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Abstract: We consider the vacuum geometry of supersymmetric theories with 4

supercharges, on a flat toroidal geometry. The 2 dimensional vacuum geometry is

known to be captured by the tt∗ geometry. In the case of 3 dimensions, the parameter

space is (T 2 × R)N and the vacuum geometry turns out to be a solution to a gen-

eralization of monopole equations in 3N dimensions where the relevant topological

ring is that of line operators. We compute the generalization of the 2d cigar ampli-

tudes, which lead to S2 × S1 or S3 partition functions which are distinct from the

supersymmetric partition functions on these spaces, but reduce to them in a certain

limit. We show the sense in which these amplitudes generalize the structure of 3d

Chern-Simons theories and 2d RCFT’s. In the case of 4 dimensions the parameter

space is of the form (T 3 × R)M × T 3N , and the vacuum geometry is a solution to

a mixture of generalized monopole equations and generalized instanton equations

(known as hyper-holomorphic connections). In this case the topological rings are

associated to surface operators. We discuss the physical meaning of the generalized

Nahm transforms which act on all of these geometries.
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1 Introduction

Supersymmetric quantum field theories are rich with exactly computable quantities.

These have various degrees of complexity and carry different information about the

underlying supersymmetric theory. Recently many interesting amplitudes have been

computed on Sd or Sd−1 × S1 for various dimensions and for theories with various

amounts of supersymmetry. These geometries are particularly relevant for the con-

formal limit of supersymmetric theories, where conformal transformations can flatten

out the spheres. Away from the conformal fixed point, one can still formulate and

compute these supersymmetric partition functions, but this involves adding unphys-

ical terms to the action to preserve the supersymmetry, which in particular are not

compatible with unitarity.

It is natural to ask whether away from conformal points one can compute su-

persymmetric amplitudes without having had to add unphysical terms to the action,

and in particular study non–trivial amplitudes in flat space. A prime example of

this would be studying the geometry of the supersymmetric theory on flat toroidal

geometries. In particular we can consider T d−1 flat torus as the space, with periodic

boundary conditions for supercharges. Supersymmetric theories have a number N

of vacua and in this context one can ask what is the geometry of the Berry’s U(N)

connection of the vacuum states as a function of parameters of the underlying theory.

This question has been answered in the case of 2 dimensions for theories with (2, 2)

supersymmetry which admit deformations with mass gap [1] leading to what is called

the tt∗ geometry. The equations characterizing U(N) connection on the k-complex

dimensional parameter space are known as the tt∗ equations. In the case k = 1 these

reduce to U(N) Hitchin equations, which in turn can be viewed as the reduction of

self-dual Yang-Mills equations from 4 to 2 dimensions.

It is natural to try to generalize these results to supersymmetric theories in higher

dimensions which admit mass gap. The interesting theories, by necessity, would have

up to 4 supercharges: they would include in 3 dimensions the N = 2 theories and

in 4 dimensions the N = 1 supersymmetric models. 1 Some evidence that such a

generalization should be possible, at least in the case of N = 2, d = 3, has been found

in [2, 3]. The strategy to determine the higher dimensional tt∗ geometries is rather

simple: We can view their toroidal compactification as a 2d theory with infinitely

many fields. Therefore the tt∗ equations also apply to these theories as well. The

S1 and T 2 compactifications of three and four-dimensional gauge theories gives 2d

theories analogous to (infinite dimensional) gauged linear sigma models with twisted

masses. These 2d theories have infinitely many vacua similar to the |n〉 vacua of

QCD. It is natural to consider the analog of |θ〉 vacua which corresponds to turning

1Our considerations also apply to d-dimensional half-BPS defects in (d + 2)-dimensional field

theories with eight supercharges
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on twists by flavor symmetries as we go around the tt∗ compactification circle. These

extra parameters lead to tt∗ equations formulated on a higher dimensional space.

In the case of d = 3 the equations capturing the tt∗ geometry live in the 3r

dimensional space (T 2 × R)r, where r is the rank of flavor symmetry. This space

arises by choosing 2r flavor symmetry twists around the cycles of T 2 and r twisted

masses associated to flavor symmetries. In the case of r = 1 the tt∗ equations coincide

with the Bogomolny monopole equations, which can be viewed as the reduction of

self-dual Yang-Mills from 4 to 3 dimensions. The more general r ≥ 1 case can be

viewed as a generalization of monopole equations to higher dimensions. The chiral

operators of the 2d theory lift to line operators of the 3d theory.

Similarly one can consider N = 1 theories in d = 4. In this case, if the flavor

symmetry has rank r, the tt∗ parameter space will be T 3r, corresponding to the 3r

twist parameters for the flavor symmetry, where T r can be viewed as the Cartan

torus of the flavor group. In this case the tt∗ equations are again a generalization of

monopole equations but now triply periodic. If, in addition, we have m U(1) gauge

symmetries 2 the parameter space has an extra factor (T 3 × R1)m corresponding to

turning on 3m,
∫
Bi ∧ Fi type terms and m FI-parameters. In the case of m = 1

the tt∗ equations are the self-dual Yang-Mills equations. For higher m they describe

hyper-holomorphic connections (or certain non-commutative deformations of them).

These are connections which are holomoprhic in any choice of complex structure of

the hyper-Kähler space T 3m × Rm. In fact the generalized monopole equations or

the original 2d tt∗ equations can be viewed as reductions of the hyper-holomorphic

structure from 4m dimensions to 3m or 2m dimensions, respectively. Then the

hyperholomorphic geometry is a unified framework for all tt∗ geometries. The chiral

operators of 2d theory lift to surface operators of the 4d theory.

There are also operations that one can do on quantum field theories. In particu-

lar, we can gauge a flavor symmetry or ungauge a gauge symmetry. More generally,

we consider extensions of these actions on the space of field theories to Sp(2g,C)

actions on 2d theories with (2, 2) supersymmetry or Sp(2g,Z) actions on 3d theories

[4] with N = 2 supersymmetry. At the level of the tt∗ geometry, as we shall show,

these turn out to correspond to generalized Nahm transformations on the space of

hyper-holomorphic connections or their reductions.

The derivation of tt∗ equations for the vacuum geometry in 2 dimensions involved

studying topologically twisted theories on cigar or stretched S2 geometries. It is

natural to ask what is the relation of this to supersymmetric partition functions on

S2. It has been shown recently [52, 53] that in the case of conformal theories they

are the same, but in the case of the mass deformed ones, they differ, and the tt∗

amplitude is far more complicated. We explain in this paper how one can recover

2The tt∗ geometry is independent of the 4d gauge couplings, and unaffected by the Landau pole.

Later in the paper, we will also show how the Landau pole can be avoided by appropriate UV

completions which do not modify the tt∗ geometry itself
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the supersymmetric partition functions from the tt∗ amplitues by taking a particular

limit.

For the case of the 3 dimensional theories, one can still define and compute

the amplitudes on stretched S2 × S1 or S3 (depending on how we fill the T 2 on

either side). These involve some novel ideas which are not present in the case of

2d tt∗ geometry. In particular the realization of modular transformations on T 2 as

gauge transformations on the tt∗ geometry plays a key role and gives rise to the S3

partition function. Moreover the line operators inserted on the two ends of S3 give

rise to a matrix which is a generalization of the S-matrix for the τ → −1/τ modular

transformation of rational conformal field theories in 2d, while the line operator ring

plays the role of the Verlinde algebra [48]. In fact in special IR limits the 3d theory

typically reduces to a product of topological Chern-Simons theories in 3d and in this

case the tt∗ S-matrix reduces to the usual S–matrix of 2d RCFT’s as was shown in

[44]. Thus the tt∗ geometry gives an interesting extension of the Verlinde structure

which includes UV degrees of freedom of the theory. We show that, just as in the

2d case, these partition functions agree with the supersymmetric partition functions

on S3
b and S2 × S1 at the conformal point, but differ from them when we add mass

terms. The tt∗ partition functions are more complicated functions but in a certain

limit, these partition functions reduce to the supersymmetric partition functions.

Similarly, one can extend these ideas to the 4d theory and compute tt∗ partition

functions on the elongated spaces S2 × T 2 and S3 × S1.

The plan of this paper is as follows: In section 2 we review the tt∗ geometry in 2

dimensions. In section 3 we show how this can be extended to the cases where flavor

symmetries give rise to infinitely many vacua, and how the monopole equations, self-

dual Yang-Mills equations, and more generally the hyper-holomorphic connections

can arise. In section 4 we introduce the notion of an Sp(2g,A) action on these

QFTs, which changes the theory, and show how this transformation acts on the tt∗

geometry as generalized Nahm transformations. In section 5 we apply these ideas to

3 dimensional N = 2 theories. In section 6 we give examples of the tt∗ geometry in 3

dimensions. In section 7 we study the case of tt∗ geometry for N = 1 theories in 4d.

In section 8 we give some examples in the 4d case. In section 9 we take a preliminary

step for the interpretation of the CFIV index [23] as applied to higher dimensional

theories and in particular to d = 3. Some of the technical discussions are postponed

to the appendices.

2 Review of tt∗ geometry in 2 dimensions

In this section we review tt∗ geometry in 2 dimensions [1]. We consider (2, 2) super-

symmetric theories in 2 dimensions which admit supersymmetric deformations which

introduce a mass gap and preserve an SO(2)R charge. The deformations of these
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Time

| α

Figure 1: 1+1 dimensional geometry with circle of length β as the space and vacuum

|α〉.

theories are divided to superspace type deformations, involving F-terms, and D-term

variations. 3 The D-term variations are known not to affect the vacuum geometry,

and so we will not be interested in them. The F-term deformation space is a complex

space with complex coordinates ti, whose tangent is parameterized by chiral fields

Φi and correspond to deformations of the theory by F-terms∫
d2θd2z δW + c.c. =

∫
d2θd2z δtiΦ

i + c.c.

The chiral operators form a commutative ring:

ΦiΦj = Cij
k Φk,

and similarly for the anti-chiral operators:

ΦiΦj = Cij
k

Φk.

The Cij
k are only a function of ti and Cij

k
are only a function of ti.

Consider the theory on a circle with supersymmetric periodic boundary condi-

tions for fermions. Let |α〉 denote the ground states of the theory (see Fig. 1). As

we change the parameters of the theory the ground states vary inside the full Hilbert

space of the quantum theory. Let us denote this by |α(t, t)〉. Then we can define

Berry’s connection, as usual, by4

∂

∂ti
|α(t, t)〉 = (Ai)

β
α |β(t, t)〉

3There may be twisted F-term deformations as well, but for our purposes they behave as D-term

deformations
4 Here and in the following equations, equalities of states signify equalities up to projection onto

the ground state subsector.
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∂

∂t
i |α(t, t)〉 = (Ai)

β
α |β(t, t)〉.

It is convenient to define covariant derivatives Di, Di by

Di = ∂i − Ai Di = ∂i − Ai

In other words over the moduli space of the theory, parameterized by ti we naturally

get a connection of rank N bundle where N denotes the number of vacua of the (2, 2)

theory.5 Note that the length of the circle where we consider the Hilbert space can

be chosen to be fixed, say 1, and the radius dependence can be obtained by the RG

flow dependence of the parameters of the theory. For (2, 2) theories this corresponds

to

W → βW (2.1)

where β is the length of the circle.

The ground states of the theory form a representation of the chiral ring:

Φi|α〉 = (Ci)α
β|β〉

and similarly for Φi. It turns out that there are two natural bases for the vacua,

which are obtained as follows: Since the (2, 2) theory enjoys an SO(2) R-symmetry,

one can consider a topological twisted version of this theory [5]. In particular we

consider a cigar geometry with the topological twisting on the cigar. We consider

a metric on the cigar which involves a flat metric sufficiently far away from the tip

of the cigar. The topologically twisted theory is identical to the physical untwisted

theory on flat space. Path-integral determines a state in the physical Hilbert space.

We next consider the limit where the length of the cigar L → ∞. In this limit the

path-integral projects the state to a ground state of theory. Since chiral operators

are among the BRST observables of the topologically twisted theory, we can insert

them anywhere in the cigar and change the state we get at the boundary. Consider

the path-integral where Φi is inserted at the tip of the cigar. The resulting ground

state will be labeled by |i〉 (see Fig. 2).

In particular there is a distinguished state among the ground states when we

insert no operator (or equivalently when we insert the ‘chiral field’ 1 at the tip of the

cigar) which we denote by |0〉. In this basis of vacua, the action of the Φi coincides

with the ring coefficients:

Φi|j〉 = Cij
k|k〉

In other words (Ci)j
k = Cij

k. Note that

|i〉 = Φi|0〉.
5 We have enough supersymmetry to guarantee that the number of vacua does not change as we

change the parameters of the theory.
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i
∣i 

Figure 2: A holomorphic basis for states can be produced by topologically twisted

path-integral on an infinitely long cigar, with chiral fields inserted at the tip of the

cigar.

Moreover this basis for the vacuum bundle exhibits the holomorphic structure of the

bundle. Namely, in this basis (Ai)
k
j = 0. Similarly, when we topologically twist in

a complex conjugate way, we get a distinguished basis of vacua corresponding to

anti-chiral fields |i〉. These form an anti-holomorphic section of the vector bundle for

which (Ai)
k
j

= 0.

Given these two distinguished bases for the ground states, it is natural to ask

how they are related to one another. One defines

ηij = 〈i|j〉 gij = 〈j|i〉

and similarly for the complex conjugate quantities. η is a symmetric pairing and it

can be formulated purely in terms of the topologically twisted theory on the sphere

(see Fig. 3). It only depends on holomorphic parameters. It is convenient (and

possible) to choose a basis for chiral fields such that η is a constant matrix.

On the other hand, g is a hermitian metric depending on both t and t and is far

more complicated to compute. It can be formulated as a path integral on a sphere

composed of two cigars connected to one another, where we do topological twisting

on one side and anti-topological twisting on the other side. Furthermore we take the

limit in which the length of the cigar goes to infinity. For any finite length of the

cigar the path integral does not preserve any supersymmetry, and it is crucial to take

the L→∞ to recover a supersymmetric amplitude (see Fig. 4).

Note that the holomorphic and anti-holomorphic bases span the same space so

they are related by a matrix M :

|i〉 = M j

i
|j〉.
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j i

ηij

Figure 3: The topologically twisted two point function ηij can be computed by

topologically twisted path-integeral on S2, where we insert the chiral operators on

the two ends of the sphere. The path-integral respects supersymmetry for arbitrary

choice of metric on S2.

g
ij

i

j i

Figure 4: The hermitian metric, which is induced from the hermitian inner product

on the Hilbert space in the ground states of the theory can be obtained by path-

integral on an infinitely elongated S2 where on one half we have a topologically

twisted theory with chiral fields inserted and on the other the anti-topological twisted

theory with anti-chiral fields inserted.

M can be computed in terms of g, η as

M = η−1g.

Furthermore, since M represents the CTP operator acting on the ground states we

must have MM∗ = 1; this implies that

(η−1g)(η−1g)∗ = 1. (2.2)

Since g is the usual inner product in the Hilbert space, it is easy to see that it is

covariantly constant with respect to the connections we have introduced:

Digkl = ∂igkl − A
j
ikgjl − A

j

il
gkj = 0 = Dig.
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The tt∗ geometry gives a set of equations which characterize the curvature of the

vacuum bundle. They are given by

[Di, Cj] = 0 = [Di, Cj]

[Di, Dj] = 0 = [Di, Dj]

[Di, Cj] = [Dj, Ci] [Di, Cj] = [Dj, Ci]

Furthermore the non-vanishing curvature of the Berry’s connection is captured by

the equations

[Di, Dj] = −[Ci, Cj]

These equations can be summarized as the flatness condition for the following family

of connections parameterized by a phase ζ = eiα. Consider

∇i = Di + ζCi ∇i = Di + ζ−1Ci (2.3)

The tt∗ equations can be summarized by the condition of flatness of ∇α and ∇α:

[∇i,∇j] = [∇i,∇j] = [∇i,∇j] = 0

for arbitrary phase α, and in fact for all complex numbers ζ ∈ C∗. Note that on top

of these equation we have to impose the reality structure given by MM∗ = 1, as an

additional constraint.

We shall refer to the flat connection (2.3) as the tt∗ Lax connection (with spectral

parameter ζ). It is also known as the tt∗ Gauss–Manin connection.

For the case of one variable, the tt∗ equations become equivalent to the Hitchin

equations [6], which itself is the reduction of instanton equations from 4 dimensions

to 2 dimensions. In that context, if we represent the flat 4d space by two complex

coordinates (t, u) and reduce along u the system on t space will become the tt∗

system:

Au ↔ C

Au ↔ −C

in which case the two non-trivial parts of the tt∗ read as

[D,C] = Ftu = 0 = Ftu = [D,C]

Ftt = [D,D] = −[C,C] = −Fuu.

Thus tt∗ geometry with more parameters can be viewed as a dimensional reductions of

a generalization of instanton equations. As we will discuss later, and will be relevant

for the generalizations of tt∗ geometry to higher dimensions, the more general case can

be viewed as a reduction of tri-holomorphic connections on hyperKähler manifolds.
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The massive (2, 2) theories we consider will typically have a set of massive vacua

in infinitely long space 6, say corresponding to the critical points of the superpotential

in a LG theory. In the topological gauge, the matrices Ci are independent of the

length β of the compactification circle, and thus can be computed in terms of the

properties of the theory on flat space.

More precisely, the eigenvalues pi,a of the Ci matrices should correspond to the

vevs of the corresponding chiral operators Φi in the various massive vacua of the

theory in flat space. In turn, these vevs can be expressed in terms of the low energy

effective superpotentials W (a)[ti] in each vacuum a of the theory in flat space:

pi,a = ∂tiW
(a) (2.4)

In a LG theory, the W (a) coincide with the values of the superpotential at the critical

points.

Although solving the tt∗ equations is generally hard, the solutions can be readily

labelled by holomorphic data, as will be discussed in section 4, by trading in the

usual way the [D,D] = [C,C] equation for a complexification of the gauge group.

Then the solution is labelled by the higher dimensional Higgs bundle defined by the

pair Di and Ci. For generic values of the parameters ti ∈ T we can simultaneously

diagonalize the Ci, and encode them into the Lagrangian submanifold L in T ∗T
defined by the pair (ti, pi). The corresponding eigenline defines a line bundle L on

L. The pair (L, L) gives the spectral data which labels a generic solution of the tt∗

equations. For one-dimensional parameter spaces, this is the standard spectral data

for a Hitchin system on T . We refer to section 4 for further detail and generalizations.

2.1 Brane amplitudes

The flat sections of the Lax connection over the parameter space have a physical

interpretation that will be important for us [1, 7, 11]. The mass-deformed (2, 2)

theory may admit supersymmetric boundary conditions (“D-branes”). Consider in

particular some half-BPS boundary conditions which also preserve SO(2)R. There is

a certain amount of freedom in picking which two supercharges will be preserved by

the boundary condition. The freedom is parameterized by a choice of a phase given

by a complex number ζ with norm 1. Roughly, if we denote the (2, 2) supercharges

as Q±L,R, where L,R denote left- or right-moving, and ± the R-charge eigenvalue, a

brane will preserve

Q+
L + ζ Q+

R Q−L + ζ−1Q−R. (2.5)

A given half-BPS boundary condition D in massive (2, 2) theories is typically a mem-

ber of a 1-parameter family of branes Dζ which preserve different linear combinations

of supercharges. We will usually suppress the ζ superscript.

6 Not to be confused with the states |α〉 on the circle of finite length β.
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iDa

Da∣i =Πi
a

Figure 5: The overlap of the vacuum states with the D-branes give rise to Πa
i which

are flat sections of the improved tt∗ connection.

We can use a brane D to define states |D〉 or 〈D| in the Hilbert space for the

theory on a circle, even though this state will not be normalizable, as is familiar in

the context of D-brane states. We can project the states onto the supersymmetric

ground states, i.e. we consider inner products such as

Π[D, ζ] = 〈D|α〉.

Such a “brane amplitude” is a flat section of the tt∗ Lax connection with spectral

parameter ζ [11].

It is useful to consider the brane amplitudes in the holomorphic gauge

Πi = 〈D|i〉

which can be defined by a topologically twisted partition function on the semi-infinite

cigar (see Fig. 5).

We can also define

Π̂i[D] = 〈i|D〉
Looking at the BPS conditions, one notices that the “same” boundary condition

can be used to define a left boundary condition of parameter ζ or a right boundary

condition of parameter −ζ. Thus Π̂i[D] is a left flat section for the tt∗ Lax connection

of spectral parameter −ζ. Using CTP, we can see

〈i|D〉 = Π†
i
[D] 〈D|i〉 = Π̂†

i
[D].
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This is consistent with the observation that if ζ is a phase, the hermitean conjugate

of standard flat section for the Lax connection of parameter ζ is a left flat section

for the Lax connection of parameter −ζ. 7

For simplicity we will limit our discussion here to the case of (2, 2) Landau-

Ginzburg models, characterized by some superpotential W . The vacua are in one

to one correspondence with critical points of W . In the LG case there is a partic-

ularly nice class of branes [11], represented by special mid-dimensional Lagrangian

subspaces in field space sometimes called “Lefschetz thimbles”, which are defined as

contours of steepest descent for an integral of e−ζW . They have the property that

the value of the superpotential W on that subspace is on a straight line, emanating

from the critical value, with slope given by the phase ζ (see Fig. 6). 8

Let a denote a critical point of W . The corresponding D-brane emanating from

it will be denoted by Da. Note that the Da are piece-wise continuous as a function

of ζ, with jumps at special values of ζ which are closely related to the BPS spectrum

of the theory. We will denote the corresponding brane amplitudes as Πa
i .

The thimbles Da defined at ζ and Ua defined at −ζ form a dual basis of La-

grangian cycles, and the inner product between the corresponding states is given

by

〈Da|Ub〉 = δab

Note that since there are as many |Da〉 as the ground state vacua, we can use them to

compute the ground state inner products, using the decomposition 1 =
∑

a |Ua〉〈Da|,
which is valid acting on the ground states:

ηij = 〈j|i〉 =
∑
a

〈j|Ua〉〈Da|i〉 = Π̂a
jΠ

a
i

gij = 〈j|i〉 =
∑
a

〈j|Ua〉〈Da|i〉 = Πa†
j Πa

i

(2.6)

The thimble brane amplitudes Πa = Π[Da] give a fundamental basis of flat sec-

tions for the tt∗ Lax connection [7, 21]. Any other brane amplitude can be rewritten

as a linear combination

Π[D] =
∑
a

na[D]Πa (2.7)

with integer coefficients na which coincide with the framed BPS degeneracies defined

in [21] and can be computed as 〈D|Ua〉.
The brane amplitudes Π[D, ζ] can be analytically continued to any value of ζ in

(the universal cover of) C∗ so that Π[D, ζ] is holomorphic in ζ. The general analysis

7 For general ζ, that would be −ζ−1
.

8The D-branes introduced in [11] project to straight-lines on W-plane. This can be relaxed to

D-branes that at the infinity in field space approach straight lines and are more relaxed in the

interior regions [13]. In this paper we will not need this extension and take the D-branes simply to

project to the straight lines in W -plane.
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Figure 6: D-branes in the LG description of (2, 2) theories are Lagrangian subman-

ifolds which project to straight lines in the W -plane emanating from critical points

of W . These objects are also known as ‘Lefschetz thimble branes’. The slope α deter-

mines the combination of supercharges which the D-brane preserves. In the massive

phases there is one D-brane per vacuum (and angle α).

of [7, 21] shows that Π[D, ζ] will have essential singularities at ζ = 0 and ζ = ∞,

with interesting Stokes phenomena associated to the BPS spectrum of the theory.

It is clear from the form of the Lax connection and of the eigenvalues pi,a of Ci
that the asymptotic behaviour as ζ →∞ of a flat section should be

Π[D, ζ] ∼
∑
a

e−ζW
(a)

va (2.8)

where va are simultaneous eigenvectors of the Ci.

