a cosmosis module
• Given a piece of code implementing your module, we will

write an interface connecting it to cosmosis

• Need two functions:  
setup, execute

• https://bitbucket.org/joezuntz/cosmosis/wiki/modules_python

• https://bitbucket.org/joezuntz/cosmosis/wiki/modules_c

• https://bitbucket.org/joezuntz/cosmosis/wiki/modules_fortran

https://bitbucket.org/joezuntz/cosmosis/wiki/modules_python
https://bitbucket.org/joezuntz/cosmosis/wiki/modules_c
https://bitbucket.org/joezuntz/cosmosis/wiki/modules_fortran

Setup

• Cosmology-independent settings and setup

• e.g. loading data, limits on

• Read settings from ini file

Execute

• Cosmology calculations

• Main module work

• Read inputs (from cosmosis)

• Save outputs (to cosmosis)

Three Groups
• Non-programmers

• Go through the demos at  
https://bitbucket.org/joezuntz/cosmosis

• Did homework and coded Cepheid likelihood 😀

• Create likelihood module

• Didn’t do homework! 😠

• Test a new w(z) theory

https://bitbucket.org/joezuntz/cosmosis

Creating a Likelihood
• Last time you coded up a likelihood for the LMC and extragalactic

Cepheids

• Here’s some data!  
 LMC http://bit.ly/1vQ4RTV 
 Ex-gal http://bit.ly/1tJzRBT

• Note: there are complexities I skipped when describing this! You’ll
only get H0 to a factor of a few.

• Let’s turn this into a cosmosis module

• Inputs: h0, alpha, beta in cosmological_parameters

• Outputs: cepheid_like in likelihoods

http://bit.ly/1vQ4RTV
http://bit.ly/1tJzRBT

Testing A New Theory
• Let’s constrain the w0-wz parameterisation

!

!

• Use scipy.integrate.quad to do the integration

• Inputs: h0, omega_m, w0, wz in
cosmological_parameters

• Outputs: z, mu in distances

⌦⇤(z) = ⌦⇤(0) (1 + z)3(1+w0�wz)
exp (�3wzz)

w(z) = w0 + wzz

Distance Equations
⌦⇤(z) = ⌦⇤(0) (1 + z)3(1+w0�wz)

exp (�3wzz)

⌦m(z) = ⌦m(1 + z)3

H(z) = H0

p
⌦m(z) + ⌦⇤(z)

Dc(z) = c

Z z

0

1

H(z0)
dz0

DL(z) = (1 + z)Dc(z)

µ(z) = 5 log10
DL

Mpc

� 25

Example Implementation

http://nbviewer.ipython.org/gist/joezuntz/d4b82ce5b3010870aa6b

http://nbviewer.ipython.org/gist/joezuntz/d4b82ce5b3010870aa6b

Getting Started
• Create a new directory under modules/

• Put your code in a file in there

• Create another file in there (same language) to
connect to cosmosis

• See the wiki links above for examples of what they
look like - adapt these for your code