The thimble brane amplitudes have the very special property that Πa ∼ e−ζW
(a)

for the analytic continuation of Πa[ζ] to a whole angular sector of width π around

the value of ζ at which the thimbles are defined. This property, together with the

relation between the jumps of the basis of thimble branes as we vary the reference

value of ζ and the BPS spectrum of the theory [11] allow one to reconstruct the Πa[ζ]

from their discontinuities by the integral equations described in [7, 21].

Although a full review of these facts would bring us too far from the purpose

of this paper, these is a simplified setup which captures most of the structure and

will be rather useful to us. The tt∗ geometry has a useful “conformal limit”, β →
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0. Although in this limit one would naively expect the dependence on relevant

deformation parameters ti, t̄i to drop out, the behaviour of the brane amplitudes as

a function of β, ζ is somewhat more subtle.

More precisely, if we look at Πi[ζ] and focus our attention on the region of large

ζ, i.e. we keep ζβ finite as β → 0, only the ti dependence really drops out and we

are left with interesting functions of the holomorphic parameters ti. The converse is

true for the amplitudes Πi[ζ] = 〈D|i〉 in the anti-holomorphic gauge, for finite ζ−1β.

In the LG case they are given by period integrals [11]

Πi =

∫
D

Φi exp
(
− ζ β W (Xα, t)

)
dX1 ∧ · · · ∧ dXn

Πi =

∫
D

Φi exp
(
− ζ−1 β W (X

α
, t)
)
dX

1 ∧ · · · ∧ dXn
,

where, for later convenience, we reintroduced the explicit dependence on the S1

length β, see eqn.(2.1). The flatness under the tt∗ Lax connection reduces to the

obvious facts that

∂tjΠi + βζCk
ijΠk = 0 ∂tjΠi = 0 (2.9)

Due to the relation between thimble Lagrangian manifolds and steepest descent

contours, it is obviously true that the thimble brane amplitudes Πa
i have the expected

asymptotic behaviour at ζ → ∞. Furthermore, it is also clear that for an A-brane

defined by some Lagrangian submanifold D the integers na[D] are simply the coeffi-

cients for the expansion of D into the thimble cycles. The Stokes phenomena for the

tt∗ geometry reduce to the standard Stokes phenomena for this class of integrals.

There is another observation which will be useful later. Let us introduce one

additional parameter Pα for each chiral field Xα, deform the superpotential W →
W − XαPα, and consider Πa for this deformed W . We can view Pα as part of the

parameter space of W . Let’s focus on Πa
0, i.e. the integral without insertion of chiral

fields.

Πa
0

∣∣∣∣
β→0

=

∫
Da

exp
(
− ζ β W (Xα, t)− ζβXαPα

)
dX1 ∧ · · · ∧ dXn.

Now consider the insertion of ∂W/∂Xγ−Pγ in the above integral, and use integration

by parts to conclude its vanishing:∫
Da

dXα

(
∂W

∂Xγ
− Pγ

)
exp
(
− ζβ W (Xα, t)− ζβXαPα

)
= 0

Which can be rewritten as[
∂γW

(
−1

ζ

∂

∂Pα

)
− Pγ

] ∫
Da

dXα exp
(
− ζ β W (Xα, t)− ζ βXαPα

)
= 0.
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In other words [
∂γW

(
− 1

ζβ

∂

∂Pα

)
− Pγ

]
Πa

0

∣∣∣∣
β→0

= 0. (2.10)

Note that, replacing ζβ → i/~, the above formula is suggestive of a quantum me-

chanical system where (Xα, Pα) form the phase space. At this point however, it

appears that they are not on the same footing as Xα is a field but Pα is a parameter.

In section 4 we will see that we can in fact consider a dual LG system where Pα can

be promoted to play the role of fields. More generally we will see that we can have

an Sp(2g,C) transformation where one chooses a different basis in which parameters

are promoted to fields. Here g denotes the number of chiral fields. Indeed this struc-

ture also appeared for 2d (2,2) theories which arise by Lagrangian D-brane probes

of Calabi-Yau in the context of topological strings [10] (which can be interpreted as

codimension 2 defects in the resulting 4 or 5 dimensional theories), and the choice

of parameters versus fields depends on the boundary data of the Lagrangian brane.

We will see that this correspondence is not an accident.

3 Extended tt∗ geometries and hyperholomorphic bundles

The basic assumption of the standard tt∗ analysis in the previous section is that

the F-term deformation parameters ti are dual to well defined chiral operators of

the theory, such as single-valued holomorphic functions on the target manifold M
of a LG model. This is not the only kind of deformation parameter which may

appear in the F-terms of the theory. There are more general possibilities which

lead to more general tt∗ geometries and new phenomena. In this section we discuss

mostly situations which give rise to various dimensional reductions of the equations

for a hyper-holomorphic connection. We will briefly comment at the end on a more

extreme situation in which the tt∗ geometry is based on non–commutative spaces.

The simplest extension of tt∗ is generically associated to the existence of flavor

symmetries in the theory. In a mirror setup, where one looks at the twisted F-

terms for, say, a gauged linear sigma model, such deformation parameters are usually

denoted as twisted masses. If a flavor symmetry is present, which acts on the chiral

fields of the GLSM, one can introduce the twisted masses as the vevs of the scalar field

in a background gauge multiplet coupled to that flavor symmetry. In the presence

of twisted masses, the low-energy twisted effective superpotential for the theory is

a multi-valued function over the space of vacua, defined up to integral shifts by the

twisted masses.

In the context of LG theories, one can consider a non-simply connected target

spaceM, and superpotential deformations such that the holomorphic 1–form dW is

closed but not exact onM. The periods of dW over 1-cycles ofM give the “twisted

mass” deformation parameters. In order to see the associated flavor symmetry, we

can pull the closed 1-form dW to space-time, and thus define a conserved current.
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W

Figure 7: In a 2d theory with one flavor symmetry each vacuum has infinitely many

copies linearly shifted in the W -plane by an amount 2πiµ.

The simplest possibility, which occurs in the mirror of GLSM [12] and appears to be

typical for the effective LG descriptions of UV-complete 2d field theories, is modelled

on a poly-cylinder: a collection of LG fields with periodicity Ya ∼ Ya + 2πi na. A

superpotential which includes the general linear term
∑

a µaYa will have discontinu-

ities

W (Ya + 2πina) = W (Ya) + 2πi
∑
a

naµa, (3.1)

with generic values for the complex twisted masses 4πiµa.
9 We will denote these

models as “periodic” (see Fig. 7 for the case of one periodic field).

There is a second possibility which one encounters, for example, for 2d systems

which occur as a surface defect in a 4d N = 2 gauge theory [10, 14]: the twisted

mass parameters may not be all independent. We can model this occurrence by a

LG theory with coordinates valued in an Abelian variety10,

Ya ∼ Ya + 2πi na + 2πiΩabmb. (3.2)

A superpotential which includes the general linear term11
∑

a µaYa will have discon-

9 To understand the normalization, remember the BPS bound M ≥ 2|∆W |.
10 At this level, it suffices that the Ya’s take value in a complex torus of positive algebraic

dimension. However, we may always reduce, without loss of generality, to the Abelian variety with

the same field of meromorphic functions.
11 This corresponds to the case of dW a holomorphic differential on the Abelian variety. More

generally, we may take dW to be a closed meromorphic differential. If dW is a meromorphic

differential of the second kind [15], eqn.(3.3) remains true with Ωab replaced by the relevant period

matrix Λab.

– 16 –



tinuities

W (Ya + 2πi na + 2πiΩabmb) = W (Ya) + 2πi
∑
a

µa

(
na +

∑
b

Ωabmb

)
. (3.3)

Thus each twisted mass parameter is associated to two flavor symmetries, whose

conserved charges arise from the pull-back of dYa and dȲa. We will denote these

models as “doubly-periodic”. For surface defects in 4d systems, the relation takes

the form

∆W =
1

2

∑
i

(
ni ai[u] +mi a

D
i [u]

)
(3.4)

where u are the Coulomb branch parameters in the bulk 4d theory, (ai, a
D
i ) the

Seiberg-Witten periods of the 4d theory, and the two conserved charges are the

electric and magnetic charges for the bulk 4d gauge fields.

Periodic tt∗ geometries. It was already observed in [1, 7, 21] that the tt∗ geome-

tries associated to a standard “twisted mass” deformation will be three-dimensional,

rather than two-dimensional. Besides the mass parameters µa and µ̄a, one has an ex-

tra angular parameter θa = 2πxa. The angle θa has a direct physical interpretation:

it is the flavor Wilson line parameter which appears when the 2d theory is quantized

on a circle.

There is an alternative point of view which is very useful in deriving the tt∗

equations for a periodic system. We can make the superpotential single-valued by

lifting it to an universal cover M̃ of M. Thus each vacuum i of the original theory

is lifted to infinitely many copies (i, na), each associated to a sheet of the universal

cover. We can define vacuum Bloch–waves labelled by the angles θa = 2πxa (i.e. by

the characters of the covering group M̃ →M)∣∣i;x〉 =
∑
na

e2πinaxa
∣∣i;na〉. (3.5)

To describe the tt∗ geometry in the µa directions we need to compute the action

of ∂µaW , which is not single-valued. This is simple, as the multi-valuedness of ∂µaW

is precisely controlled by the na. Let n be the number of vacua in a reference sheet.

Let Ba be the n× n matrix

Ba = diag

(
∂µaW (Y )

∣∣∣
Y=i–th vacuum
in reference sheet

)
. (3.6)

From eqn.(3.1) we see that, acting on the |i;na〉 basis,

Cµa = 2πi · 1⊗Na +Ba ⊗ 1, (3.7)

where Na acts by multiplication by na. On the Bloch basis (3.5) this becomes the

differential operator [1]

Cµa =
∂

∂xa
+Ba. (3.8)
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If we focus on the dependence on a single twisted mass parameter and its angle,

we get

Cµ = Dx + iΦ, C µ̄ = −Dx + iΦ, (3.9)

with Dx the anti–Hermitian part of Cµ and iΦ the Hermitian one, while, writing

µ = (z + iy)/2,

Dµ = Dz − iDy, Dµ̄ = Dz + iDy. (3.10)

The tt∗ equations become

[Dx, Dy] = [Dz,Φ], and cyclic permutations of x, y, z, (3.11)

which, seeing Φ as an (anti–Hermitian) adjoint Higgs fields, are identified with the

Bogomolny monopole equations in R3 with coordinates x, y, z.

Finally, we can consider chiral operators which are twist fields for the flavor

symmetry. In the LG examples discussed above, they would correspond, say, to

exponentials e
∑
a xaYa . It should be clear that the action of such a chiral twist operator

on a Bloch wave vacuum of parameters x′a would give a vacuum of parameters x′a +

xa. In particular, this shows that the xa label the Hilbert space sectors Hxa in

which, as we go around the circle, the fields come back to themselves up to a phase

exp(2πixaQa), where Qa are the flavor symmetry charges.

Note that, since xa are characters of a symmetry, the tt∗ metric satisfies〈
i;xa

∣∣ j; ya〉 = G(xa)ī
∑
ka

δ(xa − ya − ka) (3.12)

Sometimes we leave the xa dependence implicit and not bother writing the subscript

next to the ket.

Doubly–periodic tt∗ geometries. In the doubly–periodic case we have two Bloch

angles, θa = 2πxa and θ̃a = 2πwa for every mass parameter µa. We can write

Cµa =
∂

∂xa
+ Ωab

∂

∂wb
+Ba =

∂

∂λ̄a
+Ba

xa = λa + λ̄a wa = Ω̄abλb + Ωabλ̄b

(3.13)

where the n× n matrix Ba

Ba ≡ diag

(
∂µaW (Y )

∣∣∣∣
Y=i–th vacuum
in reference sheet

)
, (3.14)

is independent of the λb, ∂λbBa = 0.

It is useful to write

Cµa = Dxa + ΩabDwb ≡ Dλ̄a . (3.15)
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Setting

D1,A =
(
Dµa ,−Dλa

)
, D2,A =

(
Dλ̄a , Dµ̄a

)
,

a = 1, . . . , g,

A = 1, . . . , 2g,
(3.16)

the full set of tt∗ equations may be packed into the single equation[
Dα,A, Dβ,B

]
= εαβ FAB where FAB = FBA, (3.17)

which are the equations of a hyperholomorphic connection on a hyperKähler manifold

(here R2g×T 2g) also called hyperKähler (or quaternionic) instanton [16–19]. Indeed,

eqn.(3.17) is equivalent to the statement that the curvature of the tt∗ connection D

is of type (1, 1) in all the complex structures of the hyperKähler manifold. For g = 1

these hyperholomorphic connections reduce to usual (anti)instantons in R2×T 2, that

is, to doubly–periodic instantons in R4.

This may be seen more directly as follows. In complex structure ζ ∈ CP 1, the

holomorphic coordinates on R2g × T 2g are

u(ζ)
a = µa − λ̄a/ζ, and v(ζ)

a = λa + µ̄a/ζ. (3.18)

The flat tt∗ Lax connection with spectral parameter ζ

∇(ζ)
µa = Dµa + ζ Cµa ≡ Dµa + ζ Dλ̄a

∇(ζ)
µ̄a = Dµ̄a +

Cµa

ζ
≡ Dµ̄a −

Dλa

ζ
,

(3.19)

annihilates, in this complex structure, all holomorphic coordinates (u
(ζ)
a , v

(ζ)
a ) and

hence is the (0, 1) part, in complex structure ζ, of a connection A on R2g×T 2g. The

statement that the tt∗ Lax connection is flat for all ζ is then equivalent to the fact

that the (0, 2) part of the curvature of A vanishes in all complex structures ζ.

The most general tt∗ geometry, depending on Ns of standard parameters, Nm

twisted mass parameters and Nd doubly-periodic twisted mass parameters is obtained

considering such a hyperholomorphic connections which do not depend on some of

the angular variables: we drop 2Ns+Nm angular variables and obtain a higher dimen-

sional generalization of Hitchin, monopole and instanton equations. However, the tt∗

geometry has an additional requirement besides the condition that the connection is

hyperholomorphic, namely the eq.(2.2) capturing the reality structure [1].

tt∗ geometries on Rg × T 2g. As we shall discuss in section 5, the typical tt∗

geometry of a 3d model is a variant of the periodic one discussed above in which the

complex twisted mass parameters have the form

2µa = za + iya, (3.20)
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where the za’s are real twisted mass parameters and the ya angular variables which

appear on the same physical footing as the vacuum angles xa. In fact, the S operation

S : xa → ya, ya → −xa, (3.21)

should be a symmetry of the physics. To write more symmetric equations, we add g

real variables wa, which do not enter in the Berry connection, in order to complete

the space Rg × T 2g to the flat hyperKähler space R2g × T 2g on which the tt∗ connec-

tion is hyperholomorphic (and invariant by translation in the g directions wa). We

then reduce to a special case of the geometry described in eqns.(3.15)–(3.19) with

holomorphic coordinates in ζ =∞ complex structure

u(∞)
a ≡ µa = za + i ya, v(∞)

a ≡ λa = xa + iwa, (3.22)

(the parametrization being chosen to agree with our conventions for 3d models)

The fact that S is a symmetry of the physics means that it maps the tt∗ geometry

into itself; in view of the discussion in eqns.(3.15)–(3.19), this means that the effect

of S is to map the complex structure ζ into a complex structure ζ̃(ζ).

To find the map ζ 7→ ζ̃, we start with the S–transformed complex coordinates

µ̃a ≡ S(µa) = za − i xa, λ̃a ≡ S(µa) = ya + iwa, (3.23)

and define the S–dual holomorphic coordinates in (dual) complex structure ζ̃ as in

eqn.(3.18),

ũ(ζ̃)
a = µ̃a − λ̃a/ζ̃, ṽ(ζ̃)

a = λ̃a + µ̃a/ζ̃. (3.24)

The map ζ 7→ ζ̃(ζ) is then defined by the condition that there exists two holomorphic

functions, f and g, such that

ũ(ζ̃)
a = f(u(ζ)

a , v(ζ)
a ), ṽ(ζ̃)

a = g(u(ζ)
a , v(ζ)

a ). (3.25)

f , g are necessarily linear; writing ũ
(ζ̃)
a = αau

(ζ)
a +βav

(ζ)
a and equating the coefficients

of xa, ya, wa, za, one finds

ζ̃ = C(ζ) ≡ 1 + i ζ

ζ + i
, (3.26)

which is the Cayley transform mapping the upper half–plane into the unit disk. In

particular, ζ = 1 is a fixed point under this transformation, which is a rotation of

π/2 of the twistor sphere around ζ = 1.

From the discussion around eqn.(3.19), we see that a flat section, Π(ζ), of the tt∗

Lax connection at spectral parameter ζ, ∇(ζ), is a holomorphic section in complex

structure ζ; then, from the S–dual point of view Π(ζ) is holomorphic in the ζ̃ complex

structure, that is, a flat section of S∇(ζ̃). In particular, if Π(ζ)(xa, ya, za) is a flat

section of ∇(ζ), then

SΠ(ζ)(xa, ya, za) ≡ Π(ζ)(ya,−xa, za), (3.27)

is a flat section of ∇(C−1(ζ)).
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General “non–flat” tt∗ geometries. As observed in [21], even for the case of

surface defects in 4d gauge theories, the tt∗ equations reduce to the equations of

a hyperholomorphic connection on a hyperKähler manifold, which is the Coulomb

branch of the four-dimensional gauge theory compactified on a circle. In that case,

though, the hyperKähler manifold has a non–flat metric, and the tt∗ data has a

more intricate dependence on the angular coordinates. A typical example of the tt∗

geometries which arise in this non–flat setup is associated to the moduli space M

of solutions of a Hitchin system on some Riemann surface C: the universal bun-

dle on M × C supports a hyperholomorphic connection in the M directions and a

Hitchin system on the C directions, and the two are compatible exactly as above:

the (anti)holomorphic connection on M in complex structure ζ commutes with the

Lax connection of the Hitchin system with spectral parameter ζ.

3.1 A basic example of 2d periodic tt∗ geometry

The simplest and most basic example of periodic tt∗ geometry corresponds to the

Landau–Ginzburg model

W (Y ) = µY − eY , (3.28)

which may be seen as the mirror of a 2d chiral field [12] with a twisted complex mass

mtwisted = 4πi µ. (3.29)

The exact tt∗ metric for this model is computed in Appendix A of [20]. This tt∗

geometry is also a very simple case of the general 2d-4d structures analyzed in [21].

We give a quick review of the tt∗ metric for this theory (with some extra detail)

and then we shall compute the associated amplitudes Πi
a = 〈Da|i〉.

3.1.1 tt∗ metric

Taking the periodicity into account, this theory has a single vacuum at Y = log µ,

as expected for a massive 2d chiral field. The tt∗ equations thus reduce to U(1)

monopole equations on R2×S1, which can be solved in terms of a harmonic function.

We expect the solution to be essentially independent on the phase of the mass, and

the only singularities should occur when both the mass and the flavor Wilson lines

are zero, so that the 2d chiral field has a zero-mode on the circle. Indeed, we will see

momentarily that the correct solution to the tt∗ equations corresponds to a single

Dirac monopole of charge 1 placed at µ = µ̄ = x = 0. 12

12The enthusiastic reader can check this result directly from the definition of the tt∗ data, by

decomposing the 2d chiral field into KK modes on the circle and computing the contribution to the

Berry’s connection from each of these modes. The action for each KK mode is not periodic in x,

and n-th KK mode gives a single Dirac monopole at x = 2πn. Together they assemble the desired

Dirac monopole solution on R2 × S1.
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It is interesting to describe in detail the relation between the monopole solution

and the standard tt∗ data. In an unitary gauge, we would write

Cµ = ∂x − iAx + V

−C̄µ̄ = ∂x − iAx − V
Dµ = ∂µ − iAµ
Dµ̄ = ∂µ̄ − iAµ̄ (3.30)

with V being the Harmonic function, A the associated monopole connection. With-

out loss of generality, we can split V into an x-independent part and x-dependent

part as

V (µ, µ̄, x) =
1

2
v(µ) +

1

2
v̄(µ̄) +

1

2
∂xL(µ, µ̄, x) (3.31)

for a periodic harmonic function L(µ, µ̄, x), and solve for the connection

iAµ = −1

2
∂µa(µ) +

1

2
∂µL

iAµ̄ = +
1

2
∂µ̄ā(µ̄)− 1

2
∂µ̄L

iAx = −1

2
v(µ) +

1

2
v̄(µ̄) (3.32)

Thus

Cµ = ∂x + v +
1

2
∂xL

−C̄µ̄ = ∂x − v̄ −
1

2
∂xL

Dµ = ∂µ +
1

2
∂µa−

1

2
∂µL

Dµ̄ = ∂µ̄ −
1

2
∂µ̄ā+

1

2
∂µ̄L (3.33)

We can then go to the “topological basis” by the complexified gauge transfor-

mation with parameter 1
2
L(µ, µ̄, x)− 1

2
a(µ)− 1

2
ā(µ̄):

Cµ = ∂x + v

−C̄µ̄ = ∂x − v̄ − ∂xL
Dµ = ∂µ + ∂µa− ∂µL
Dµ̄ = ∂µ̄ (3.34)

The gauge transformation parameter is directly related to the tt∗ metric [1],

which reduces in this case to a real positive function of x and |µ|, G(x, |µ|) of period

1 in x:

G(x, |µ|) = eL(µ,µ̄,x)−a(µ)−ā(µ̄). (3.35)
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Using13 the relation η = µ−1 the reality condition |µ|2G(−x, |µ|)G(x, |µ|) = 1 tells

us that L is odd in x. Also, we find a(µ) = 1
2

log µ and logG = logL− 1
2

log |µ|.
As L is harmonic,

1

|µ|
∂

∂ |µ|

(
|µ| ∂

∂ |µ|
L

)
+ 4

∂

∂x

(
∂

∂x
L

)
= 0, (3.36)

periodic and odd, it has an expansion in terms of Bessel–MacDonald functions of the

form

L(x, |µ|) =
∞∑
m=1

am sin(2πmx)K0(4πm|µ|), (3.37)

for certain coefficients am which are determined by the boundary conditions. We

may use either the UV or IR boundary conditions, getting the same am [20]. For

instance, in the UV we must have the asymptotics as |µ| → 0

L(x, |µ|) = −2
(
q(x)− 1/2

)
log |µ|+ Λ(x) +O

(
|µ|
)
, (3.38)

where q(x) is the SCFT U(1) charge of the chiral primary exY (0 ≤ x < 1) at the

UV fixed point, while the function Λ(x) encodes the OPE coefficients at that fixed

point [1, 7]. From the chiral ring relations we have q(x) = x. From the expansion

K0(z) = − log(z/2)− γ +O(z2 log z) as z ∼ 0. (3.39)

we get

(1− 2x) log |µ|+ Λ(x) = −
∑
m

am sin(2πmx)
(

log |µ|+ logm+ log 2π + γ
)
. (3.40)

Comparing the coefficients of log |µ|, we see that the am’s are just the Fourier coef-

ficients of the first (periodic) Bernoulli polynomial, and hence

am = − 2

π

1

m
. (3.41)

Then (for 0 < x < 1)

Λ(x) = (1− 2x)
(

log 2π + γ
)

+
2

π

∑
m≥1

sin(2πmx)
logm

m
=

= 2 log Γ(x) + log sin(πx)− log π,

(3.42)

where the equality in the second line follows from Kummer’s formula for the Fourier

coefficients of the Gamma–function[22]. In particular, the UV OPE coefficients have

the expected form [1, 7].

13In a vacuum basis, the pairing η is diagonal, proportional to the inverse determinant of the

Hessian of the superpotential, see [8].
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As we have v(µ) = log µ, we can recognize the periodic monopole solution

V (µ, µ̄, x) = log |µ| − 2
∞∑
m=1

cos(2πmx)K0

(
4πm|µ|

)
=

= −1

2

∑
n∈Z

(
1√

|2µ|2 + (x− n)2
− κn

)
− γ

(3.43)

where κn is some constant regulator (see eqn.(B.5)).

It is convenient to give a representation of the solution L(x, |µ|) in terms of a

convergent integral representation. From the equality (for Re z > 0)

K0(z) =
1

2

∞∫
0

dt

t
e−

1
2
z(t+t−1), (3.44)

we see that for Reµ > 0

L(x, µ, µ̄) = − 1

π

∞∑
m=1

sin(2πmx)

m

∞∫
0

dt

t
e−2πm(µt+µ̄t−1) =

=
1

2πi

∞∫
0

dt

t
log

(
1− e−2π(µt+µ̄t−1−ix)

1− e−2π(µt+µ̄t−1+ix)

)
.

(3.45)

For Reµ > 0 the integral is absolutely convergent. If Reµ 6> 0 (and µ 6= 0), just

replace µ → eiαµ in such a way that Re(eiαµ) > 0 (or, equivalently, rotate the

integration contour). Notice that the expression (3.45) makes sense even for µ and

µ̄ independent complex variables (as long as Reµ > 0 and Re µ̄ > 0).

2d tt∗ computes a second interesting physical quantities besides the metric,

namely the CFIV ‘new index’ Q(x, |µ|) [23]. Several explicit expression for the CFIV

index of this model may be found in appendix A.3.

3.1.2 The amplitude 〈Da|φ(x)〉 = 〈Da|0〉x
The equations for a flat section Π of the tt∗ Lax connection look somewhat forbidding

(∂µ + ζ∂x) log Π = ∂µL− ζv − ∂µa
(−ζ∂µ̄ + ∂x) log Π = v̄ + ∂xL (3.46)

Observe that Π is defined up to multiplication by an arbitrary function of ζµ −
x − ζ−1µ̄. This is related to the fact that any D-brane has infinitely many images,

produced by shifts in the flavor grading of the Chan-Paton bundle. Starting from a

single D-brane amplitude Π0 one can produce a countable basis

Πk = e2πik(ζµ−x−ζ−1µ̄) Π0 k ∈ Z. (3.47)
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for the infinite-dimensional vector space of flat sections of the tt∗ Lax connection

Writing

log Π = Φ− 1

2
log µ− ζµ

(
log µ− 1

)
− ζ−1µ̄

(
log µ̄− 1) + const., (3.48)

(we will fix the additive constant later by choosing a convenient overall normalization

of Π) we isolate the interesting part

(∂µ + ζ∂x) Φ = ∂µL

(−ζ∂µ̄ + ∂x) Φ = ∂xL (3.49)

In view of the expression

L = − 1

2πi

∑
m 6=0

e2πimx

∫ ∞
0

1

mt
e−2π|m|((µ t+µ̄ t−1) dt, (3.50)

for Reµ > 0 we look for a solution Φ of the form

Φ(x, µ, µ̄) =
∑
m 6=0

e2πimx

∫ ∞
0

fm(t) e−2π|m|(µ t+µ̄ t−1) dt, (3.51)

for some functions fm(t) to be determined. Plugging this ansatz in the equations we

get

fm(t) =
i

2πm

1

t− i ζ sign(m)
. (3.52)

Then

Φ =
1

2πi

∫ ∞
0

dt

t− iζ
log
(

1−e−2π(µt+µ̄t−1−ix)
)
− 1

2πi

∫ ∞
0

dt

t+ iζ
log
(

1−e−2π(µt+µ̄t−1+ix)
)
.

(3.53)

For Reµ, Re µ̄ > 0 the integrals are absolutely convergent and define an analytic

function of µ and µ̄ (seen as independent complex variables).

This expression has an important discontinuity along the imaginary ζ axis, where

the poles cross the integration contours, and is analogous to the integral equations

which gives the thimble brane amplitudes in the standard tt∗ case [7]. It is also a

simple version of the integral equations which describe general 2d-4d systems in [21].

The discontinuity along the positive and negative imaginary axes are

± log
(

1− e±2πi(ζµ−x−ζ−1µ̄)
)
. (3.54)

The two functions Π± defined by the analytic continuation from the positive and

negative half-planes must correspond to the amplitudes for the thimble branes for

the model. We will identify these branes momentarily.

The same discontinuities appear at fixed ζ as we vary the phase of µ, as one has to

rotate the integration contours while moving µ out of the Reµ > 0 half-plane. Notice
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that the composition of the two discontinuities in Φ we encounter while rotating the

phase of µ by 2π, i.e. πi+ 2πi(ζµ− x− ζ−1µ̄), cancel against the extra terms in the

definition 3.48 of Π, leaving only

Π(e2πiµ, e−2πiµ̄, x) = e2πixΠ(µ, µ̄, x)

which is the gauge transformation which leaves the tt∗ data invariant. This equation

is equivalent to the statement q(x) = x. Thus all the pieces conspire to make the

sections Π± single-valued as functions of µ (but not of ζ!).

The function Φ is also periodic in x, and enjoys a number of interesting proper-

ties. First of all, it satisfies the functional equation (for Re ζµ, Re ζ−1µ̄ > 0)

Φ(−x, ζ−1µ̄, ζµ)− Φ(x, ζµ, ζ−1µ̄) = L(x, µ, µ̄) (3.55)

which just says that the tt∗ metric can be computed out of the amplitude Π(x) in the

usual way. Second, for all integers n ∈ N it satisfies a ‘Gauss multiplication formula’

of the same form as the one satisfied by log Γ(z)

Φ(0, nζµ, nζ−1µ̄) =
n−1∑
k=0

Φ(k/n, ζµ, ζ−1µ̄). (3.56)

Eqns.(3.55)(3.56) are shown in appendix A.1.

3.1.3 The limit µ̄→ 0 and brane identification

Seeing the amplitude Π(x, µ, µ̄) as a function of independent complex variables µ and

µ̄, it make sense to consider its form in the limit µ̄→ 0. As discussed in section 2, this

is the limit where we expect Π(x, µ, 0) to simplify, and satisfy a simple differential

equation. We will check to see how this emerges in this section (eqn.(2.10)).

The asymmetric limit µ̄ → 0 is also important to identify which kind of brane

amplitude corresponds to each solution to the Lax equations, and in particular to

identify the unique solution which corresponds to a (correctly normalized) Dirichlet

brane amplitude, 〈D|x〉ζ , and its relations with the Leftshetz thimble amplitudes. We

saw that the difference between the log of any two solutions, Π1,Π2, is a holomorphic

function of ζµ− x− µ̄/ζ

log Π1 − log Π2 = f(ζµ− x− µ̄/ζ). (3.57)

In particular, two solutions which are equal at µ̄ = 0, are equal everywhere. Therefore

the identity of the corresponding boundary conditions is uniquely determined by

comparing their µ̄ → 0 limit [11], with the period integrals of exp(−ζβW ). This

limit can be alternatively computed (assuming the correctness of our conjecture of

the equivalence of this limit with supersymmetric partition functions [52, 53]) with

a direct localization computation for the partition function of the 2d chiral on a

hemisphere [54].
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We are looking at

log Π =− 1

2
log µ− ζµ

(
log µ− 1

)
+ const.

+
1

2πi

∫ ∞
0

dt

t− iζ
log
(

1− e−2π(µt−ix)
)
− 1

2πi

∫ ∞
0

dt

t+ iζ
log
(

1− e−2π(µt+ix)
)
.

(3.58)

We claim that choosing the additive constant to be 0, the branch Π− of Π in the

negative ζ half plane becomes

Π− =
1√
2π

Γ
(
− ζµ+ {x}

)
µ−{x}(−ζ)

1
2

+ζµ−{x} (3.59)

and the branch Π+ of Π in the negative ζ half plane becomes

Π+ =

√
2π

Γ
(
ζµ+ 1− {x}

)µ−{x}ζ 1
2

+ζµ−{x} (3.60)

where {x} ≡ x− [x] is the fractional part, 0 ≤ {x} < 1. Note that these expressions

are consistent with (3.56) in view of the Gauss multiplication formula for Γ(z) [22].

A straightforward way to prove these identities is to observe that the right hand

sides have the correct asymptotic behaviour at large ζ, the correct discontinuities,

and no zeroes or poles in the region where we want to equate them to the integral

formula. Thus they must coincide with the result of the integral formula. By setting

x = 0 or x = 1/2 in these identities we get well–known integral representations of

log Γ(µ) or, respectively, log Γ(µ+ 1/2)− 1
2

log µ (see appendix A.2.1). Setting µ = 0

in our identity produces a new proof of the Kummer formula (appendix A.2.2).

Comparing with a direct localization computation for the partition function of

the 2d chiral on a hemisphere [54], we see that, for all values of ζ, the behavior (3.59)

corresponds to a brane with Neumann boundary conditions and (3.60) to Dirichlet

b.c. We conclude that the thimble brane of the LG mirror corresponds to either

Neumann or Dirichlet boundary conditions for the 2d chiral field. The match with

the localization computations is surprisingly detailed, especially if we turn off x and

identify −ζβ with rΛ0 in [54].

Finally, we can compare the result to the expected integral expressions for the

asymmetric conformal limits ∫
D

exY−ζµY+ζeY dY

For example, for ζ in the negative half-plane we can do the integral on the positive

real Y axis setting t = −ζeY , i.e.

(−ζ)−x+ζµ

∫ ∞
0

tx−ζµ−1e−tdt = (−ζ)−x+ζµΓ(x− ζµ)

which is as expected.
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3.2 A richer example

After discussing a model which gives rise to a single periodic U(1) Dirac monopole

as a tt∗ geometry, it is naturally to seek a model associated to a single smooth SU(2)

monopole solution. It is not hard to guess the correct effective LG model:

W (Y ) = µY − e
t
2

+Y + e
t
2
−Y . (3.61)

We recognize this as the mirror of a CP 1 sigma model [12] with FI parameter t and

twisted mass 4πiµ for its SU(2) flavor symmetry. We will come back to the standard

tt∗ geometry in the t cylinder momentarily. Unlike the previous example, it is not

possible to solve this model explicitly. Nevertheless we can predict properties of the

solution, based on the previous example, as well as general physical reasoning.

The model has two vacua, with opposite values of W , and will give rise to

a rank 2 bundle, with SU(2) structure group. At large |µ| we get either of the

vacua Y ∼ ±
(
− t

2
+ log µ

)
, and the two vacua are well-separated. The solution

approaches an Abelian monopole of charge ±1. On the other hand, Y (µ) does not

have logarithmic singularities anywhere: there are never massless particles in the

spectrum, and thus no Dirac singularities in the interior. This confirms that the tt∗

geometry for the µ parameter will be a smooth SU(2) monopole. The parameter t

controls the constant part of the Higgs field and Wilson line at large µ.

On the other hand, the tt∗ geometry for the t parameter is well-known: the

boundary conditions of the Hitchin system’s Higgs field Ct are controlled by

1

2
TrC2

t = (∂tW )2 =
µ2

4
− et (3.62)

Thus we have a standard regular singularity at the t → −∞ end of the cylinder,

with residues ±µ
2

in the Higgs field and ±x in the connection. We have the mildest

irregular singularity at the t→∞ end of the cylinder.

The tt∗ machinery predicts that the Lax connections for the BPS monopole

connection associated to the µ direction and for the Hitchin system in the x direction

will commute (for the same values of the spectral parameter). This fact may appear

striking. It is useful to think about it in terms of an isomonodromic problem. For

example, the Hitchin system has a unique solution for given µ, x. Furthermore, up

to conjugation, the monodromy data of the Lax connection with spectral parameter

ζ only depends on the combination µζ − x − µ̄ζ−1 and it is annihilated by the

combinations of derivatives ∂µ + ζ∂x and ∂µ̄ − ζ−1∂x. These facts are what make

it possible to find connections Dµ + ζDx and Dµ̄ − ζ−1D̄x which commute with

the Hitchin Lax connections, and which become the Lax connection for the BPS

monopole equation.

The LG model has several interesting A-branes, which are mirror to the basic

B-branes of the CP 1 sigma model [11]: we can have either a Dirichlet brane at the
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north or south pole, or a Neumann brane with n+ 1
2

units of world volume flux. The

corresponding amplitudes where identified in [21] with specific flat sections of the

Hitchin system Lax connection. The Dirichlet branes correspond to the monodromy

eigenvectors at the regular singularity. The basic Neumann brane is the unique

section which decreases exponentially approaching the irregular singularity. The

whole tower of Neumann branes is obtained by transporting the basic one n times

around the cylinder. As the full BPS spectrum of the CP 1 model is known, the

actual brane amplitudes can be computed from the integral equations derived in

[7, 26], corrected by the presence of twisted masses as in [21].

3.3 Some doubly–periodic examples

As we seek examples of well-defined doubly-periodic systems, it is natural to start

from a simple, smooth doubly-periodic instanton solution [79] and work backwards

to identify an effective LG model associated to it. The simplest choice would be

a doubly-periodic SU(2) instanton of minimal charge. The identification of the LG

model is rather straightforward using the connection to the Nahm transform detailed

in the next section. Here we can anticipate the answer:

W = mb log Θ(X +
z

2
, τ)−mb log Θ(X − z

2
, τ)− aX (3.63)

Here X is the doubly-periodic LG field, a the deformation parameter whose tt∗

geometry will reproduce the doubly-periodic instanton, Θ is the usual theta function

and mb, z two extra parameters.

The superpotential has discontinuities of the form (n1+τn2)a+(n3+zn2)mb. We

will focus on the tt∗ geometry in a first, and then extend it to a,mb. The instanton

is defined over the space parameterized by a and the two angles θ1 and θ2 dual to

the charges n1 and n2. The vacua are determined by

a = mb

Θ′(X + z
2
)

Θ(X + z
2
)
−mb

Θ′(X − z
2
)

Θ(X − z
2
)

(3.64)

and Ca is controlled by the critical value of X. At large a,

X ∼ ±
(z

2
+
mb

a
+ · · ·

)
, (3.65)

and thus z controls the large a asymptotic value of the SU(2) instanton connection

on the (θ1, θ2) torus direction and mb the first subleading coefficient.

Because of the appearance of mb in the n2 monodromy, the Cmb differential

operator must include both the usual ∂x3 expected for a standard mass parameter,

and an extra z∂x2 which mixes it with the doubly-periodic instanton directions. Thus

rather than a direct product of doubly-periodic instanton equations and periodic

monopole equations, we get a slightly more general reduction of an eight-dimensional
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hyper-holomorphic connection down to a system over R4×T 3, where T 3 has a metric

determined by τ and z.

We can easily describe a system which behaves a bit better:

W = mb log Θ(X + z, τ) +mb log Θ(X − z, τ)− 2mb log Θ(X, τ)− aX =

= mb log (℘(X)− ℘(z))− aX
(3.66)

This superpotential has only the standard (n1 + τn2)a + n3mb discontinuities, and

thus we get three separate and compatible connections: an SU(3) doubly-periodic in-

stanton from the a deformation, a rank 3 periodic monopole from the mb deformation

and a rank 3 Hitchin system from the z deformation.

The asymptotic form of Ca for large |a| in the three vacua is X ∼ z + mb/a,

X ∼ −z + mb/a, X ∼ −2mb/a. The tt∗ geometry for a should be smooth in the

interior.

In order to understand the other deformations, it is useful to massage a bit the

chiral ring relation which follows from the superpotential. We have

mb℘
′(X) = a℘(X)− a℘(z) (3.67)

Using the standard cubic relation for the Weierstrass function, we get

4℘(X)3 − g2℘(X)− g3 =
a2

m2
b

(℘(X)− ℘(z))2 (3.68)

As the Cmb eigenvalues are the values of log (℘(X)− ℘(z)), the above form of the

chiral ring relation gives the holomorphic data of the periodic monopole solution. It

appears to have logarithmic singularity, corresponding to a Dirac monopole singu-

larity at mb = 0 of charges 1, 1,−2 and no logarithmic growth at infinity: there must

be a smooth monopole configuration screening the Dirac singularity.

The model has an interesting limit z → 0, with constant mbz
2:

W = c℘(X)− aX (3.69)

This is the basic building block for models considered in [27], such as

W = λ

(
N−1∑
a=1

(
℘(Ya)−ma Ya

)
+ ℘

(
−
∑N

a=1
Ya
))

. (3.70)

3.4 Non–commutative tt∗ geometries

It is natural to wonder what would happen if we took a simpler version of the doubly-

periodic examples, a superpotential involving a single θ function:

W = log Θ(X, τ)− µ (X + τ/2 + 1/2) (3.71)
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This superpotential and the chiral ring relation

µ =
Θ′(X, τ)

Θ(X, τ)
(3.72)

only make sense if the parameter µ is taken to have a periodic imaginary part.

This makes sense if X is actually part of a 2d gauge multiplet and µ is the

corresponding FI parameter. Indeed, in 2d the field strength of an U(1) vector

supermultiplet is a twisted chiral field Σ with the real part of the F–term equal to

the field strength 2–form. Hence the F–terms roughly take the form

i

∫
F a Im ∂ΣaW +

∫
d2z Da Re ∂ΣaW, (3.73)

and the Im ∂ΣaW are field–dependent θ–angles which need to be well–defined only

up to shifts by integers. Indeed, the flux
∫
F is quantized in multiples of 2π, and the

action is still well–defined mod 2πi. Thus we may allow a (twisted) superpotential

W (Σa) such that ∂ΣaW is defined up to integral multiples of 2πi.

Naively, one may thus expect the tt∗ geometry to be an instanton solution in

R× T 3. The situation, though, is more complex than that. The images of a vacuum

under the two translations of X by 1 or τ are associated to different values for µ, as

translations of X by τ require a shift of µ by 2πi. Thus if we try to form Bloch wave

vacua with angles θ1,2 as before, we cannot treat µ and θ2 as commuting variables.

Rather, we need some Heisenberg commutation relation such that einθ2 acts on µ by

a shift of 2πin.

The natural guess is that, in situations such as this, the tt∗ equations may define

a hyperholomorphic connection on a non–commutative version of, say, R×T 3 where

at least two torus directions do not commute among themselves. It turns out that

such non–commutative tt∗ geometries are very common for 4 supercharge models

arising from 4d gauge theories, as we shall see later in section 8. In particular,

the 4d theory with spectral curve (8.11) may be modelled by a 2d theory with a

superpotential W such that

exp
(
∂XW (X)

)
=

Θ(X + µ′/2, τ)

Θ(X − µ′/2, τ)
. (3.74)

For µ′ small this gives

W (X) = µ′ log Θ(X, τ) +O(µ′
2
), (3.75)

whose tt∗ geometry may be meaningful only in the non–commutative framework.

Another situation where a non-commutative tt∗ geometry may appear is a 2d-

4d system in the presence of Nekrasov deformation in the transverse plane to the

defect and/or a supersymmetric Melvin twist in the tt∗ compactification. The two

are related because the Nekrasov deformation parameter behaves as a 2d twisted
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mass for the rotation (plus R-charge rotation) in the plane transverse to the defect,

which is used to define the Melvin twist. In such a situation, the electric and magnetic

Wilson lines cease to be commutative variables. The corresponding non-commutative

version of the tt∗ geometry should be related to the motivic Kontsevich-Soibelman

wall-crossing formula.

A full discussion of the non–commutative tt∗ geometries is outside the scope

of the present paper. Here we limit ourselves to a general discussion of how non–

commutative structures could possibly emerge from the standard tt∗ machinery.

3.4.1 tt∗ geometry for the models (3.71)(3.75)

In these examples the chiral field X takes values in a complex torus E of periods

(1, τ), that is, we periodically identify

X ∼ X + k + τm, k, m ∈ Z. (3.76)

For definiteness, we choose Θ ≡ θ3 which vanishes at the point Xcr = (1 + τ)/2.

Since the superpotential is not univalued in E, to defined the tt∗ geometry we must

lift the model to a cover where W is well defined; in the process we get infinitely

many copies of the single vacuum. However in this case there are more copies of the

vacuum than just the lattice translates X0 +(k+mτ), k,m ∈ Z. For instance for the

model (3.71), since µ is a periodic variable, the actual equation defining the classical

vacua is [25]

exp
[
∂XW (X)

]
= 1. (3.77)

The lhs is a holomorphic function in E \ (1 + τ)/2 with an essential singularity at

the point Xcr. = (1 + τ)/2. By the Big Picard theorem, the equation equation (3.77)

has infinitely many solutions in any open neighborhood of the point (1+τ)/2. These

solutions may be interpreted as cover copies of the vacuum due to the non–trivial

monodromy around the point Xcr..

The monodromy action. To be systematic, we consider X as a field taking value

in the Kähler manifold K = E \Xcr. and go to its universal cover K̃ on which W is

defined as a univalued function by analytic continuation. Let M be the monodromy

group of the cover K̃ → K, which is identified with π1(K); we need to know how it

is represented on the vacuum bundle V → K. Indeed, the monodromy group acts by

symmetries just as in the ordinary periodic case. For definiteness we choose X = 0

as the base point, and consider the homotopy group of paths based at the origin,

π1(K, 0). This group is generated by three loops u1, u2, ` subject to a single relation

` = u−1
2 u−1

1 u2u1, (3.78)

where

u1 = t mod Z + Zτ, u2 = tτ mod Z + Zτ, 0 ≤ t ≤ 1, (3.79)
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and ` is a loop which starts from the origin, go to the point (1 + τ)/2 along the

segment connecting the two points, make a counter–clockwise loop around the point

(1 + τ)/2 and then returns back to the origin along the segment.

One consequence of eqn.(3.78) is that — if the monodromy along the loop `,

M`, acts non–trivially on the vacuum bundle V — the two basic lattice translations

X → X+1 and X → X+τ do not commute. In the simplest periodic models we set

the spectrum of the lattice translation operators to be exp(2πixi); in the present case,

M` 6= 1 implies that the two translations cannot be diagonalized simultaneously on

the vacua and hence the vacuum angles x1 and xτ cannot be simultaneously defined.

As in the standard periodic case, the action of the monodromy on the vacuum

bundle is induced by the action of the monodromy on the superpotential W . Hence,

let us consider the monodromy action on W . To encompass both models (3.71)(3.75)

in a single computation, we consider the superpotential

W (X) = µ′ log Θ(X, τ)− µX. (3.80)

On K̃ we introduce the meromorphic sl(3,C) connection (we set θ(x) ≡ θ3(πx))

A =

 0 d
(
µ′ θ

′

θ
− µ

)
0

0 0 dx

0 0 0


and look for solutions to

dΨ = ΨA. (3.81)

A fundamental solution is

Ψ =

1
(
µ′θ′(x)
θ(x)

− µ
)
W

0 1 x

0 0 1

 (3.82)

with W is as in eqn.(3.80). The general solution is then given by MΨ with M a

constant matrix. Let γ ∈ π1(K, 0) be a closed loop. The analytic continuaion of the

solution Ψ along γ, Ψγ, is also a solution to the above linear problem, and hence

there exists a constant 3× 3 matrix Mγ such that

Ψγ = MγΨ. (3.83)

The matrices Mγ are upper triangular with 1’s on the main diagonal. The map

π1(K, 0) → SL(3,C) given by γ 7→ Mγ is the monodromy representation we are in-

terested in. Let us compute the monodromy representation of the generators u1, u2, `

Mu1 =

1 0 −µ
0 1 1

0 0 1

 Mu2 =

1 −2πiµ′ −(µ+ iπµ′)τ

0 1 τ

0 0 1

 M` =

1 0 −2πi µ′

0 1 0

0 0 1

 .

(3.84)
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One checks that these matrices satisfy the group relation (3.78), and hence give

a representation of the group π1(K). The matrix M` is a central element of the

monodromy group–algebra generated by Mu1 , Mu2 . Hence we may diagonalize its

action on the vacuum bundle introducing the q–vacua

M`|q〉 = q |q〉 (3.85)

(we use the same symbol to denote a monodromy matrix and the operator imple-

menting it on V). Then in the q sector the cover group–algebra becomes identified

with the quantum torus algebra (Mi ≡ Mui)

M2M1 = qM1M2. (3.86)

The vacuum bundle V over (the universal cover of) coupling constant space may

be decomposed into M`–eigenbundles

V =
⊕
q

Vq. (3.87)

Since the tt∗ geometry is described by equations written in terms of commutators,

and M` is central and a symmetry, the tt∗ equations do not couple eigenbundles Vq
with different q. Hence we may fix q and discuss the geometry in that sector. In other

words, we get a family of tt∗ geometries labelled by the value of q. In the vacuum

eigenbundle with q = 1 (if it exists at all), we see from eqn.(3.86) that we may

diagonalize simultaneously the lattice translation operators M1 and M2. Calling, as

before, exp(2πixi) their respective eigenvalues, we get the standard commutative tt∗

geometry (triply–periodic instantons). If we deform the parameter q away from its

‘classical’ value q 6= 1, the lattice translation operators, M1 and M2, do not commute

any longer, and we get triply–periodic instanton on a non–commutative deformation

of the previous geometry, namely on the quantum torus obtained by deformation á

la Moyal of the usual commutative torus

e2πix2 e2πix1 = q e2πix1 e2πix2 .

The value of q. The obvious question at this point is what is the physically

natural value of the non–commutativity parameter q. Although geometrically it

makes sense to speak of generic q ∈ C∗, we expect that the physical problem selects

a definite value for q. Leaving a more complete analysis for future work, here we

focus on the simplest thimble amplitudes for the 4d theories modelled by the effective

superpotential (3.75), in the UV asymmetric limit defined at the end of §. 2. In this

limit the vacuum wave functions may be identified with exp(−ζW ) ξa where ξa are

closed forms dual to the Lefschetz thimble cycles Da. If we define the branes Da

so that the corresponding cycles are invariant under the monodromy along the path
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`, then the action of M` on these vacua will be given by its action on the factor

exp(−ζW ) and hence

q e−ζW = M` e
−ζW ≡ e2πiζµ′ e−ζW . (3.88)

In particular, at ζ = 1 we get

q = e2πiµ′ . (3.89)

As we will mention in section 8 this result is in agreement with what one finds for

the tt∗ geometry arising in 4d models.

4 Spectral Lagrangian manifolds

To the tt∗ geometry of any (2, 2) system there is associated a spectral Lagrangian

manifold. The details vary slightly in the various cases so we treat them one at a

time.

4.1 Ordinary models

For an ordinary (2, 2) model (finitely many vacua, globally defined superpotential)

the tt∗ equations for one complex coupling t reduce to the Hitchin equations

Dt̄Ct = [Dt, Dt̄] + [Ct, C t̄] = 0, (4.1)

which, in particular, imply that the eigenvalues λ(t)j of the matrix Ct are holomorphic

functions of t. The spectral curve encodes the holomorphic functions λ(t)j; it is

simply the curve in C2

det
(
Ct(t)− s

)
= 0. (4.2)

In the case of several couplings ti (i = 1, 2, . . . , g), the tt∗ equations say that

the various Ci’s commute and are covariantly holomorphic, DjCi = 0. Then the Ci’s

may be simultaneously diagonalized (more generally, simultaneously set in the Jordan

canonical form) and moreover the corresponding eigenvalues depend holomorphically

on the tj’s. The spectral manifold L encodes the g–tuples of eigenvalues of the Ci’s

associated to a common eigenvector ψ, that is,

L =
{

(s1, . . . , sg, t1, . . . , tg) ∈ C2m
∣∣∣ ∃ψ 6= 0 s.t.

(
si − Ci(tj)

)
ψ = 0

}
. (4.3)

Clearly L ⊂ C2g is a complex submanifold. It is also a Lagrangian submanifold with

respect to the holomorphic symplectic form

ω =
∑
i

dsi ∧ dti. (4.4)

To see this, notice that the spectral manifold is purely a property of the underlying

holomorphic TFT. We may assume to be at a generic point in parameter space
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where the chiral ring R is semisimple. Then the eigenvalue of Ci associated to the

k–th indecomposable idempotent of R is simply ∂Ckk/∂ti where C is the tt∗ matrix

introduced in ref.[27]. (In the particular case of a LG model, Ckk is just W (k), the

superpotential evaluated on the k–th classical vacuum configuration). Hence, locally

on the k–th sheet, the equations of L take the form

si =
∂

∂ti
Ckk, (4.5)

and L is a Lagrangian submanifold. For a LG model it may be simply written as

si = ∂W (Ya, ti)/∂ti ∂W (Ya, ti)/∂Ya = 0. (4.6)

The spectral manifold gives half of the spectral data which labels uniquely a

solution of Hitchin’s equations or of the higher-dimensional generalizations. The

other half is a holomorphic line bundle on L. The line bundle can be defined as the

eigenline associated to each point of the spectral manifold.

4.2 Periodic models

Let us consider first the case in which we have a single triplet of parameters (a

complex t together with a vacuum angle x). Just an in the ordinary case, the

spectral curve L encodes the spectrum of the linear operator Ct(t) which depends

holomorphically on t. Hence the spectral curve is given by the same Hitchin formula

as before, eqn.(4.2)

L : Det
[
Ct(t)− s

]
= 0. (4.7)

The only novelty is that now Ct(t) is not a finite matrix, but rather a linear differential

operator of the form
∂

∂x
+Bt(t), (4.8)

and the matrix determinant gets replaced by a functional determinant in the Hilbert

space L2(S1, dx)⊗ Cn of vector functions of period 1. The expression

Det
[
Ct(t)− s

]
≡ Det

[
∂x +Bt(t)− s

]
(4.9)

is simply the partition function, twisted by (−1)F , of a system of one–dimensional

free Dirac fermions with mass matrix Bt(t)−s. Hence the spectral curve has equation

Det
[
∂x +Bt(t)− s

]
=
∏
j

(
e(λj(t)−s)/2 − e(s−λj(t))/2

)
= 0, (4.10)

where λj(t) are the eigenvalues of Bt(t). Usually one writes this equation in the form

det
[
es − eBt(t)

]
= 0. (4.11)
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Since Bt(t) (say for a periodic LG model) is a diagonal matrix whose kk–entry is ∂tW

evaluated on the k–th (reference) classical vacuum (cfr. eqn.(3.6)), eqn.(4.11) has the

same form as the ordinary Hitchin curve (4.2) but with all quantities exponentiated.

This ‘exponentiation’ is no mystery: the two formulae (4.2) and (4.11) are identical

provided one keeps into proper account the role of the Hilbert space L2(S1, dx). Thus

the spectral manifold is a Lagrangian sub manifold in C× C∗.

The case of several triplets of couplings ti, xi, (i = 1, . . . , g) is similar. The

spectral manifold L is again given by the usual tt∗ equation (4.3), with the only

specification that the Ci are differential operators and ψ is a non–zero eigenvector in

Cn ⊗ L2
(
(S1)g, dx1 ∧ · · · ∧ dxg

)
, (4.12)

(n being the number of vacua in a reference sheet). The eigenvector equations for ψ

have the form (
∂xr +Br(t)− sr

)
ψ = 0, r = 1, . . . , g, (4.13)

whose non–zero solutions are

ψ = exp
(∑

r
xr
(
sr −Br)

)
ψ0, 0 6= ψ0 ∈ Cn, (4.14)

(we have used the fact that the matrices Br commute). The condition that ψ belongs

to the Hilbert space (4.12) may be written in the form{
(es1 , . . . , esg , t1, . . . , tg) ∈ (C∗)g × Cg

∣∣∣ ∃ 0 6= ψ0 ∈ Cn s.t.
(
esi − eBi(tj)

)
ψ0 = 0

}
(4.15)

which is the same as the ‘exponentiation’ of the spectral manifold equations.

Eqn.(4.15) gives the spectral manifold equations for the general periodic case.

Again, L ⊂ (C∗)m × Cm is a complex submanifold which is also Lagrangian for the

symplectic structure (Si ≡ esi) ∑
i

dSi
Si
∧ dti. (4.16)

In view of the definition of the matrices Br, eqn.(3.6), the proof is the same as in the

ordinary case, and will be omitted.

In particular, for a periodic LG model (with periodic couplings), eqn.(4.6) gets

replaced by its ‘exponentiated’ version

exp
(
si
)

= exp
(
∂W (Ya, ti)/∂ti

)
∂W (Ya, ti)/∂Ya = 0. (4.17)

In later sections we will encounter special periodic models which arise from the

compactification of 3d gauge theories, for which the couplings ti are also periodic. In
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that case, the spectral manifold is naturally defined in (C∗)2g rather than (C∗)g×Cg,

with symplectic form (Si ≡ esi ,Ti ≡ eti)∑
i

dSi
Si
∧ dTi
Ti
. (4.18)

We will denote these models as “3d periodic models”.

4.3 Doubly–periodic models

The doubly–periodic case is similar, except that the Ci’s are now differential operators

of the form

Ci = ∂x1,i + ρi ∂x2,i +Bi. (4.19)

We consider first the case of just four parameters (a complex t and two vacuum

angles x1 and x2). Assuming Im ρ > 0, we introduce a complex coordinate ζ such

that

(ρ− ρ̄) ∂ζ = ∂x1 + ρ ∂x2 , (4.20)

which takes values in a torus of periods 1 and τ ≡ −ρ̄. The spectral curve takes the

form

Det

[
∂ζ +

B − s
ρ− ρ̄

]
= 0. (4.21)

The lhs is now the partition function of a system of 2d chiral fermions on a torus

of modulus τ coupled to a background gauge connection Aζ = (B − s)/(ρ− ρ̄). The

spectral curve may be then written as

det θ1

(
s−B
ρ− ρ̄

∣∣∣∣− ρ̄) = 0, (4.22)

where θ1(z | τ) is the usual theta function.

In the general case the spectral manifold is

L ≡
{

(si, ti) ∈ A× Cg
∣∣∣ ∃ 0 6= ψ0 ∈ Cn s.t. Θ(si −Bi)ψ0 = 0

}
(4.23)

where A is the Abelian variety where the angular variables are valued in, and Θ is the

basic theta–function for A. All other cases (non–periodic, single periodic) may be

obtained as degenerate limits of this expression. For instance, eqn.(4.11) corresponds

to A being an elliptic curve with an ordinary node, while (4.2) to an elliptic curve

with a cusp.

4.4 Action of Sp(2m,A) on the spectral manifolds

In all cases the spectral manifold L is a (holomorphic) Lagrangian submanifold14 of

a holomorphic symplectic manifold S which is also an Abelian group. It makes sense

14 To avoid misunderstandings, we stress that L is defined as a submanifold, that is, as an abstract

manifold together with a Lagrangian embedding L ι−→ S; in particular, this means a definite choice

of which coordinates we call ti’s (i.e. which coordinates are interpreted as couplings of the QFT).
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to consider the action on L of ambient symplectomorphisms U : S → S. In order

for the transformed manifold U(L) to have a spectral interpretation15, U must be a

group homomorphism of S as well as a symplectomorphism.

In the case of non–periodic models, S is the additive group C2g, and the group of

symplectic homomorphisms is Sp(2g,C) acting on (ti, sj) in the obvious linear way.

For periodic models, the group of transformations compatible with the periodicities

is much reduced. An important exception are 3d periodic models, for which we can

consider Sp(2g,Z) transformations, which preserve the periodicities of the si and ti
variables.

For other periodic models, beyond the boring transformations of the form t→ gt,

s → g−1s, we only have dualities between different types of spectral manifolds. For

example, an S transformation s → t, t → −s may relate the spectral curves for

a Hitchin system on a cylinder and the spectral curve of a periodic monopole: the

former has a periodic t and non-periodic s, the latter has a periodic s and a non-

periodic t.

The symplectic transformations will act both on the spectral manifold L and on

the associated line bundle. Because of the one-to-one correspondence between the

spectral data and the tt∗ geometry, one may suspect the symplectic action should lift

to an action over the tt∗ geometries, and hence on the corresponding supersymmetric

physical theories. Indeed, the lift coincides with the well-known notion of Nahm

transform. We will discuss the Nahm transform and its relation to the tt∗ geometry

in the next section. For now, we would like to examine a more direct physical

interpretation of the symplectic action.

Let’s start with a standard (2, 2) LG model, defined by some superpotential

W (Ya, ti). We can promote the parameters ti to chiral fields Pi, and consider a new

LG model with superpotential

W (Ya, Pi, t̃i) = W (Ya, Pi) +
∑
i

t̃iPi (4.24)

The F-term equations give us

t̃i + ∂PiW (Ya, Pi) = 0 ∂YaW (Ya, Pi) = 0 s̃i = Pi (4.25)

Thus the spectral manifold of the new model is related to the spectral manifold of

the old model by the basic symplectic transformation s̃i = ti, t̃i = −si.
15 More precisely, we mean the following: when U is a group homomorphism, besides a symplec-

tomorphism, one canonically identifies the Lagrangian submanifold U(L) as the spectral manifold

of the tt∗ geometry of another supersymmetric QFT, thus inducing a group action on the field

theories themselves. It would be interesting to see whether one can interpret in a similar way the

action of more general symplectomorphism.
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This can be thought of as a functional Fourier transform at the level of chiral

super-fields, acting on path integrals as

Z[ti]→ Z̃[t̃i] =

∫
DP ge

∫
d2θ

∑
i t̃iPiZ[Pi] (4.26)

It is not hard to check that repeating this step, brings us back to the original theory,

so this is an order 2 operation.

More generally, we can consider a model with superpotential

W (Ya, Pi, t̃i) = W (Ya, Pi) +
∑
ij

Aij t̃it̃j +Bij t̃iPj + CijPiPj (4.27)

to obtain more general symplectic transformations.

Inspired by the Fourier transform, we can describe the action of Sp(2g,C) on

the (2, 2) theories in the following way. Let ωs ≡ (q1, q2, · · · , qg, p1, · · · , pg) be usual

canonical operators acting in the Hilbert space L2(Rg), and let

U =

(
A B

C D

)
∈ Sp(2g,C). (4.28)

Since Sp(2g,C) is the complexification of USp(2g), the linear transformation

ωs 7−→ Ust ωt, (4.29)

is the complexification of an unitary transformation of L2(Rg), and it is implemented

by an invertible operator U . Consider its kernel in the Schroedinger representation

exp
[
κ(q′i, qj;U)

]
= 〈q′i |U | qj〉. (4.30)

Then the action of U ∈ Sp(2g,C) on the space of (2, 2) theories (modulo D–

terms) is given in terms of effective superpotentials as

W (ti) 7−→ WU(t′i), (4.31)

where

exp

(
−
∫
d2z d2θWU(t′i)

)
=

=

∫
TFT path
integral

[dPj] exp

(
−
∫
d2z d2θ

[
W (Pj)− κ(t′i, Pj;U)

])
. (4.32)

We claim that the spectral manifold LU of the transformed (2, 2) model WU(t′i),

as defined is precisely U(L), where U : C2g → C2g is the linear map

t′i = Aijtj +Bijsj,

s′i = Cijtj +Dijsj.
(4.33)
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In this definition we do not specify the precise form of the D-terms for the new

theory. Rather, we consider the action of the symplectic transformation on the space

of (2, 2) QFTs modulo D-term deformations, including possibly integrating away

some of the degrees of freedom if possible. In fact, the detailed form of the D–terms

is irrelevant for tt∗, and we are interested not in the full effective action S[P i] but

only in its topologically non–trivial part16
∫
d2θW (P i)dual.

It is not hard to extend this type of construction to the other types of theories

with four super-charges we consider in this paper, by seeking transformations which

reduce to the above symplectic transformations at the level of a low-energy (2, 2)

LG description. The most important example are the periodic theories associated to

Abelian flavor symmetries. If we gauge some flavor symmetries, we end up promoting

the twisted masses µa to (twisted) chiral super fields σa with linear (twisted) F-term

couplings
∑

a taσa to the FI terms. Thus we recover the symplectic transformation

relating periodic monopole geometries and Hitchin systems on cylinders.

In the special case of 3d periodic geometries, which arise from 3d N = 2 gauge

theories compactified on a circle of finite size to a 2d theory with (2, 2) symmetry,

the Sp(2g,Z) action on the spectral curve lifts all the way to Witten’s Sp(2g,Z)

[77] action on 3d SCFTs equipped with a U(1)g flavor symmetry, generated by the

operations of gauging a flavor symmetry and of adding a background CS couplings.

See [46] for a review and further references.

4.5 A higher dimensional perspective

The example of the 3d N = 2 gauge theories is actually very instructive. Although

Witten’s Sp(2g,Z) [77] action can be defined directly in 3d terms, it is more elegantly

described as the action of four-dimensional electric-magnetic duality on half-BPS

boundary conditions for a free Abelian gauge theory with eight supercharges [78].

It is simple and instructive to pursue this analogy here. Let’s go back again

to the 2d (2, 2) LG models with some parameters ti which enter linearly in the

superpotential W (Ya, Pi). This time, instead of promoting the ti to 2d chiral super

fields, we can promote them to the boundary values of some free 3d hypermultiplets.

More precisely, consider a set of free 3d hypermultiplets, decomposed into pairs

of complex scalars (Pi, P̃i), rotated into each other by an Sp(2g) flavor symmetry.

The simplest half-BPS boundary condition B for free hypers sets Dirichlet b.c. for

the P̃i and Neumann for the Pi. The boundary value Pi|∂ of the Pi behaves as a

2d chiral multiplet. If we add the 2d LG theory at the boundary and couple it to

the 3d system through a superpotential W (Ya, Pi|∂) we obtain a deformed half-BPS

boundary condition, which roughly sets P̃i = ∂tiW . In other words, the boundary

condition forces the hypermultiplet scalars (Pi, P̃i)|∂ at the boundary to lie on the

16 We write the non–trivial part of the action as an F–term. Of course, it may be a twisted

F–term as well. The examples in appendix A of [7] have actually twisted dual superpotentials.
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spectral Lagrangian manifold L, with the identification (Pi, P̃i)|∂ = (ti, si) (see [45]

for an higher-dimensional version of this construction).

Up to D-terms, the map from 2d theories to half-BPS boundary conditions is

invertible. Define a boundary condition B̃ by Dirichlet b.c. for the Pi and Neumann

for the P̃i. If we put the 3d theory on a segment, with our boundary condition at

one end and B̃ at the other end, we recover the original 2d theory. At this point,

the symplectic action on 2d theories has an obvious interpretation in the language of

half-BPS boundary conditions: it is the action of the (complexified) hypermultiplet

flavor symmetries on half-BPS boundary conditions.

It is easy to extend this to other situations:

• A 2d (2, 2) theory with Abelian flavor symmetry U(1)g can be transformed into

a boundary condition for a free N = 4 3d gauge theory: start with Neumann

b.c. for the gauge fields and couple them to the 2d degrees of freedom at the

boundary. The inverse operation involves a segment with Dirichlet b.c. for

the gauge field. If we dualize the 3d gauge field we obtain an hypermultiplet

valued in C × C∗ and proceed as before. The duality transformation acts on

boundary conditions as a gauging/ungauging of the Abelian flavor symmetry.

This is related to the Nahm transform relating periodic monopoles and periodic

Hitchin systems.

• A 3d N = 2 theory with Abelian flavor symmetry U(1)g can be transformed

into a boundary condition for a free N = 2 4d gauge theory. The bulk theory

has an Sp(2g,Z) group of electric-magnetic duality transformations which acts

on boundary conditions. This is related to the Nahm transform relating doubly

periodic monopoles.

• A 4d N = 1 theory with Abelian flavor symmetry U(1)g can be transformed

into a boundary condition for a free N = 1 5d gauge theory. The 5d gauge the-

ory can be dualized into a self-dual two-form. The duality transformation acts

on boundary conditions as a gauging/ungauging of the Abelian flavor symme-

try. This is related to the Nahm transform relating triply periodic monopoles

and triply periodic instantons.

Some of these examples we already encountered. Some we will encounter in the

next sections. It is useful to point out that in this setup the bulk theory is always

free and thus well-defined even in 5d.

4.6 Generalized Nahm’s transform and the tt∗ geometry

In the previous two sections we have seen that the tt∗ equations for ordinary, periodic,

and doubly–periodic systems are the higher dimensional generalizations of, respec-

tively, Hitchin, monopole, and self–dual Yang–Mills equations. All these geometries
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get unified in the concept of hyperholomorphic connections on U(N)–bundles over a

hyperKähler manifoldM [16–19], which is possibly invariant under a suitable group

of continuous isometries of M, which reduces the number of coordinates (param-

eters) on which the geometry effectively depends, as well as of discrete isometries

which lead to periodicities of various kinds.

An important tool in the theory of hyperholomorphic bundles and connections is

the generalized Nahm transform [28–34], which relates hyperholomorphic bundles on

certain dual pairs of hyperKähler manifolds (M,X ). The duality typically proceeds

by defining a family of Dirac operators /Dx on M parameterized by a point x ∈ X
and then constructing an hyperholomorphic connection on X from the kernel of

the Dirac operators. A prototypical example of generalized Nahm transform is the

Fourier–Mukai transform [34, 35] whereM and X are a dual pair of Abelian varieties.

Well known simple examples of the Nahm transformation relate monopole solu-

tions on R3 to solutions of Nahm equations, periodic monopole solutions to solutions

of Hitchin systems on a cylinder, instantons on R4 to solutions of algebraic equa-

tions, etc. In all cases where the spectral data can be defined, the generalized Nahm

transform acts as a symplectic transformation on the spectral manifold.

It is not hard to produce a long list of pairs of physical systems (TM, TX ) with

four supercharges with the property that the corresponding tt∗ geometries are hy-

perholomorphic connections related by a Nahm transformation. This is particularly

easy because many examples of Nahm transformations arise in well-known systems

of intersecting D-branes in string theory. In all cases the two theories (TM, TX ) are

always related as we described above, by promoting some background couplings in

one theory to dynamical degrees of freedom in the other theory. For example, if a

periodic monopole geometry is associated to a U(1) flavor symmetry of TM, then TX
will be obtained by gauging that flavor symmetry, and the tt∗ geometry associated

to the corresponding FI parameter gives the dual solution of a Hitchin system on a

cylinder.

We would like to explain now briefly that the generalized Nahm transformation

always coincides with the calculation of the tt∗ geometry for a certain physical system

and that the relation with a Fourier–Mukai transform also has a natural physical

interpretation in the language of half-BPS boundary conditions for theories with

eight supercharges.

Much of the structure of the tt∗ geometry follows directly from general consid-

erations about supersymmetric quantum mechanics (SQM) with four supercharges.

In general, we have a Z2–graded Hilbert space H, with grading operator (−1)F , and

a family of four odd Hermitian supercharges {Qa(t)}t∈X , a = 1, ..., 4, depending on

F-term-type parameters t taking value in some space X . The Qa(t)’s satisfy the

susy algebra

{Qa(t), Qb(t)} = δabH(t). (4.34)
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The tt∗ geometry computes the Berry connection on the bundle over X of the zero–

eigenvectors of H(t), which, as reviewed in the previous sections, is a hyperholomor-

phic connection (or a dimensional reduction thereof).

There is a simple interpretation of the Berry connection on the bundle of vacua.

If we promote the parameters t to dynamical superfields, with a very slow dynamics,

the Berry connection encodes the effect of integrating away the original degrees of

freedom in a Born-Oppenheimer approximation protected by supersymmetry. Re-

member that a massless Euclidean Dirac operator /D, coupled to a gauge/gravitational

background, in even space–time dimensions D = 2m, defines a SQM system with

two supercharges Q1, Q2 under the dictionary

γ5 ↔ (−1)F , /D ↔ Q1, iγ5 /D ↔ Q2, /D2 ↔ H. (4.35)

The supersymmetry of this SQM system enhances to 4 supercharges precisely if

D = 4n, the gravitational background is hyperKähler, and the gauge connection

is hyperholomorphic (in the particular case of D = 4 this means (anti)self–dual).

Indeed, under these conditions the Hamiltonian /D2 is invariant under a Sp(2) R–

symmetry, which geometrically corresponds to the centralizer of the holonomy group

in SO(D). Thus the tt∗ geometry encodes precisely the data required to define

a low-energy supersymmetric dynamics on the parameter space X of the original

theory.

Parsing through the definitions of the generalized Nahm transform (or even of

the standard Nahm transform) makes it clear that the basic steps involving the Dirac

operators /Dx simply coincides with the calculation of the Berry connection for the

N = 4 SQM associated to these Dirac operators. In other words, the Nahm transform

emerges as expected from making the parameters of an N = 4 SQM dynamical.

At this point, we can mimic our previous discussion by making the parameters

t dynamical not as 1d degrees of freedom, but as boundary values of 2d degrees of

freedom. We can add a direction to our system, and promote our 1d system with

four supercharges to an half-BPS boundary of a 2d system with eight supercharges.

We can consider a 2d (4, 4) non-linear sigma model with target space X defined on

a half-space, and couple the boundary values of the 2d degrees of freedom Ti to the

original 1d N = 4 SQM in the obvious way. This produces a half-BPS 17 brane B
for the 2d (4, 4) non-linear sigma model.

This brane obviously captures the same protected information as the original 1d

SQM. For example, we can consider the 2d theory on a segment, with B boundary

conditions at one end and a D0 brane at the other end, i.e. Dirichlet boundary

conditions Ti = ti at the other end. This quantum mechanical system has the same

ground states and Berry connection as the original system.

17More precisely a (B,B,B) brane, a brane which is type B in each complex structure for the

target.
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On the other hand, we can pick a different D-brane D at the other end of the

segment, and thus find a different low energy N = 4 quantum-mechanical system

and a different tt∗ geometry associated to the pair (B,D). For example, we could

pick D to be a space-filling brane in X . Then the 1d system is simply the SQM on

X . If X has a mirror M, we can pick a family of branes Dm dual to D0 branes in

M and thus obtain a family of SQM whose Berry connection is a hyperholomorphic

connection on M.

This is just the action of mirror symmetry on half-BPS branes in the (4, 4)

non-linear sigma model. Mirror symmetry can be interpreted as a Fourier–Mukai

transformation, with a kernel which defines a special BPS “duality interface” between

the X and M non-linear sigma models.

4.7 An explicit example

The above structures may be elementarily illustrated in a 1d N = 4 Landau–

Ginzburg model which, as discussed above, may be identified with a Dirac operator

coupled to a hyperholomorphic connection. For simplicity we assume there is just one

chiral field Y . Identifying the SQM Hilbert space with the space of square–integrable

differential forms on C, the supercharges in the Schroedinger representation are [36]

Q̄ = ∂̄ + ∂W∧, Q = ∂ + ∂̄W̄∧ (4.36)

together with their Hermitian conjugates. The vacuum wave–functions are 1–forms

ψj1 dY + ψj2 dȲ , (4.37)

and the solutions to the zero–energy Schroedinger equation HΨ = 0 may be identified

with solutions of the negative–chirality Euclidean Dirac equation in R4 ' C2,

1

2
(1− γ5) /DΨ = 0, (4.38)

or, more explicitly, (
∂Ȳ ∂Z̄ − ∂YW

∂Z + ∂Ȳ W̄ −∂Y

)(
ψj1
ψj2

)
= 0, (4.39)

which are invariant under the translations in the additional complex coordinate Z

(which may be assumed to take value in a compact torus). The Dirac operator in

eqn.(4.39) is coupled to a U(1) connection on C2

AZ = ∂Ȳ W̄ , AY = 0. (4.40)

which is self–dual. Indeed18,

/D− /D+ ≡
(

∂Ȳ ∂Z̄ − ∂YW
∂Z + ∂Ȳ W̄ −∂Y

)(
−∂Y −∂Z̄ + ∂YW

−∂Z − ∂Ȳ W̄ ∂Ȳ

)
=

=
(
− ∂Z̄∂Z − ∂Ȳ ∂Y + |∂YW |2

)
12.

(4.41)

18 Here /D± = (1− γ5) /D/2.
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Given a family Aµ(t) of self–dual U(N) connections depending on parameters ti,

the Nahm procedure requires to solve the chiral Dirac equation

(1− γ5)γµ
(
∂µ + Aµ(t)

)
Ψj = 0. (4.42)

In the present LG example the connection is Abelian, N = 1, and the ti’s are

the couplings in the superpotential W . The normalizable zero–modes Ψj,which are

automatically invariant by translation in the dumb coordinate Z, define a bundle

over parameter space which is endowed with the natural induced connection. By

definition, this is the Nahm transformed connection of the LG one (4.40). Since the

zero–modes Ψj are precisely the susy vacua, the (translationally invariant) Nahm

bundle is the susy vacuum bundle, whose rank k is the Witten index of the LG model.

Thus the Nahm connection coincides with the tt∗ one. By general tt∗ theory, the

connection is hyperholomorphic and invariant by translation in half the directions.

Now we take this tt∗ geometry as the definition of a new N = 4 SQM sys-

tem, by viewing the Dirac operators coupled to the tt∗ Berry connection as the new

supercharges.

For instance, for the one–dimensional family of LG models W (Y ) = W0(Y )−PY ,

parametrized by the coupling P , the supercharge corresponding to /D− is

/D−
∣∣∣
tt∗
dual

=

(
DP −CP + Y

CP − Y −DP

)
, (4.43)

where now Y is a free parameter (a dual coupling). Note that the connection in

eqn.(4.43) satisfies the tt∗ equations (with the same tt∗ metric) for all values of Y .

The equation for the susy vacua of the dual theory

Q
∣∣∣
tt∗
dual

Ψ ≡ /D−
∣∣∣
tt∗
dual

Ψ = 0 (4.44)

has a single normalizable solution which defines the vacuum line bundle L over the

space CY ×CZ which is invariant by translation in the fictitious Z direction. The tt∗

connection on L is just JdW , where J is the quaternionic imaginary unit in H ' C2.

We have thus recovered the original LG model.

We close this subsection noticing that while eqn.(4.44) has (for any given value of

Y ) a single normalizable solution, it has several physically interesting non–normalizable

solutions. Indeed, let Π be a D–brane amplitude of the original LG model with phase

ζ = eiθ. It is easy to check that the ‘right spinor’

Ψ =

(
Dt Π

Ct Π

)
≡ −ζ

(
Ct Π

Dt Π

)
, (4.45)

satisfies the tt∗–dual chiral Dirac equation at Y = 0

/D−
∣∣∣
tt∗ dual

Ψ = 0. (4.46)
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4.8 Review of the flat Nahm transform in R4n−k × T k

The Nahm transform was originally introduced as a generalization of the ADHM

construction of U(N) self–dual connections in R4 [37]. One looks for instantons

in the flat hyperKähler space R4 which are invariant under a group of translations

Λ ⊂ R4 [33]. As a group, Λ is isomorphic to Rk×Zl for some k, l with k+ l ≤ 4; the

Λ–invariant instantons may be seen as field configurations of a (4− k)–dimensional

theory which are periodic in l directions, or equivalently theories defined on the

quotient (4 − k)–fold M ≡ R4/Λ . It is well known that for k = 1, 2, 3 and 4,

the self–dual Yang Mills equations reduce, respectively, to monopole [38], Hitchin

[6], Nahm [28, 29], and the ADHM algebraic equations [37]. The monopoles (resp.

Hitchin, or Nahm fields) are then taken to be periodic in l directions.

Let Λ∨ ⊂ (R4)∨ be the dual group of Λ, i.e.

Λ∨ = {α ∈ (R4)∨ | α(λ) ∈ Z ∀λ ∈ Λ} ' R4−k−l × Zl. (4.47)

The (flat) Nahm transform maps a U(N) instanton on R4 invariant under Λ into

a U(K) instanton on the dual (R4)∨ invariant under the dual group Λ∨ [33], which

for k = 0, 1, 2, 3, 4 concretely means a l–fold periodic solution to, respectively, the

ADHM, Nahm, Hitchin, monopole, and YM self–dual equations. The dual solutions

are allowed to have singularities of the appropriate kind [33].

Comparing with section 3, we see that the one coupling tt∗ geometry corresponds

to this R4/Λ setting with

• Λ = R2 for ordinary (2, 2) models;

• Λ = R× Z for periodic models [39];

• Λ = R× Z2 for 3d version of periodic models [40]

• Λ = Z2 for doubly periodic models [41].

We review the R4/Λ construction for Λ a rank 4 lattice, so that M is a torus

T 4. All other cases, including the ones relevant for this paper, may be obtained from

the T 4 one by sending some periods of the torus to either zero or infinity. The dual

torus will be denoted as T̃ 4 and its coordinates as t̃µ. By definition, the dual torus

T̃ 4, which can be viewed as T-dual of T 4, parametrizes the family of flat Abelian

connections on the original T 4. Given a self–dual U(N) connection A on T 4 we may

twist it by the flat U(1) connections, forming the family of Dirac operators

/Dt̃ = γµ
(
∂µ + Aµ + 2πi t̃µ) (4.48)

parametrized by points t̃ ∈ T̃ 4. The twisted connection is still self–dual, and /Dt̃ may

be seen as a supercharge of a N = 4 SQM system to which tt∗ geometry applies.

Assuming all susy vacua have the same (−1)F grading, over the ‘coupling constant
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space’ T̃ 4 we have a vacuum bundle, of rank K equal to the Witten index (≡ ind /Dt̃)

and whose Berry connection is hyperholomorphic, as we reviewed in the previous

sections. This Berry connection is precisely the Nahm transform of Aµ.

From the SQM interpretation, it is clear that the Nahm transformed connection

has singularities of a rather standard form: the singularities appear at the loci in

coupling constant space T̃ 4 where the energy gap vanishes and the SQM vacuum

states mix with the continuum. tt∗ is an IR description, and as all IR descriptions,

should get in trouble at points where new light degrees of freedom appear.

All the above may be generalized to the higher dimensional case. We have a

pair of dual even–dimensional Abelian varieties A and A∨ each one parametrizing

the flat U(1) connections of the other one. A, A∨ are flat hyperKähler manifolds.

A hyperholomorphic connection on A may be twisted by the flat Abelian family

parametrized by A∨, giving a family of N = 4 SQM models whose tt∗ geometry

defines a hyperholomorphic connection on A∨ which is the Nahm transformed one.

At the level of the correspondent coherent sheaves, it coincides with the Fourier–

Mukai transform [34, 35].

4.9 Some examples from D-branes

As highlighted in this section, much of the tt∗ structure only relies on an N = 4 super

quantum mechanics. Some structure, of course, hinges on having a (2, 2) 2d theory:

for example the spectral Lagrangian is tied to the twisted effective superpotential of

the 2d theory in flat space. The notion of topological gauge for the tt∗ connection

is also closely related to the existence of a 2d cigar geometry which maps chiral

operators to states on the circle. Still, the structure which remains in a 1d setup

is rather interesting, especially if we consider the generalization to 1d-3d systems,

i.e. to half-BPS line defects in 3d N = 4 theories. Such defects preserve the same

supersymmetry of an N = 4 SQM and may have flavor symmetries or parameters

which give rise to a tt∗ geometry. This is essentially a dimensional reduction of the

2d-4d systems reviewed in a previous section.

The first obvious example is a massive 1d chiral field. There are three real

mass parameters mi and the 2d calculations make it clear that the tt∗ geometry is a

charge 1 U(1) Dirac monopole in R3
m. Notice that the Higgs field in the tt∗ monopole

geometry is essentially the moment map for the flavor symmetry. This is why it

diverges at ~m = 0, where the chiral field is massless.

In order to obtain a smooth SU(2) monopole solution we can look at a SQM

with CP 1 target, study the dependence on the SU(2)m flavor mass parameters ~m.

The theory has two vacua which when the mass parameter is turned on roughly

corresponding to the north and south pole of CP 1. At large |~m|, the dynamics in

the two vacua is well approximated by a single free chiral of charge ±1. The theory

has no non-compact directions at any value of ~m. Thus the tt∗ geometry for ~m is

a smooth SU(2) monopole with Abelian charge (1,−1) at large ~m, i.e. a single
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smooth SU(2) monopole. Notice that the asymptotic values of the Higgs field are

given by the value of the moment map for (the Cartan sub algebra of) the SU(2)

flavor symmetry, which are ±t, where t is the FI/Kähler parameter for the CP 1

theory. Thus t controls the asymptotic values of the monopole geometry.

Conversely, the tt∗ geometry for the FI/Kähler parameter t is given by a solution

of SU(2) Nahm equations on R+, which are the Nahm transform of a pair of U(1)

Dirac monopoles of charge 1, at positions ±1
2
~m. At large t the two vacua again cor-

respond roughly to the north and south poles of CP 1. If we use a GLSM description,

the two vacua require the three scalar fields in the gauge multiplet to be equal to

±1
2
~m. We expect to find a solution of Nahm equations with a Nahm pole at the

origin of R+, and constant diagonal vevs (1
2
~m,−1

2
~m) at infinity.

In order to generate more examples, we can look at the standard Hanany-Witten

brane setup, with D3 branes stretched between NS5 branes, probed by a transverse

D1 brane. Indeed, this setup gives 3d N = 4 field theories probed by 1d line defects,

which can be interpreted as coupling the 3d theories to some 1d GLSMs or as the

1d version of Gukov-Witten monodromy defects.

Depending on the choice of boundary conditions on the D1 brane, which may be

realized concretely by having it end on a separate NS5 brane or D3 brane on a plane

parallel to the system, one can get 1d defects with mass parameters corresponding

to a motion parallel to the NS5 branes, of FI parameters corresponding to a motion

along the D3 branes. For example, the 1d chiral can be engineered through a single

semi-infinite D3 ending on a single NS5 brane, with a D1 brane with fixed position

~m along the NS5 brane transverse directions. The t geometry for the 1d CP 1 model

can be engineered by two semi-infinite D3 branes ending on a single NS5 brane, with

a D1 of fixed position t along the D3 branes. Then ~m is the separation between the

D3 branes.

In order to engineer the ~m tt∗ monopole geometry directly, we could look at a

single D3 brane stretched between two NS5 branes, with a D1 probe of fixed position

~m along the NS5 brane transverse directions. Then t is the separation between the

NS5 branes. This setup realizes the smooth SU(2) monopole geometry, but not

through a CP 1 1d model. Instead, the physical interpretation of the brane system

seems to be that of a single 1d chiral coupled to a 3d U(1) gauge field. It would

be interesting to study this simple field theory model further: the prediction that

such model should have two vacua, corresponding to the D1 ending on either NS5

brane, is reminiscent to a somewhat mysterious phenomenon which occur for certain

surface defects [14].

In general, the tt∗ geometry for the brane systems is recovered by S-duality: the

D1 brane becomes an F1 string, whose endpoint explores the supersymmetric gauge

fields on a system of intersecting D3 and D5 branes: the gauge fields on the D3

branes give the solutions of Nahm equations, the gauge fields on the D5 branes give

the BPS monopole solutions.
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The world volume theory of the D1 brane could be interpreted as the 2d (4, 4)

theory coupled to the 1d system as in section 4.5, with the choice of boundary

conditions on the other end deciding which Nahm dual description emerges at the

end.

The brane construction reviewed in this section has obvious generalizations which

are commonly used to describe higher-dimensional theories and defects:

• A D2 probe of a D4-NS5 system engineers 2d theories or 2d-4d systems. The

boundary conditions on the other end of the D2 probe correspond to gaug-

ing/ungauging a 2d flavor symmetry. The D2 probe theory is exactly the 3d

free YM theory discussed in section 4.5. Lift to M-theory gives the spectral

data of the system.

• A D3 probe of a D5-NS5 system (or a more general (p, q) fivebrane web) en-

gineers 3d theories or 3d-5d systems. The D3 probe theory is exactly the 4d

free YM theory discussed in section 4.5. T-duality together with a lift to M-

theory produces the spectral data of the system. We will discuss this in detail

in section 6.3.

• A D4 probe of a D6-NS5 system (the Hanany-Zaffaroni setup [80]) engineers

4d theories or 4d-6d systems. The D4 probe theory is exactly the 5d free

YM theory discussed in section 4.5. Double T-duality together with a lift to

M-theory produces the spectral data of the system. Single T-duality gives a

periodic (p, q) fivebrane web. We will discuss this in detail in section 8.

5 tt∗ geometry in 3 dimensions

In this section we would like to characterize the geometry of vacuum bundles in

theories in 3 dimensions, with N = 2 supersymmetry. More precisely we are inter-

ested in studying the vacuum geometry when the space is taken to be a flat T 2 with

periodic boundary conditions for fermions, so as to preserve all supersymmetries.

Our strategy will be as follows. We first clarify the structure of the parameter space

taking into account that the space is T 2. We then view the 3d theory as a special

case of 2d N = (2, 2) theories with infinitely many fields, and use this relation to

find the tt∗ geometry in 3 dimensions. We shall see that they correspond to general-

ized monopole equations. We then show how this data can be used to compute the

partition function of the theory on infinitely elongated S3 and S2 × S1 composed of

two semi-infinite cigars joined in two different ways.

5.1 The parameter space

Consider a 3d theory with a global U(1) symmetry. Furthermore we consider the

space to be a flat T 2. In such a case we can associate a three parameter deformations
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of the theory (x, y, z) where z ∈ R denotes the twisted mass associated to the U(1)

symmetry and (x, y) ∈ T 2 denote the fugacities for the U(1) symmetries around the

cycles of the T 2. Another way of saying this is to imagine weakly gauging this U(1)

symmetry. In the N = 2 U(1) vector multiplet we have a U(1) gauge field A′ and a

scalar φ . Then

〈φ〉 = z∫
S1
a

A′ = x,

∫
S1
b

A′ = y,

where S1
a,b denote a basis for the two 1-cycles of T 2. In the limit we turn off the gauge

coupling constant, we can view (x, y, z) as parameters in the deformation space of

the theory (see Fig. 8).

β

R ∫S a1 A'=y

∫S b1A'=x

Figure 8: In the 2+1 dimensional theory we take the space to be T 2 comprised of

two circles (S1
a, S

1
b ) of lengths (R, β) where we turn twisted by flavor symmetry by

y, x respectively (by turning on background field A′ coupling to the flavor current).

If we have a rank r flavor symmetry, the same argument, i.e., weak gauging

and giving vev to the adjoint φ in the Cartan subalgebra of the flavor group and to

Wilson lines in the Cartan torus, shows that we have a parameter space

(T 2 × R)r.

Taking into account the full symmetry of the problem amounts to dividing the above

space by the action of the Weyl group of the flavor symmetry.

Note that in presence of a U(1) gauge symmetry we have, associated with it,

a global U(1) symmetry (related to monopole number) where the U(1) current is

J = ∗F . The twisted mass in this case corresponds to FI-term for the U(1) gauge
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symmetry, while the coupling constant corresponds to coupling the U(1) gauge field

A to a background U(1) gauge field A′ with a Chern-Simons interaction∫
A′ ∧ F

and the vevs of A′ along the two S1’s give the (x, y) parameters. The FI parameter

plays the role of m. At any rate, applying the logic of the previous discussion (as a

special case) to a theory which includes a gauge symmetry U(1)r will lead again to

a parameter space (T 2 × R)r.

5.2 Derivation of 3d tt∗ geometry from 2d perspective

In this section we show how to derive the equations for tt∗ geometry for 3d by viewing

it from the 2d perspective. What we will show is that from the 2d perspective for

each U(1) symmetry the fundamental group of the parameter space receives an extra

Z, since the 2d superpotential restricted to that sector will pick up an extra term

nt where n ∈ Z and t is a 2d coupling associated to U(1). Once we show this, the

structure of the 3d tt∗ falls in the class discussed in sections 3 where we obtained the

generalized monopole equations.

The argument for this is as follows: Suppose we have a U(1) global symmetry in

3d. Consider compactifying the theory from 3d to 2d on S1
a with fugacity y around

the circle for the U(1). Then we obtain a N = (2, 2) theory in 2 dimensions, which

includes a chiral deformation parameter given by

t = z + iy.

Note that t takes values on a cylinder because y is periodic. On a space R, this

2d theory will in addition have sectors Hn corresponding to U(1) charge n. The

supersymmetry algebra has a central term in this sector given by nt. To see this,

note that for a theory in 3 dimensions, if we take the space to be R×R and consider

a sector with flavor U(1) charge n, the fact that we have turned on the twisted mass

parameter would have implied the central charge to be nz. Upon compactification

of R to a circle S1
a turning on fugacity y, given the holomorphic dependence of

W on t, the central charge in the supersymmetry algebra, which is the value of the

superpotential in this sector, must be completed to nt, as was to be shown. Therefore

we are in the category of 2d theories where the vacua have a shift symmetry along

which W changes by an integer times a complex parameter and, as we have already

discussed, this leads to generalized monopole equations for the tt∗ geometry. Note,

in particular, that turning on the fugacity x around the second circle S1
b corresponds

to weighing the n vacua by

|α, n〉 → exp(2πixn)|α, n〉.
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In other words

|α, x〉 =
∑
n

exp(2πinx)|α, n〉,

which is consistent with the definition of x–vacua discussed in section 3. We therefore

see that the tt∗ geometry for 3d N = 2 theories corresponds to generalized monopole

equations.

5.3 Chiral algebra and line operators

Consider the 3d theory compactified on S1
a, on a circle of size Ra. This leads to an

N = (2, 2) theory in 2d. Let us take a generic case where we will have n vacua with

mass gap where n is the Witten index of the theory. From the 2d perspective we

expect to have a chiral algebra with n elements. These chiral fields should correspond

to line operators from the 3d perspective wrapped around S1
a. Clearly they are

localized over a point in 2d, so they could be in principle either point operators in 3d

or line operators. The fact that their coupling involves
∫
d2θ tiΦi, and the imaginary

part of t is a global parameter y having to do with the holonomy around the S1
a,

shows that the operator must be a loop operator wrapping S1
a and coupled to this

global holonomy (see Fig. 9). Note that the algebra they form will depend on the

radius Ra.

In the case of supersymmetric gauge theories, these line operators correspond to

supersymmetric Wilson lines. See a nice discussion of them in [43]. In particular in

the case of pure N = 2 Chern-Simons gauge theory, where the theory is equivalent

to a topological theory, this algebra is isomorphic to the Verlinde algebra. We will

return to this discussion after considering the partition functions of these theories on

spheres which we now turn to.

5.4 Geometry of T 2 and partition functions on elongated S2 × S1 and S3

In this section we discuss the global interpretation of the partition functions com-

putable using tt∗ geometry in 3d. The geometry of the space is captured by the

two-torus S1
a × S1

b . For most of the discussion we would be interested in a rectan-

gular torus. In particular if τ is the complex structure parameter for the torus, we

take τ1 = 0, τ2 = Ra/Rb, in other words τ = iRa/Rb. The reason for the choice of

rectangular torus is that if we set the τ1 6= 0 we would not have a reduction to a

Lorentz-invariant 2d theory. One can in principle also study this extension (which

will induce some non-commutativity structure from the 2d perspective if we are dis-

cussing any amplitude other than vacuum amplitudes), but for simplicity we limit

our discussion mainly to the rectangular case. In addition to τ the geometry of the

torus is characterized by its area A = RaRb. Clearly there is an isomorphism of the

theory which takes

(τ, A)→ (−1/τ, A),
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i∣i a

i

Figure 9: Vacuum states in the 3d theory |i〉a can be obtained by doing a path-

integral on an infinitely long solid torus, which is equivalent to an infinitely long cigar

times a circle. The chiral fields in 2d are obtained by wrapping the line operator

along the circle S1
a, i.e. the circle in the solid torus which is not contracted.

by simply switching the role of the two circles.

There are two inequivalent ways we can view this theory as a 2d theory, depend-

ing on whether we take S1
a or S1

b as part of the spatial direction of the 2d theory. Of

course, the geometry of the vacuum bundle does not depend on this choice. However,

the tt∗ has more information than just the vacuum geometry: It has also a choice of

preferred sections for the vacuum bundle given by semi-infinite cigar cappings of the

theory. Let us take S1
b as part of the 2d spatial directions which are taken to form

a semi-infinite cigar inside which the cycle S1
b shrinks. Then the preferred choice of

the vacuum bundles are labeled by chiral operators on the cigar:

|i〉a

as discussed before for the general case in 2d (see Fig. 9). The label a in the above

state is to remind us that this is the circle we have chosen not to shrink. Moreover

this corresponds to the fact that the line operators are wrapping the a–cycle S1
a.
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j∣ j b

j

Figure 10: The 3d vacuum states can be obtained by filling either of the two

circles, leading to two different bases for the vacua. In this figure |j〉b denotes the

state obtained by inserting a line operator wrapped around the b-cycle.

Similarly, we can consider the 2d theory obtained by viewing S1
a as part of the 2d

spatial dimensions and obtain the states (see Fig. 10):

|j〉b.

If we change τ → −1/τ we come back to the same theory. In other words |i(τ)〉a
should be a linear combination of |j(−1/τ)〉b:

|i(τ)〉a = Si
j(τ)|j(−1/τ)〉b
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More precisely we have, restoring the x, y-dependence

|i(τ), t = z + iy, x〉a = Si
j(τ)|j(−1/τ), t′ = z − ix, y〉b.

Si
j depends on all parameters, but here we are just exhibiting its dependence on τ .

Note that Si
j satisfies

Si
j(τ)Sj

k(−1/τ) = δi
k,

because this operation corresponds to π rotation in 3d (and in particular takes

(x, y) → (−x,−y)), and this acts trivially on the vacua (as can be seen by taking

the large area limit of a square torus and noting that this reflection can be generated

by continuous rotations for which the vacua are neutral). We can also consider the

D-brane boundary conditions, which are in 1-1 correspondence with the number of

vacua (in a massive phase). Let Dc denote one of the boundary states. We then have

Π
c(bb)
i = b〈Dc|i〉b.

Note that from the 3d perspective Π
c(bb)
i is given by a path–integral in a space with

the topology of a solid torus, whose boundary is a T 2 given by the D-brane state

Dc. It is useful to rewrite the boundary states |Dd(−1/τ)〉b in terms of |Dc(τ)〉a.
First we have to recall that Dc depends on ζ which determines which combination

of supercharges it preserves. In going from τ to −1/τ the values of ζ also changes,

as discussed in eq.(3.26): ζ̃ = C(ζ) ≡ 1+i ζ
ζ+i

. Since the theories are the same, the

boundary state should be a linear combination of one another. In fact as we have

already noted these boundary states satisfy are sections of the Lax connection and

therefore there must exist a constant matrix Ec
d such that

|Dζ
c (τ), t = z + iy, x〉a = Ec

d |Dζ̃
d(−1/τ), t = z − ix, y〉b (5.1)

Note that repeating this operation is equivalent to a Z2 spatial reflection. This

implies that E4 = 1 (using the fact that the ground states all have even fermion

number). Indeed with a suitable choice of basis (adapted from the point basis in the

IR) it can be taken to be a diagonal matrix. For simplicity of notation we will not

explicitly write he corresponding phases. Also, we will not explicitly write the ζ in

the definition of states. Sometimes we choose one of the two preferred values ζ = ±1

which are the fixed points of the transformation ζ 7→ C(ζ). We will return to the

significance of this choice later.

We can then compute, as in the general 2d case, the 2d topological metric η and

Hermitian metric g:

η
(aa)
ij = a〈j|i〉a g

(aa)

ij
= a〈j|i〉a.

The topology of the space for both of these computations correspond to S2 × S1
a,

where S2 is a sphere with an infinitely elongated cylindrical neck. The computation

of η, which is a topological invariant, can also be done for a finite size sphere. For
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g
ij

i

j i

S a
1

aa

S 2S 1

Figure 11: The inner product on the Hilbert space restricted to the vacuum states

can be represented by the path-integral on S2×S1 with infinitely elongated S2, where

the chiral and anti-chiral line operators are inserted at the two ends.

the computation of the Hermitian metric the infinite size sphere is crucial. We can

also consider the partition function on S2 × S1
b where the role of a, b are exchanged.

Just as in the general 2d case, eqn.(2.6), we have (see e.g. Fig. 11 for the metric g)

η
(aa)
ij = Π̂

c(aa)
j Π

c(aa)
i

g
(aa)

ij
= Π̂

c(aa)†
j Π

c(aa)
i .

We can also consider capping different circles on the two sides, producing the

3d topology of S3. Notice that now there is no purely topological version, because

S3 does not admit an SO(2) holonomy metric, and thus the amplitude only makes

sense when we consider a S3 with an infinitely long flat neck. Moreover, whether we

choose the topological or the anti-topological theory on either side, the computation

is hard. Let us then consider the inner product of the vacua thus obtained. We

define

Sji(τ) = a〈j(τ)|i(−1/τ)〉b = Sj
k(τ) b〈k(−1/τ)|i(−1/τ)〉b = Sj

k(τ) η
(bb)
ki .

The expressions of Sij and Sij can be obtained from Sij using the reality matrix

Mk
i

discussed in the 2d context, so we will restrict our attention to Sij. Note that

Sij can be viewed, from the 3d perspective, as the result of gluing two solid tori,

each with infinitely long necks, one of which has line operator i inserted along its

center corresponding to the a–cycle, and the other one with the line operator j

inserted along the b–cycle. In other words, topologically the two line operators are
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i

τ

j

i

S ij(τ)=

j i

τ→−1/ τ

S3

Figure 12: The Sij can be viewed as the partition function on S3 with line operators

inserted at the two ends. This can be viewed as the Heegard decomposition of the

S3: the gluing two solid tori each with a line operator inserted and whose boundaries

are identified by the τ → −1/τ transformation, exchanging the two cycles of T 2.

Hopf linked. This is familiar from the structure of Chern-Simons theory [44]. Of

course this is not accidental: In the case of N = 2 Chern-Simons theory with no

matter, the theory is equivalent to N = 0 Chern-Simons theory, for which the line

operators are the Wilson loop observables. In that context Sij is the Hopf link

invariant associated to loops indexed by the representations i and j. This in turn

is the modular transformation matrix of the conformal blocks of the associated 2d

RCFT. Unlike the topological case, where Sij does not depend on any parameters,

in the more general case we are considering Sij does depend on parameters of the

theory and in particular on τ (see Fig. 12).

In order to compute Sij we use the fact that we can compute Π
c(aa)
i as discussed
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before. Therefore it suffices to write Sij in terms of them. We have

Π
c(aa)
i (τ) = a〈Dc(τ)|i〉a = Si

j(τ) 〈Dc(−1/τ)|j〉b = Si
j(τ) Π

c(aa)
j (−1/τ). (5.2)

In other words, we have

Si
j(τ) = Π

c(aa)
i (τ)[Π(aa)−1

(−1/τ)]cj, (5.3)

leading to

Sij = Π
c(aa)
i (τ)[Π(aa)−1

(−1/τ)]ck η
(bb)
kj .

The vacuum amplitude is given by

S00 = Π
c(aa)
0 (τ)[Π(aa)−1

(−1/τ)]c0̂ (5.4)

where 0̂ denotes the spectral flow operator dual to the identity. Note that for the

case of a single vacuum theory we get

S00 = Π(aa)(τ)Π(aa)−1

(−1/τ).

This expression is similar to the expression of the partition functions for supersym-

metric amplitudes on ellipsoid S3
b for a theory of, say, free chiral theory, where instead

of Π(aa)(τ) one has the quantum dilog with τ = b2 where b is the squashing param-

eter. As we will discuss later, this is not accidental: In a partial UV limit (similar

to the β → 0 limit in 2d) the Π(aa) reduces to quantum dilog. More generally we

will argue in a later section that eqn.(5.4) is consistent with the results of [2] in their

computation of the partition functions on S3
b in terms of sums over chiral blocks,

which in the formula above is the sum over c.

5.5 Partition functions as gauge transformations

There is a different (but equivalent) interpretation of the partition functions on

infinitely elongated S2×S1 and S3 which is more convenient in actual computations.

Let us consider first elongated S2 × S1
a. The elongated partition function is just

the component of the tt∗ metric

g
(aa)

00̄
.

There are two natural trivializations of the vacuum bundle over S1
a × S1

b namely the

ones given, respectively, by the topological and the anti–topological twisting on a

cigar which caps the circle S1
b . The vacuum bundle Berry connections in these two

natural trivializations read{
D = ∂ + g∂g−1

D = ∂
and respectively

{
D = ∂

D = ∂ + g−1∂g
(5.5)
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where g = g(aa) is the tt∗ metric. We see that the tt∗ metric g(aa) is nothing else

than the complexified gauge transformation mapping the Berry connection in the

topological gauge to the one in the anti–topological gauge.

The same kind of identification holds for the quantity Si
j defined in eqn.(5.3),

and hence for the elongated S3 partition function. Again we have two preferred

trivialization of the same vacuum bundle given by the states |i, τ〉a and |j,−1/τ〉b.
In the first trivialization the Berry connection A has the form in the left part of

eqn.(5.5) with g = g(aa), while in the second one it is given by SA, where S is the

π/2 rotation acting as

S : x→ y, y → −x, τ → −1/τ,

that is,

SAy(x, y, z, β, R) = Ax(y,−x, z, R, β),

SAx(x, y, z, β, R) = −Ay(y,−x, z, R, β),

SAz(x, y, z, β, R) = Az(y,−x, z, R, β).

Since the connections A and SA describe the same physical monopole in x, y, z space,

they are gauge equivalent, i.e. there is a complex gauge transformation S such that

SA = S AS−1 + S dS−1, (5.6)

This matrix S clearly coincides with the matrix Sj
i defined in eqn.(5.3).

Another way to see this identification, is to consider the brane amplitude Πc at

ζ = ±1. As discussed around eqn.(3.27), Πc and SΠc satisfy the same Lax equations

∇Πc = ∇̄Πc = 0, and in fact both form a fundamental system of solutions of these

linear equations. Then they are linear combinations of one another with constant

coefficients. More precisely, since they are written in different gauges, we must have

Πi
c = Ui

j SΠj
c (5.7)

where U is the (complexified) gauge transformation relating these two gauges. Com-

paring with eqn.(5.2), we get

Ui
j = Si

j, (5.8)

which is our identification.

This identifications allows us to compute the partition function from the Berry

connection without having to solve the Lax linear problem. In other words, we

may read the partition function on the infinitely elongated S3 directly from the

tt∗ monopole configuration in x, y, z space, without solving any additional partial

differential equation.

The gauge viewpoint gives an alternative argument for the independence of the

matrix E mapping D-branes at τ to −1/τ , from all parameters, and how it can be
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set to be the identity matrix. A priori, the Lax equations imply eqn.(5.7) in the

weaker form

Πa
i = Si

j SΠb
j Eb

a,

where E is a non–degenerate constant numerical matrix. In a theory with a mass–

gap, rescaling the masses to infinity both connections A and SA go to zero, hence

S → 1, while, using the point basis for the line operators and the corresponding

thimble basis for branes, both Π and SΠ approach the identity matrix. Then we

remain with a diagonal E matrix, which as discussed before satisfies

E4 = 1 diagonal in point/thimble basis, ζ = ±1. (5.9)

5.6 Massive limits and topological line operator algebra

Consider 3d, N = 2 theories, which have a mass gap. Such theories in the IR flow

to trivial theories with no non-trivial local correlation functions. However, this does

not mean the theory is trivial: It could still hold interesting topological non-local

observables. The simplest examples of this kind are N = 2 pure Chern-Simons

theories with no matter. In such cases the theory in the IR is locally trivial and

the only non-trivial observables are the line operators associated with Wilson loops.

Supersymmetric Wilson loops are rigid in shape, but since this theory is equivalent

to N = 0 Chern-Simons theory, we can dispense with the condition of preserving

supersymmetry and consider general Wilson loops, and use the topological invariance

of the theory to solve it, as was done by Witten [44].

We would like to study this same phenomenon in the general case, and consider

in addition the process of flow to the IR as well. In fact, if we consider the Hilbert

space of such a theory quantized in T 2, the flow to the IR corresponds to changing

the area of T 2, while preserving its shape, given by the complex modulus τ . In other

words, we would be studying the flow

(τ, A)→ (τ, etA).

It is natural to conjecture that, for all such theories with mass gap, we always end

up with a purely topological theory in the IR, for which the line operators we have

been studying play the role of non-trivial observables. In particular it is natural to

conjecture that in this limit Sij will become independent of τ and satisfies the usual

properties familiar from the Verlinde algebra theory. Moreover we conjecture that,

as in the case of the Verlinde algebra [48], the chiral ring becomes, in a suitable basis,

an integral algebra whose multiplication table is given by positive integers

Cjk
i = Njk

i ∈ Z+,

and that Sij diagonalizes the algebra which is equivalent to the statement that

λli =
Sil
S0l
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satisfy the ring algebra

λliλ
l
j = Nij

k λlk,

where there is no sum in l in the above formula, but there is a sum in k in the RHS.

Let us try to see to what extent we can recover these structures in our context.

Consider the N = 2 theory on T 2, and consider the set of line operators Φi. More

specifically, we will consider these line operators wrapped around the a or the b

cycle of T 2 and denote the corresponding operators by Φ
(a)
i , Φ

(b)
i . These two sets of

operators act on the ground states. In general they have different spectrum, because

the radii are not equal. Moreover the (x, y) are not zero. Let us therefore restrict

attention to the case R1 = R2 = R, i.e., τ = i, and A = R2. Furthermore let us

take x = y = 0. For this particular case the spectrum of the two sets of operators

is the same, because spatial rotation by π/2 is a symmetry of this square torus, and

represented by a unitary operator. Let us denote this operator by U . Note that on

the ground states:

U |i〉a = |i〉b
which implies that

Sij = a〈i|j〉b = a〈i|U |j〉a
In other words the matrix elements of U can be identified with the matrix S.

We will thus denote U by S from now on.

From the fact that U acts on line operators taking the line operators around the

a-cycle to that on the b-cycle, we learn

SΦ
(a)
i S−1 = Φ

(b)
i .

Thus finding the S matrix, for τ = i amounts to finding the change of basis involved

in going from the basis of vacua for the a-cycle to that for the b-cycle. In particular,

if we know how Φ
(b)
i acts on the |j〉a we can compute the S-matrix (since the action

of Φ
(a)
i on |j〉a is known to be given by Cij

k|j〉a).
For the case where we are dealing with U(1) gauge theories, the Φ

(b)
i correspond-

ing to the line operator in the fundamental representation can be identified as the

supersymmetric version of

exp

(
i

∫
b

A

)
.

The insertion of this operator in the cigar geometry C, for the topologically twisted

theory, is equivalent to the insertion of the supersymmetrization of exp(i
∫
C
F ). This

operator corresponds to changing the θ-angle of the 2d theory by

θ → θ + 2π.

In other words

Φ(b) ←→ O∆θ=2π
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where O∆θ=2π is the operator changing the vacua by shifting θ by 2π. In other

words, it is the holonomy of the tt∗ connection acting on the vacua as we go around

one of the cycles of T 2 in the parameter space. We do know the eigenvalues of the

O∆θ=2π, but that turns out not to be enough to fix the action of it on the vacua. In

particular, in principle this is a complicated operator, which depends on solving the

tt∗-geometry. However, it turns out that in the A→∞ limit, i.e. in the IR limit, it

is easy to fix this operator: In this limit the classical vacua corresponding to point

vacua do not mix with each other, and so in the point basis, the action of θ → θ+2π

is easy to find, as we will see in the example section. In particular we will find that

in the IR limit we get the explicit form of S. In this way it is easy to check if the

S diagonalizes the ring algebra, and we shall see that this is indeed the case in the

examples we will consider.

Before going to that, we make some preliminary comment on the 3d brane am-

plitudes in general.

5.7 Generalities of 3d brane amplitudes

We have already discussed the structure of the D-brane amplitudes in the 2d context

and their singularity structure as a function of the spectral parameter ζ. We can

now describe how this structure changes in the 3d context. The standard essential

singularity at ζ = 0,∞ is intimately connected to the presence of a compact direction

in the 2d tt∗. If one were to look at a “1d” version of the tt∗ geometry, i.e. say at

solutions of Nahm equations or non-periodic monopoles, flat sections of the Lax

connections would extend smoothly over the whole twistor sphere parameterized by

ζ.

Conversely, suppose we want to study the 3d tt∗ geometry with a standard, BPS,

Lorentz-invariant 3d boundary condition B3d and analyze the amplitude Π[B3d] in

the usual 2d language. What is the 2d phase ζ associated to this problem? The

3d supercharges can be collected into complex 3d spinors of specific R-charge ±1,

which we denote as Q±α . A BPS boundary condition preserves a chiral half of the

3d supercharges, of specific eigenvalue for the 3d gamma-matrix σ1 in the direction

orthogonal to the boundary. This corresponds to a specific value of ζ. This is in

agreement with the analysis in section 3. Indeed, consider a brane wrapped on a

square torus T 2: under a π/2 rotation of T 2 a Lorentz–invariant brane amplitude

should go to a brane amplitude of the same kind, and this is possible only if ζ is a fixed

point of the Cayley transform ζ 7→ C(ζ) in eqn.(3.26). In the conventions of section

3, where the periodic parameters xa, ya are the imaginary parts of the holomorphic

coordinates in the ζ =∞ complex structure, cfr.eqn.(3.18), the two fixed points are

ζ = ±1. Equivalently, the specific values of ζ corresponding to Lorentz–invariant

branes may be obtained by requiring that the Stokes discontinuities, eqn.(3.54),
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which are holomorphic functions of

x− i ζ+ζ−1

2
y

behaves correctly under π/2 rotations and hence are functions of x+ iy (resp. x− iy).

This restriction on the values of ζ is also consistent with the analysis of the partition

function on an infinitely elongated S3 in the previous subsections which was based

on ζ = ±1 brane amplitudes. The special properties of the ζ = ±1 amplitudes will

be checked in an explicit example in §. 6.1.3 below.

Upon compactification of the theory on a circle, it is probably possible to deform

a Lorentz-invariant 3d boundary condition to a non-Lorentz invariant version which

preserves a more general combination of the supercharges, and gives a flat connection

for the spectral connection at general ζ. This we expect, based on the fact that once

we decompose the 3d theory, in terms of 2d data, such a generic parameter ζ emerges

as a possibility in defining the brane amplitude. As we may look at the 3d geometry

as a 2d geometry in infinitely many ways, depending on which cycle of the torus

we take as “internal” and which one as 2d Euclidean time, we expect the essential

singularities we encountered in 2d to appear at infinitely many locations. If we

identify ζ = ±1 as the poles of the sphere, the essential singularities should appear

at the equator, that is, for ζ on the imaginary axis (which, as already noted, is a

fixed line for the Cayley transform (3.26)).

On the other hand, from the point of view of the 2d theory which arises from

compactification on a circle, the compactification of the 3d theory on a cigar geometry

also appears as a “brane”, which preserves the supersymmetry corresponding to

ζ = i. There is actually a family of such “branes” which arise from a cigar with a

line defect at the tip. Clearly, the amplitudes for such “branes” are closely related

to the S matrix defined above. We will illustrate this fact in simple examples.

5.8 Comparison with susy partition functions on S2 × S1 and S3
b

Supersymmetric partition functions on S2×S1 and S3
b have been computed recently

[2, 49, 50] in a variety of contexts. Given that we have also been computing supersym-

metric partition functions on the same topoogies it is natural to ask the comparison

between the two.

The first point to notice is that they do not look to be the same: The partition

function computed using tt∗ becomes supersymmetric only in the limit of infinitely

elongated geometries. This is not so for the supersymmetric partition functions on

S3
b or S2 × S1 where for finite metric the path-integral is supersymmetric.

Indeed a similar question arises for 2d theories recently studied in [51]. In that

context it was found that at the conformal limit the tt∗ partition function for elon-

gated S2 [52, 53], i.e., the amplitude g00 = 〈0|0〉, coincides with the supersymmetric

partition function on S2. However, it was also found that away from the conformal
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point the partition function on S2 does not agree with the tt∗ partition function.

In that case, as we will argue, there is a limit of the tt∗ partition function which

reproduces the simpler supersymmetric partition function on S2. The same result

works in the 3d case as well leading to the statement that an asymmetric limit of

the tt∗ partition functions lead to the supersymmetric partition functions.

Let us first discuss the case of 2d. As discussed in section 2 eqn.(2.6) the tt∗

partition function on S2, i.e. g00, is given by

Ztt∗

S2 = Πa(ti, ti)Π
a∗(ti, ti).

However the supersymmetric partition function on S2 is made of blocks which are

holomorphic Π’s times anti-holomorphic Π’s. This structure is true for S2
tt∗ only at

the conformal point. Aways from it, the answer is far more complicated. However,

we can consider the asymmetric limit where we take the UV limit, corresponding to

β → 0, with fixed β. In this limit

lim
β→0

Πa(ti, ti) = Π̃a(ti).

Moreover, as already discussed in section 2, in this limit Πa are given by period inte-

gral with non-homogeneous W (satisfying simple differential equations). In this limit

the partition function of the tt∗ agrees with the supersymmetric partition function

on S2:

ZS2 = Π̃a(ti)Π̃
a∗(ti)

Given this, it is natural to expect the same to work in the case of 3d. Indeed,

as has been found in [2], the partition function of supersymmetric theories in 3d

decomposes into blocks, exactly as in eqn.(5.4)19.

Indeed, as noted in [2], the chiral blocks are solutions to the difference equations

arising from the ring relations satisfied by the line operators. This is also the case

for us, in the β → 0, as follows from eqn.(2.10). Therefore in the same limit as in the

2d case the 3d tt∗ geometry should reduce to the supersymmetric partition functions

on S3
b and S2 × S1. We will verify this expectation for the partition function of free

chiral theory in section 6.

6 Examples of tt∗ geometry in 3 dimensions

The 3d tt∗ geometries should correspond to doubly-periodic solutions of the monopole

equations, or their higher-dimensional generalizations. In this section we illustrate

the correspondence in a number of examples.

19 The appearance of inverse power in the S3 partition function and its absence in [2] has to do

with the choice of analytic continuations used there versus what we have here. In our case |q| < 1

whereas the two blocks used in [2] used |q| < 1 for one block and |q| > 1 for the other block.
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6.1 Free 3d chiral multiplet

The simplest example, of course, is a free 3d chiral multiplet of real twisted mass m,

whose tt∗ geometry should give a U(1) monopole solution on the space parameterized

by m and the flavor Wilson lines on the two cycles of T 2. If one of the two circles in

the compact geometry is very small, we expect to recover the results for the 2d chiral

field. This identifies the monopole solution as a doubly–periodic Dirac monopole of

charge 1. Indeed, the 3d free chiral field compactified on a circle of length Ry (which

in the previous section we had simply called R) may be expanded in KK modes

having 2d complex masses

mn = m+
2πi

Ry

(n+ y) n ∈ Z, (6.1)

where y is the flavor Wilson like along the circle, which is a periodic variable of period

1. The 2d mirror is then described by the (twisted) superpotential of the form [12]

W (Yn) =
∑
n∈Z

(
1

2

(
m

2π
+ i

n+ y

Ry

)
Yn − eYn

)
. (6.2)

Since the modes Yn are decoupled from each other, the tt∗ metric is simply the

product of the metrics for each mode which, as described in §. 3.1, correspond to

periodic monopole solutions. The doubly–periodic monopole solution associated to

the 3d free chiral is then the superposition of an infinite array of periodic Abelian

monopole solutions, each corresponding to the contribution from a 2d KK mode.

Thus the harmonic function giving the Higgs field in the monopole solution is

Vchiral(m,x, y) = −π
∑
n,k

 1√
m2 + 4π2

R2
x

(x+ k)2 + 4π2

R2
y

(y + n)2
− κk,n

+ Λ (6.3)

where Rx ≡ β is the length of the tt∗ circle, κk,n some constant regulator, and Λ a

constant (see appendix B.1 for full details). In a natural basis (which in the Ry → 0

limit reduces to the standard 2d ‘point’ basis), the tt∗ metric is simply

Gchiral(m,x, y) = exp

 2

Rx

x∫
0

Vchiral(m,x
′, y) dx′

 . (6.4)

As discussed in section 5, Gchiral(m,x, y) may be interpreted as the partition function

on the infinitely elongated S2×S1 geometry with flavor twist parameters x, y around

the equator of S2 and the S1, respectively

ZS2×S1 = Gchiral(m,x, y). (6.5)
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At large |m|, the harmonic function Vchiral has a linear growth:

Vchiral =
RxRy

2
|m|+O

(
exp
[
−min(Rx, Ry) |m|

])
. (6.6)

This is slightly inconsistent: it corresponds to±1
2

units of flux for the gauge bundle on

the x–y torus. This is closely related to the Z2 anomaly for a 3d free chiral: depending

on the sign of the mass m, integrating away a 3d chiral leaves a background Chern-

Simons coupling of ±1
2

for the flavor U(1) symmetry. In general, we expect the slope

of the Higgs field at large values of the masses, or the units of flux on the flavor

Wilson line tori, to coincide with the effective low energy background CS couplings

for the corresponding flavor symmetries.

Notice that the spectral data computed from Dx + iDy and −Dm +V involves a

holomorphic connection on the torus, which is covariantly constant in them direction.

Thus the topological data of the holomorphic bundle, i.e. the Chern class on T 2, is

m-independent, and can only jump at the location of Dirac monopoles, by an amount

equal to the Dirac monopole charge. This explains the slopes we find at large |m|.
A better defined choice (the “tetrahedron theory” in [45]) is a theory ∆ of a 3d

chiral together with an additional background CS level of −1
2
. This corresponds to

the harmonic function

V∆(m,x, y) = −RxRy

2
m− π

∑
n,k

 1√
m2 + 4π2

R2
x

(x+ k)2 + 4π2

R2
y

(y + n)2
− κk,n

+ Λ

(6.7)

which has coefficients −1 or 0 for the linear growth at m → −∞ and m → ∞
respectively, and corresponding effective CS couplings.

The harmonic function V∆ has alternative representations which converge more

rapidly than (6.7) and are convenient to study particular limits (see appendix B.1).

For instance, we have the Fourier representation

V∆(m,x, y) =−RxRymΘ(−m)−

− 1

2

∑
(k,`)6=(0,0)

RxRy√
R2
y `

2 +R2
x k

2
e2πikx+2πi`y−

√
R2
y`

2+R2
xk

2 |m|.
(6.8)

If we treat the y direction as “internal” and the other two as the standard

directions of 2d tt∗, we can assemble the monopole connection and Higgs field into
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the usual tt∗ quantities20. Comparing wit eqn.(3.30), we have

Cµ = Rx

(
∂x − iAx

)
+ V

−C̄µ̄ = Rx

(
∂x − iAx

)
− V

Dµ = ∂µ − iAµ
Dµ̄ = ∂µ̄ − iAµ̄,

(6.9)

where

µ =
1

4π
(m+ 2πi y/Ry). (6.10)

As for the 2d chiral model in §. 3.1, we perform the complex gauge transformation

to the standard ‘point basis’ topological gauge. From the definition

V (µ, µ̄, x) =
Rx

2
v(µ) +

Rx

2
v̄(µ̄) +

Rx

2
∂xL(µ, µ̄, x) (6.11)

we find

L∆(m,x, y) = − 1

2πi

∑
k,`∈Z
k 6=0

Ry

k
√
R2
x k

2 +R2
y `

2
e2πikx+2πi`y−

√
R2
y`

2+R2
xk

2 |m| (6.12)

and

v∆(µ) = log
(
1− e−4πRyµ

)
. (6.13)

This is a natural regularization of the
∑

n log
(
µ+ i n

2Ry

)
arising from the KK tower.

By the same token, we propose

a∆(µ) =
1

2
log
(
1− e−4πRyµ

)
. (6.14)

We can then go to the “point topological basis” by the complexified gauge trans-

formation with parameter 1
2
L(µ, µ̄, x)− 1

2
a− 1

2
ā (cfr. eqn.(3.34)):

1

Rx

Cµ = ∂x + v(µ)

− 1

Rx

C̄µ̄ = ∂x − v̄(µ̄)− ∂xL(µ, µ̄, x)

Dµ = ∂µ + ∂µa(µ)− ∂µL
Dµ̄ = ∂µ̄

(6.15)

We recognize that v∆(µ) = ∂µW∆(µ), where

W∆ ∝ Li2(e−mRy−2πiy) (6.16)

is the twisted effective superpotential for a compactified 3d chiral multiplet with a

−1/2 CS level.

20 For convenience, we absorb the overall dependence of the tt∗ geometry on the length Rx in the

definition of Cµ.
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6.1.1 Evaluation of the elongated S3 partition function ZS3 = S00

In this example with a single vacuum, the S0
0, or equivalently the partition function

on the infinitely elongated S3 should reduce, as discussed in §. 5.5, to the gauge

transformation which relates the Abelian monopole fields in the topological gauge

(6.15) to the same fields written in the S–dual topological gauge based on the 2d

tt∗ geometry for the opposite choice of “internal” circle, in which the parameter µ is

replaced by its dual

µx = S(µ) ≡ 1

4π

(
m− 2πi x

Rx

)
. (6.17)

To simplify the notation, we shall denote the effect of the action of S on any quantity

by a tilde, that is, for all quantities f we set

f̃(x, y,m,Rx, Ry) = Sf(x, y,m,Rx, Ry) ≡ f(y,−x,m,Ry, Rx). (6.18)

Gauge invariant scalar quantities s satisfy s̃ = s; in particular, Ṽ ≡ V .

To compare the topological gauge with its S–dual it is convenient to preliminary

transform these two complex gauges in the corresponding unitary gauges by the

inverse of the gauge transformation in eqn.(6.15) of imaginary parameter

1

2
K ≡ 1

2
(L− a− ā), resp.

1

2
K̃ ≡ 1

2
(L̃− ã− ¯̃a). (6.19)

The two dual unitary connections A and Ã are, respectively,

Am = −Ry

4π
∂yK

Ay =
π

Ry

∂mK

Ax =
i

2
(v − v̄)

V =
Rx

2
(v + v̄) +

Rx

2
∂xK,

resp.

Ãm =
Rx

4π
∂xK̃

Ãy =
i

2
(ṽ − ¯̃v)

Ãx = − π

Rx

∂mK̃

V =
1

2
(ṽ + ¯̃v) +

Ry

2
∂yK̃,

(6.20)

which satisfy the monopole equations

F = F̃ =
1

2π
∗ dV. (6.21)

These two U(1) connections are gauge equivalent. Hence there is a real function Λ

such that

A− Ã = dΛ. (6.22)

The complete gauge transformation between the S–dual topological gauge and the

original one, which by the analysis in §. 5.5 is the infinitely elongated S3 partition

function, is then the composition of the above three complex gauge transformations,

that is,

S = exp

(
−1

2
K + iΛ +

1

2
K̃

)
. (6.23)
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To compute Λ one starts from the known Fourier series for K

K = L− a− ā =
∑
k,`

K(k, `;Rx, Ry) e
2πi(kx+`y) =

= − 1

2πi

∑
k,`∈Z
k 6=0

Ry

k
√
R2
x k

2 +R2
y `

2
e2πikx+2πi`y−

√
R2
y`

2+R2
xk

2 |m|+

+
1

2

∑
`≥1

e−`Rym

`

(
e2πi`y + e−2πi`y

)
,

(6.24)

and the corresponding one for K̃ with coefficients

K̃(k, `;Rx, Ry) ≡ K(−`, k;Ry, Rx). (6.25)

Inserting these Fourier expansions in eqn.(6.20) one gets the expansions of the unitary

connections A and Ã, and then we may read the Fourier series for Λ from eqn.(6.22).

One gets

Λ = − 1

4π

∑
k, 6̀=0

1

k`
e2πikx+2πi`y−

√
R2
y`

2+R2
xk

2m−

− i

4

(
log(1− e−Rym+2πiy)− log(1− e−Rym−2πiy)+

+ log(1− e−Rxm−2πix)− log(1− e−Rxm+2πix)
)
, (6.26)

(in writing this equation we assumed m > 0).

As discussed in §. 5.5, the partition function S given by (6.23) should also be

equal to Π̃ Π−1 where Π are the ζ = ±1 brane amplitudes. We shall check the

validity of this relation after the computation of the amplitude Π.

6.1.2 Branes for the 3d free chiral theory

As we saw in §. 3.1.3, the function Φ defined in eqn.(3.53) corresponds in 2d to either

the Neumann or Dirichlet brane amplitude depending on the value of ζ. That analysis

is important for the 3d free chiral theory with real twisted mass m, compactified on a

circle of length Ry, which may be seen as a 2d (2, 2) model with an infinite collection

of decoupled KK modes as in eqn.(6.2). Again, since the modes do not interact, the

brane amplitudes are given by an infinite product of the single mode amplitudes of

section 3.1.2 with 2d twisted masses

4πµn = m+
2πi

Ry

(n+ y), n ∈ Z. (6.27)

To select a reasonable boundary condition for the 3d chiral field, we need to choose

the boundary conditions of the individual 2d KK modes Yn in a coherent way. The
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most obvious choice is to seek either Dirichlet or Neumann b.c. for the 3d chiral field.

This means selecting either Dirichlet b.c. for all the KK modes Yn, or Neumann for

all the Yn. The complete 3d “Dirichlet”/“Neumann” amplitudes are

log〈x|D; ζ〉
log〈x|N ; ζ〉 =− Rx

4π Ry

(
ζ Li2(e−mRy−2πi y)− ζ−1 Li2(e−mRy+2πi y)

)
+

− RxRy

16π

[
ζ

(
m+

2πi y

Ry

)2

+ ζ−1

(
m− 2πi y

Ry

)2
]
−

− 1

2
log

[
2 sinh

(
1

2

(
mRy + 2πi y

))]
+

ΦD(m,x, y, Rx, Ry; ζ)

ΦN(m,x, y, Rx, Ry; ζ).

(6.28)

where ΦD, ΦN are the sums over all KK modes of the 2d functions Φ with, respec-

tively, Dirichlet and Neumann b.c. However, from §.5.7 we know that the physically

interesting amplitudes, corresponding to proper Neumann/Dirichlet branes in the 3d

sense, are the ones at fixed points of the Cayley transform C, namely ζ = ±1.

In order to write a sum over the KK modes having better convergence properties,

it is convenient to rewrite the integral representation of the 2d thimble amplitude

function Φ in a slightly more general form

Φ =
1

2πi

∫
L

dt

t− iζ
log
(

1− e−2π(µt+µ̄t−1−ix)
)
−

− 1

2πi

∫
L

dt

t+ iζ
log
(

1− e−2π(µt+µ̄t−1+ix)
)
,

(6.29)

where L = eiφR+ is a ray in the complex plane such that: i) Re[t µ] > 0 for t ∈ L
and ii) the integrand has no pole in the angular sector 0 ≤ arg t ≤ φ.

Assuming the real mass m in eqn.(6.27) to be positive, and setting

z = mRx + 2πi
Rx

Ry

y, (6.30)

we write the 3d function Φ[ζ] in the form

Φ[ζ] =
1

2πi

∫
L−

dt

t− i ζ
log
∏
n<0

(
1− e2πix−zt/2−z̄t−1/2−πinRx

Ry
(t−t−1)

)
+

+
1

2πi

∫
L+

dt

t− i ζ
log
∏
n≥0

(
1− e2πix−zt/2−z̄t−1/2−πinRx

Ry
(t−t−1)

)
−

− 1

2πi

∫
L−

dt

t+ i ζ
log
∏
n<0

(
1− e−2πix−zt/2−z̄t−1/2−πinRx

Ry
(t−t−1)

)
−

− 1

2πi

∫
L+

dt

t+ i ζ
log
∏
n≥0

(
1− e−2πix−zt/2−z̄t−1/2−πinRx

Ry
(t−t−1)

)
−

(6.31)

where L− is a ray in the upper–right quadrant and L+ in the lower–right quadrant,

and we assume that the poles at t = ±i ζ are not in the angular sector bounded
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by L+, L− and containing the positive real axis. Note that for the physical values,

ζ = ±1, the rays L± may be chosen arbitrarily in the respective quadrants.

From the discussion in §. 3.1.3, we know that this expression corresponds to a

“Dirichlet” amplitude for Re ζ < 0 and a “Neumann”; amplitude for Re ζ > 0

Φ[ζ] =

{
ΦN [ζ] for Re ζ > 0

ΦD[ζ] for Re ζ < 0.
(6.32)

To get the “Neumann” (resp. “Dirichlet”) amplitude in the opposite half–plane one

has to analytically continue the above expression, by deforming the contours while

compensating the discontinuity each time one crosses a pole of the integrand. The

physical amplitudes are then obtained by specializing the result to ζ = ±1.

The expression (6.31) may be written in a more suggestive form by introducing

the compact quantum dilog function

Ψ(z, q) ≡ (z q1/2; q)∞ =
∞∏
n=0

(1− zqn+1/2), (6.33)

the product being convergent for |q| < 1. Then

Φ[ζ] =
1

2πi

∫
L−

dt

t− i ζ
log Ψ(e

2πix−zt/2−z̄t−1/2−iπRx
2Ry

(t−t−1)
, e

iπRx
Ry

(t−t−1)
)

+
1

2πi

∫
L+

dt

t− i ζ
log Ψ(e

2πix−zt/2−z̄t−1/2−iπRx
2Ry

(t−t−1)
, e
−iπRx

Ry
(t−t−1)

)

− 1

2πi

∫
L−

dt

t+ i ζ
log Ψ(e

2πix−zt/2−z̄t−1/2−iπRx
2Ry

(t−t−1)
, e
iπRx
Ry

(t−t−1)
)

− 1

2πi

∫
L+

dt

t+ i ζ
log Ψ(e

−2πix−zt/2−z̄t−1/2−iπRx
2Ry

(t−t−1)
, e
−iπRx

Ry
(t−t−1)

),

(6.34)

all integrals being absolutely convergent for L± as above.

The asymmetric UV limit. The asymmetric limit of the amplitudes 〈x|N, ζ〉,
〈x|D, ζ〉 as ‘β̄ → 0’ is given by a regularized sum of the asymmetric limit for each KK

mode, and is computed in appendix B.2. Not surprisingly, the limit is a quantum

dilogarithms

log Π3d(ζ = −1) = − log Ψ
(
e−mRy−2πiy−4πx−2πRy/Rx ; e−4πRy/Rx

)
−

− Ry

4Rx

(
m+

2πiRx

Ry

y

)
− x log sinh

[
1

2
(mRy + 2πiy)

]
+ const.,

(6.35)

Indeed, by the same argument as in §. 3.1.3 in this limit the amplitude is holo-

morphic in z = mRx + 2πiRxy/Ry and it satisfies a difference equation of the form

Π3d(z + 4π) =

(∏
n∈Z

(
z

4π
+
iRxn

2Ry

))
Π3d(z) =

=
(

1− e−mRy−2πiy
)
e(mRy+2πiy)/2 Π3d(z),

(6.36)
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where the factor e(mRy+2πiy)/2 may be understood as arising from the Z2 anomaly of

the free chiral at CS level zero. Not only this result confirms that in this asymmetric

limit we obtain the result for the partition function of free chiral theory on S3
b and

S2× S1 which are made of quantum dilogs, when the twist parameters x, y = 0, but

it also predicts when x, y 6= 0 the result for these partition functions with twist line

operators inserted at the two ends of the sphere.

6.1.3 The ζ = ±1 amplitudes and the S–gauge transformation

In this subsection we check that the explicit expression (6.34) for the brane am-

plitudes Π[ζ = ±1] satisfies the expected relation with the elongated S3 partition

function, that is, the equality

log Π[ζ = ±1]− log Π̃[ζ = ±1] = log S, (6.37)

where S is the gauge transformation which, as described in §. 5.5, gives the partition

function on the elongated S3.

We know explicitly the rhs of eqn.(6.37) in the form of a double Fourier series

logS =
∑
k,`∈Z

c(m; k, `) e2πi(kx+`y), (6.38)

while the lhs is known in the form of the integral representations (6.31)(6.34). The

easiest way to check the validity of the equality (6.37) is to compute the Fourier

coefficients of the lhs, which is known to be a periodic function of x, y, and compare

them with the c(m; k, `)’s. The Fourier coefficients c(m; k, `) may be read from

eqns.(6.37)(6.24)(6.26); for21 k` 6= 0 they are

−4πi c(m; k, `) =

(
Rx

`
√
R2
xk

2 +R2
y`

2
− 1

k`
+

Ry

k
√
R2
xk

2 +R2
y`

2

)
×

× exp
(
−
√
R2
xk

2 +R2
y`

2 |m|
)
.

(6.39)

The k` 6= 0 coefficients in the Fourier expansion of log Π[ζ = ±1] coincide with

the coefficients in the Fourier series of the non–trivial part of the amplitude

Φ[ζ = ±1] =
∑
k,`∈Z

Φ±(k, `) e2πi(kx+`y). (6.40)

We compute the coefficients Φ±(k, `) for k > 0; the ones for k < 0 are similar. The

terms with k > 0 arise from the first two integrals in eqn.(6.31). Expanding in series

21 The terms with k` = 0 correspond to purely holomorphic gauge transformations which just

change the holomorphic basis in the chiral ring R and hence are convention dependent.
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the integrands, they become

− 1

2πi

∑
k≥1

e2πikx

k

∑
n≥0

∫
L+

dt

t− iζ
e
−kz t/2−kz̄ t−1/2−πiRx

Ry
(t−t−1)kn−

− 1

2πi

∑
k≥1

e2πikx

k

∑
n<0

∫
L−

dt

t− iζ
e
−kz t/2−kz̄ t−1/2−πiRx

Ry
(t−t−1)kn

, (6.41)

which is already in the Fourier series form with respect to x. To get the double

Fourier series one has to Poisson re–sum the KK modes. To do that, we deform the

contours L± to their original position on the positive real axis. For ζ = ±1 we get

− 1

2πi

∑
k≥1

e2πikx

k

∫ ∞
0

dt

t∓ i
e−kz t/2−kz̄ t

−1/2
∑
n∈Z

e
−iπRx

Ry
(t−t−1)kn

=

= − 1

2πi

∑
k≥1

e2πikx

k

∑
`∈Z

∫ ∞
0

dt

t∓ i
e−kz t/2−kz̄ t

−1/2 δ

(
Rx

2Ry

k(t− t−1)− `
)

=

= − 1

2πi

∑
k≥1

e2πikx

k

∑
`∈Z

∫ ∞
0

2Ry(t± i) dt
Rxk(t+ t−1)2

e−kz t/2−kz̄ t
−1/2 δ

(
t− Ry`

Rxk
−

√
1 +

R2
y`

2

R2
xk

2

)
.

Using eqn.(6.30), and recalling that we are assuming m > 0, the above expression

becomes

− 1

4πi

∑
k≥1

∑
`∈Z

Ry[`Ry ± ikRx +
√
k2R2

x + `2R2
y]

k(k2R2
x + `2R2

y)
e2πikx−2πi`y−|m|

√
k2R2

x+`2R2
y , (6.42)

so the k` 6= 0, k > 0 Fourier coefficients are

Φ±(k, `;Rx, Ry) = − 1

4πi

Ry[±ikRx − `Ry +
√
k2R2

x + `2R2
y]

k(k2R2
x + `2R2

y)
e−|m|

√
k2R2

x+`2R2
y .

(6.43)

For k > 0, ` < 0 one has

Φ±(k, `;Ry, Rx)−Φ±(−`, k;Rx, Ry) =

= − 1

4πi

(
− 1

k`
+

Ry

k
√
k2R2

x + `2R2
y

+
Rx

`
√
k2R2

x + `2R2
y

)
e−|m|

√
k2R2

x+`2R2
y ,

(6.44)

which, comparing with eqn.(6.39), gives the equality (6.37).

6.2 The CP 1
0 sigma model

The next obvious step would be to seek a model which gives a smooth SU(2) doubly-

periodic monopole as the 3d tt∗ geometry. In 2d we used the mirror to the CP 1 gauged

linear sigma model for a similar purpose. It is natural to look at the 3d version of
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the same theory: a 3d U(1) gauge theory coupled to two chiral multiplets of charge

1. This theory has two flavor symmetries: an SU(2)m flavor symmetry with mass m,

which rotates the chiral doublet, and an U(1)t “topological” flavor symmetry with

mass parameter equal to the FI parameter t for the theory. In order to define the

theory fully, we need to select a Chern-Simons level for the theory. We select level 0

for now.

This theory happens to enjoy surprising mirror symmetry properties. These

mirror symmetries are manifest in the branches of vacua which appear for special

choices of the mass parameters. If we turn on a positive FI parameter and no SU(2)

mass m, the theory has a standard CP 1 moduli space of vacua, where the chiral

fields receive a vev controlled by the FI parameter. If we turn on a mass parameter

m, we can integrate out the chirals and seek for a Coulomb branch for the theory.

As long as the Coulomb branch scalar σ is in the interval 2|σ| < m, integrating

away the chirals of opposite flavor charge gives no net Chern-Simons coupling for

the U(1) gauge field, but produces a mixed CS coupling between the gauge and

flavor symmetry, which shifts the effective FI parameter to t + |m|. If we tune the

mass parameters so that t = −|m|, we find a Coulomb branch with the topology of

CP 1 XXX [refs?]. In conclusion, the theory has three CP 1 branches of vacua, which

appear along the rays

m = 0 t > 0

t+m = 0 m > 0

t−m = 0 m < 0 (6.45)

The mirror symmetries of the theory coincide with the permutation group of the

three branches, and act on the mass parameters as the Weyl group of SU(3) acts

on the Cartan generators (2
3
t, 1

2
m − 1

3
t,−1

2
m − 1

3
t). Indeed, the mirror symmetries

imply that the U(1)t × SU(2)m flavor group in the UV is promoted to an SU(3)

flavor group in the IR.

The full tt∗ geometry should thus enjoy the same S3 Weyl symmetry acting over

the combined parameter space R3
m × R3

t . It is thus more natural to describe the tt∗

geometry as a bundle over R3⊗sl(3). The theory has two vacua, and thus the bundle

will be of rank two. Inspection of the spectral data computed in the previous section

shows that the bundle has structure group SU(2). The S3 symmetry of the spectral

data can be checked with some patience.

At fixed t, we can look at the bundle on R3
m: the asymptotic behaviour of the

Higgs field at large |m| is diag(|m|/2− t/2,−|m|/2 + t/2), which is compatible with

a single smooth doubly-periodic SU(2) monopole. The t parameter controls the

constant subleading asymptotics of the Higgs field. The half-integral slope at large

|m| is consistent for an SU(2) bundle: it corresponds to the minimal possible Chern

class of an SU(2) bundle on T 2.

– 75 –



At fixed m, we can look at the bundle on R3
t : the asymptotic behaviour of the

Higgs field at large positive t is diag(t,−t), at large negative t (where the theory

approaches a CP 1 sigma model) is diag(m/2,−m/2). Thus at large negative t the

Higgs field goes to a constant diagonal vev, controlled by the parameter m. If m is

set to zero, one finds instead a more complicated non-Abelian asymptotic behaviour,

which is presumably associated to the low energy massless degrees of freedom of

the CP 1 sigma model. The asymptotics are again compatible with a single smooth

doubly-periodic SU(2) monopole. The m and t monopole geometries differ by the

choices of Chern classes for the T 2 bundle at infinity.

It is also interesting to consider generalizations of this model with other Chern-

Simons levels. We will do so in a later section, after we acquire some extra tools.

6.3 Main Example: Codimension 2 Defects

It turns out that the tt∗ geometries in 2, 3 and 4 dimensions, can all be exemplified

in the context codimension 2 defects of 4, 5 and 6 dimensional theories supporting 4

supercharges, which arise in the context of geometric engineering [9, 55, 56]. There

are two equivalent descriptions of this class of theories. One starts either with M-

theory on a local Calabi-Yau threefold, or equivalently [57], with a network of (p, q)

5-branes of type IIB [58]. This gives a theory in 5 dimensions. One then considers

codimension 2 defects of this theory. In the M-theory setup, this corresponds to

wrapping M5 branes over Lagrangian 3-cycles of CY, leading to a 3d ⊂ 5d defect, or

in the (p, q) web description it can be viewed as D3 brane ending on the web.

This can lead to codimension 2 defects in 6 and 4 dimensions, and in particular

to 4 dimensional defect probes of (2, 0) and (1, 0) supersymmetric theories in 6d as

follows: Using M-theory/F-theory duality, by restricting to elliptic CY, this would

correspond to 4d ⊂ 6d defects [62–64]. This is equivalent, in the (p, q) 5-brane web, to

requiring the space to be periodic in one of the directions that the 5-branes wrap. To

obtain the 4 dimensional theories, one simply considers type IIA on the corresponding

Calabi-Yau, by compactifying the M-theory on the circle. In this context the (p, q)

web becomes the skeleton of the associated Seiberg-Witten curve of the theory, and

the 2d defects are associated to surface defects parameterized by points on the curve

[9, 10]. This can also be described in purely gauge theoretic terms [14].

In this section we focus on the 3d ⊂ 5d defects, and use the (p, q) 5-brane web

description, which is particularly convenient for our purposes (see Fig. 13).

The slope of the (p, q) 5-brane is p/q due to supersymmetry (at type IIB coupling

constant τ = i). We consider the 3d theory obtained by having an extra D3 brane

ending on the web. To make the theory dynamical we need a finite length D3

brane and for this purpose we need an extra spectator brane (these were originally

introduced in [10] in the M-theory context and was related to framing of the associate

knot invariants). In particular if we have a v = (1, 0) brane and a w = (p, q) brane

with a D3 brane stretched between them we get an N = 2 supersymmetric Chern-
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P

Figure 13: A web of (p, q) 5-branes engineers a 5d theory. D3 branes (red line)

suspended between the web and a spectator brane (dashed line) gives rise to a 3d

theory which can be viewed as a defect of the 5d theory. Changing the slope of the

spectator brane corresponds to the SL(2,Z) action on the 3d theory.

Simons theory in 3d with CS level v ∧ w = q with the associated monopole flavor

symmetry with CS level at level p [47] (see Fig. 14).

In particular the SL(2,Z) action of Witten [4] on the space of 3d theories with

U(1) flavor symmetry corresponds to SL(2,Z) action on the spectator brane, where

the T operation adds a unit background CS coupling and the S operation gauges the

flavor symmetry. For definiteness we will take the spectator brane to be a (1, 0), and

act by SL(2,Z) on the rest of the web.

Consider the case of (p, q) = (1, k). This is a pure U(1)k Chern-Simons theory.

The 3d theory is massive and the σ field is frozen at kσ = t. The changing of t

corresponds to moving the spectator brane (see Fig. 14). In this context the above

relation gets interpreted as follows: (t, s) can be viewed as the (x, y) component of

the D3-brane, which is at the intersection of the projection of the two 5-branes on

the plane.

We can also consider compactifications of these theories on a circle. The corre-
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(p,q)

(1,0)

t

Figure 14: The suspended D3 brane gives rise to a U(1) Chern-Simons theory at

level v ∧ w = q. Moving the spectator brane by t corresponds to changing the FI

term by t.

sponding web geometry becomes the Seiberg-Witten curve which generically takes

the form

f(s, t) =
∑

cn,m e
nt+ms =

∑
cmn T

nSm = 0

where S = es, T = et. In particular the points (n,m) ∈ Z2 such that cm,n 6= 0 form a

convex polygon. Moreover the semi-infinite 5-branes correspond to pairs of adjacent

points on the edges of the polygon. If (n1,m1) and (n2,m2) are two adjacent points

on the edge of the polygon, there is a (p, q) 5-brane with

(p, q) ∧ (n1 − n2,m1 −m2) = p(m1 −m2)− q(n1 − n2) = 0

(for a recent discussion see [59]). Moreover, from the 3d probe theory we get a 2d

theory with (2, 2) supersymmetry. As was shown in [9] the corresponding Seiberg-

Witten curve can be interpreted as the spectral curve of the 2d theory in the following

sense: The 2d theory has t as a parameter and has a field Σ. Moreover f(s, t) = 0

corresponds to the spectrum of Σ = s for the fixed value of t. In other words there

is a superpotential W (Σ, t) = W0(Σ) + tΣ which satisfies

Σ = −∂tW

and

∂ΣW0 + t = 0 ⇐⇒ f(s, t) = 0.
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Another way of saying this is that locally solving t(s) using f(s, t) = 0 leads to

solving for a branch of W

W (Σ) =

∫ Σ

t(s) ds− tΣ.

In other words, the spectral geometry of the line operators of the 3d theory wrapped

around the circle is the SW curve. Note that there are in general multiple vacua.

For example, considering the U(1)k theory discussed above, upon compactification

on a circle we find k vacua, where the spectral curve becomes

eks = et. (6.46)

In other words the 3d loop operator S satisfies the relation Sk = T . Defining S̃ =

S/(T 1/k) we see that

S̃k = 1

We recognize this as the Verlinde algebra of U(1)k [48]. Indeed this is the familiar

result for the loop operator of a U(1) Chern-Simons theory at level k [44], where S̃ is

equivalent to the Wilson loop operator wrapped around the circle, in the fundamental

representation of U(1).

In fact we can do more: We can suspend N D3 branes between the 5-branes. In

this case we would get an N = 2 U(N) Chern-Simons gauge theory at level k. In this

context the field S̃ should be viewed as an N ×N matrix valued loop operator. The

relation S̃k = 1 still holds. This means that we choose N eigenvalues at k-th roots

of unity. Using the fact that gauge symmetry acts as permutation of the eigenvalues

we see that the number of inequivalent vacua are now given by

k(k + 1)...(k +N − 1)

N !

which is the same as the dimension of the Verlinde algebra for U(N) conformal theory

at level k. Indeed the resulting ring of the line operators is isomorphic to the Verlinde

ring.

We now wish to study the tt∗ geometry of these 3d systems. Having a single

probe will lead to 3d monopole systems on T 2 × R, i.e. doubly periodic monopole

SU(n) systems if we have n vacua22. Indeed such a system was already studied

in [40] and in particular it was noted there that the spectral curve associated to

the doubly–periodic monopole equations are captured by the SW curve of the above

physical system. Here we are finding a physical explanation of why the corresponding

web appeared as part of a solution to the monopole equations. We now give a brief

review of their results. We refer to reference [40] for more details.

22The construction can probably be generalized to other classical groups by a judicious use of

orbifolds.
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The basic idea is that the moduli spaces of doubly-periodic monopoles on (R× T 2)t
are labelled by the coefficients Q± of the linear growth of the Higgs field at large

|t|, by the constant subleading coefficients M± in the Higgs field at large |t|, and by

two sets of angles p± and q± which from our point of view combine with M± to give

other doubly-periodic deformation directions of the tt∗ geometry. Other parameters

are the locations ti in (R× T 2)t of the Dirac monopole singularities. These give other

doubly-periodic deformation directions of the tt∗ geometry. A certain linear combi-

nation of these parameters is redundant: a translation of (R× T 2)t will in general

shift the ri and possibly the (M, p, q) by multiples of the Q.

The spectral curve for the doubly-periodic geometry is then given by an equation

of the general form ∑
cn,me

ntems = 0 (6.47)

where the (n,m) integer points for non-zero cn,m form a convex Newton polygon in

the plane. The shape of the polygon encodes the Q± coefficients and the coefficients

on the boundary of the polygon encode the (complexified) M± and ti data. The

coefficients of the interior coefficients are moduli of the periodic monopole configu-

ration. More precisely, the monopole moduli space is parameterized by a choice of

spectral curve with given (M, p, q, ti) and of a line bundle on it. Each interior point

of the Newton polygon gives two complex parameters: a coefficient in the spectral

curve and a modulus for the line bundle. Indeed, the monopole moduli space is an

hyperKäler manifold.

It is now clear that the same geometry is describing the tt∗ solutions of 3d

theory on the probes of our 5-brane web system compactified on T 2, where the

real Coulomb branch moduli of the bulk 5d theory combine with the gauge Wilson

lines and the dual photons to give the hyperKähler geometry of the doubly-periodic

monopole moduli space. The mass deformation parameters correspond to the M±
and ti parameters. As already noted, the probes are a D3 brane segment stretched

from the (p, q) brane web to a separate (1, 0) brane lying on a plane parallel to the

plane of the web and the position of the (1, 0) brane the D3 brane ends on becomes

the (FI) mass parameter t and the tt∗ geometry corresponding to the t deformation

becomes the doubly-periodic monopole geometry.

We can now reinterpret our previous examples as brane webs, and then add a

few more.

A single 3d chiral multiplet, or better the T∆ theory, can be engineered by a web

including a (−1, 0), a (0, 1) and a (1,−1) fivebranes coming together to a point [47].

This configuration is rigid. The obvious Z3 symmetry generated by the ST SL(2,Z)

duality transformation corresponds to the basic mirror symmetries of the T∆ theory

[45]. To be precise, if the D3 brane probe ends on an (1, 0) brane parallel to the web

we get the description of the theory as an U(1) CS theory at level 1/2, coupled to a

single chiral of charge 1.
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The slopes of the fivebranes, −1 for negative t and 0 for positive t match the

background CS couplings for the U(1)t flavor symmetry and the asymptotic values

of the Higgs field in the monopole solution. The spectral curve is

es = 1− e−t (6.48)

This is also consistent with the relation we found for the loop operator associated

with a chiral field with mass parameter t, which we obtain by ungauging the U(1),

by converting the spectator (1, 0) brane to a (0, 1) brane.

Next, we can look at an U(1)k− 1
2

Chern-Simons theory coupled to a chiral of

charge 1. For large negative t we have two branches of vacua in flat space: either

σ = 0 and the chiral gets a vev or we integrate away the chiral and we have an

effective CS level k − 1 and (k − 1)σ = t. For large positive t we have one branch

of vacua only: we integrate away the chiral and have an effective CS level k, with

kσ = t. Thus we expect a brane system with a (1, k) fivebrane, a (0, 1) fivebrane

and a (1, k − 1) fivebranes.

As our next example we consider the brane description for the 3d CP 1 gauge

theory with twisted mass. In order to describe the algebra of the wrapped loop

operators when we compactly the theory to 2d on S1 we view the 3d model as a 2d

model with infinite towers of KK modes. The (twisted) superpotential is

W =
∑
n∈Z

[
eY

+
n + eY

−
n −

(
i n+ t2 + Σ

)
Y +
n −

(
i n− t2 + Σ

)
Y −n

]
+ 2π t1Σ. (6.49)

There are two distinct vacua satisfying cosh(2πΣ0) = cosh(2πt2) +
1

2
e2πt1

Y ±n = log(Σ0 + i n± t2).
(6.50)

One has

C1 =
∂

∂x1

+ 2πΣ0 S1 = e−2πΣ0 (6.51)

C2 =
∂

∂x2

+ log
sinhπ(Σ0 − t2)

sinhπ(Σ0 + t2)
S2 =

sinhπ(Σ0 + t2)

sinhπ(Σ0 − t2)
, (6.52)

from which we get the equations for the spectral curve L

S1 + S−1
1 = T2 + T−1

2 + T1 (1− S1T2)S2 = T2 − S1. (6.53)

It is easy to check that L is indeed a Lagrangian submanifold of (C∗)4, as expected.

For the t geometry for the CP 1 gauge theory, where we fix the mass parameter

but vary t by moving the spectator brane, the first equation would need to be the

spectral curve, where S1, T1 define the curve and T2 is a parameter. In other words,
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        m

Figure 15: The web geometry which leads to CP 1 gauge theory at CS level 0. The

separation of the horizontal lines is controlled by the mass parameter associated to

flavor symmetry rotating the two flavors in opposite directions. The movement of

the spectator brane corresponds to changing the FI-parameter t.

the Newton polygon can be taken to include (0,−1), (0, 0), (0, 1) and a (−1, 0). Thus

we need a (1, 1) brane, a (−1, 1) brane and two (0,−1) branes (see Fig. 15).

The parallel (0,−1) branes give rise to the SU(2)m flavor symmetry, and their

separation is the parameter m. The spectral curve is the expected (where t2 =

m/2 + iπ, t1 = t).

es + e−s = c0,0 + et (6.54)

where c0,0 = −em/2 − e−m/2.23

23 We could also seek a five-brane geometry which would reproduce directly the m geometry for

the CP 1 gauge theory with zero CS level. Although it is straightforward put the spectral data in

the correct form, up to a small redefinition m→ 2tm, the spectral curve

esm + e−sm = −e2tm−t + etm + 2e−t + e−tm − e−2tm−t (6.55)

is non-generic: the corresponding brane system has normalizable moduli, and really engineers a

more complex 3d-5d system. This is an important cautionary tale, which was encountered before in

the context of 2d-4d systems. A given 3d theory may not have enough deformations to reproduce all

moduli of a doubly-periodic monopole geometry, but rather it may produce some (usually somewhat

special) slice of that moduli space. In 2d-4d examples, that slice is often a singular locus in the full

moduli space. The physical interpretation is that the brane construction produces a larger theory.

If we restrict the Coulomb branch moduli to the values which correspond to the original system’s

spectral curve, a Higgs branch may open up and an RG flow to the original system may become

available by moving along the Higgs branch. It would be interesting to verify if the same picture
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Figure 16: The web geometry which leads to CP 1 gauge theory at CS level 1.

Depending on the sign of the FI parameter t the 3d theory has 1 or 2 vacua. The

one corresponding to 1 has degeneracy 2, in the sense that if we compactify the

theory it splits into two distinct vacua. Having a vacuum geometry which splits

upon compactification is a signature of non-trivial topological structure in the IR.

A final example is a CP 1 theory with an extra CS coupling of 1. At large

negative t we still have a CP 1 sigma model, but for large positive t we now have a

single branch with effective CS coupling 2. At t = 0 a semi-infinite Coulomb branch

opens up. The brane system involves the same two (0, 1) fivebranes, a (1, 0) brane

and an (1, 2) fivebrane. For this case, it is more convenient to rotate the spectator

brane to achieve the CS coupling 1, and not rotate the entire web. In particular we

take the spectator brane to be a (1,−1) brane instead of (1, 1) brane, and use the

same brane as the one for CS level 0 (see Fig. 16).

holds in the 3d-5d setup. It is also interesting to see if one can embed the D-model setup in [60]

into string theory. If so, one can engineers arbitrary spectral geometries in higher dimensions in

that way.
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6.4 Loop operator algebras as deformed Verlinde Algebra

As discussed in §.5.6, we expect that for the massive 3d theories, in the infrared

limit the theory become topological. In this section we give some examples of this

and point out that these give a mass deformation structure to the Verlinde algebra,

which would be potentially interesting for topological phases of matter.

Let us go back to the two 5brane system with branes (1, 0), (1, k). This has k

vacua in 2d, given by Sk = et. As already noted, suspending a D3 brane between

them leads to a U(1)k Chern-Simons theory, and theN = 2 loop algebra is isomorphic

to the Verlinde algebra. Let us check how the S matrix computed in the N = 2

context match up with that of the S-matrix of the Verlinde algebra. The S-matrix

intertwines loop operators wrapping each of the two cycles of T 2. Let us denote the

generators of the two loop operators by Sa and Sb:

SSaS
−1 = Sb

Let us use a basis of vacua adapted to the Sa, where it acts (after suitably normalizing

it) as

Sa|n〉 = ωn|n〉

where ω is a primitive k-th root of unity. As discussed in §.5.6, the action of Sb for a

U(1) gauge theory is the same as the action of the holonomy of tt∗ by going through

a path where θ → θ + 2π, with θ the imaginary part of t. In the IR, this holonomy

can be computed easily in the point basis, and it corresponds to the permutation of

the k vacua. In other words

Sb|n〉 = |n+ 1〉.

Since the S-matrix intertwines between them we learn that

Sij =
1√
k
ωij.

which agrees with the expected form of the S matrix for the Verlinde algebra of U(1)k.

This analysis can be extended to the case in which, instead of just one suspended

D3 brane, we have N of them, giving the S-matrix for U(N)k CS theory. We leave

checking the details to the reader.

Instead, we will focus on asking how such a structure gets realized in our models.

Consider in particular the CP 1 gauge theory at level 1 (see Fig. 16). This is a

particularly interesting case, and is a special instance of the theories studied in [43],

involving U(N)k/2 coupled to k fundamental chiral fields, to explain the relation

observed by Gepner [65] between the Verlinde algebra for U(N)k and the quantum

cohomology ring for Grassmannian Gr(N, k) [66, 67]. As already discussed, for t� 0

we expect to get a pure U(1) CS theory at level 2, and thus the considerations of the

previous discussion applies; in particular, in the IR we get the same structure as the

2d Verlinde algebra. On the other hand, one may ask what S-matrix structure do we
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get for t � 0. In this case the theory is the CP 1 sigma model. Let us also assume

that in addition we have a mass parameter, and ask how the S-matrix behaves in

this regime. Let us go to a basis in which the Sa operator is diagonal, and given by

the intersection of the 5-brane with the brane web. This corresponds to two points

on the 3d web, which become infinitely far away in the IR. Moreover, it is also clear

that Sb which corresponds to the θ → θ + 2π is also diagonal in this basis, because

the 3d vacua do not get permuted. This implies that in this regime of parameters

the S matrix becomes trivial, i.e. the identity operator. This suggest that there is

no non-trivial topological degrees of freedom in this regime of parameters. The tt∗

geometry for the doubly periodic system thus interpolates between a trivial S-matrix

in one regime of parameters, to the non-trivial S-matrix (corresponding to that of the

Verlinde algebra) in a different regime. This is indeed exciting and is worth studying

further.

The general structure which emerges from this discussion is that by looking at

the 3d vacua we can determine if in the IR, upon compactification on an S1, we get

a topologically non-trivial theory or not. In particular, if the 3d vacua reflect the

degeneracy of the compactified theory, then the theory becomes trivial. This is the

case when the projection of the spectator 5-brane with (p, q) type v to the 5-brane

plane intersects the web in as many points as the vacua, which in turn is the case

if the product of v ∧ wi = ±1 for each 5-brane wi it intersects. Otherwise at each

intersection point we get the structure of a U(1)v∧w Verlinde algebra. Moreover if

we consider having N suspended D3 branes the S-matrix in the IR will have the

structure of the Verlinde algebra for∏
i

U(N)v∧wi .

Clearly we have found a beautiful interplay between deformations of 2d RCFT’s and

geometry, captured by doubly periodic monopole equations, which should be further

studied, especially in view of application to topological phases of matter.

6.5 Class R three–dimensional theories associated to three-manifolds

There is a rich class of three dimensional Abelian Chern-Simons matter theories

which can be obtained from a product of m T∆ theories, by acting with an arbitrary

Sp(2m,Z) transformation and adding certain superpotential couplings described in

[45, 47, 61]. The main point of interest of this class of theories is that there is a

large network of mirror symmetries relating different UV theories in the class, and

the space of equivalence classes of IR SCFTs, dubbed “class R” in [45], seems to

have a rich structure.

The spectral data for the tt∗ geometry of a class R theory T , which coincides

with the parameter space of supersymmetric vacua L[T ] discussed in [45], is invariant

under the mirror symmetries and is presented as the image of the product L[T∆]m of
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parameter spaces of the individual chiral multiplets under the Sp(2m,Z) transforma-

tion and a toric symplectic quotient of (C∗)2m determined by the choices of super-

potentials. At the level of the tt∗ doubly-periodic geometry itself, the Sp(2m,Z)

transformation is the Nahm transform discussed in a previous section. The symplec-

tic quotient is simply the restriction of the monopole data to a linear subspace in

R3m, the locus where one sets to zero the mass parameters and flavor Wilson lines

for the flavor symmetries broken by the superpotential terms.

There is a subset of class R theories TM which are associated to certain decorated

three-manifolds M : the data of the theory is constructed from a triangulation of the

three manifold M , and the mirror symmetries insure invariance under 2-3 moves

which relate different triangulations of the same manifold. Thus the final 3d SCFT

only depends on the choice of manifold M , and so will the corresponding tt∗ geometry.

The construction is designed in such a way that the parameter space L[TM ] coincides

with the space of flat SL(2,C) connections on M . A typical example of M could be

a knot complement in S3. It would be interesting to find a similar geometric relation

between the three-dimensional geometry M and the tt∗ geometry of TM .

7 tt∗ geometry in 4 dimensions

In this section we discuss the tt∗ in 4 dimensions. The structure of the argument is

very similar to that of the 3d case, except that in this case we have 2 distinct possi-

bilities: We can discuss either flavor symmetries, which correspond to line operators,

or 2-form symmetries which couple to conserved anti-symmetric 2-form. These arise

in particular in theories with U(1) gauge factors where we consider B ∧ F terms as

well as the FI term. We will see that in the case of flavor symmetries the parameter

space is (T 3)r where r is the rank of the flavor symmetry group. In the case of 2-form

symmetries, we find that the parameter space is (T 3 × R)r where r is the number

of 2-form symmetries. Furthermore the derivation of the 4d tt∗ geometries proceed

as in 3d case. We see that for the case of flavor symmetries the theory has sectors

indexed by an integer n where W has a central charge nµ for a complex parameter

µ. In the case of 2-form symmetries we see that there are sectors labeled by a pair

of integers (n1, n2) for which W shifts by (n1 + n2ρ)µ.

7.1 The case of flavor symmetries

Consider a theory in 4d where we take the space to be a flat torus T 3 with periodic

boundary condition for fermions, preserving all supersymmetry. Let us assume this

theory has a flavor symmetry of rank r. We can turn on fugacities for the rank

r flavor group in the Cartan of the flavor group along each circle. Therefore the

parameter space is

T 3r,
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modulo the action of the Weyl group24. In order to develop the tt∗ geometry for this

theory, consider the first step, where we compactify the theory on a circle down to 3

dimensions. Then we get a theory with a flavor group of rank r. Moreover the twisted

mass parameters of this 3d theory is identified with the fugacity of the flavor group

around the circle. So, unlike the generic flavor group in 3d where the corresponding

twisted mass parameter is parameterized by R, the fugacities are periodic. This is

the only difference from a generic 3d theory with flavor symmetry. Therefore the

tt∗ geometry is the same as in the generic case, namely the generalized monopole

equations in 3r dimensions. Here the parameter space is the compact T 3r. The

chiral operators of the 2d case now correspond to surface operators in the internal

geometry (to see this note that the twist operators are codimension 2-operators,

which is a surface operator in 4 dimension).

7.2 The case of 2-form symmetries

This is the case where the theory has a conserved anti-symmetric 2-form ‘current’

Jµν :

∂µJµν = d ∗ J = 0.

This couples to a background 2-form tensor field Bµν :∫
d4x B ∧ ∗J

which we take to be flat. In the N = 1 supersymmetric case the background tensor

field is part of an N = 1 tensor multiplet, which includes in addition a real scalar

field φ whose constant vev deforms the theory. A generic way this structure appears

is when we have a U(1) gauge symmetry. In that case J = ∗F , which is conserved

because d ∗ J = dF = 0. The coupling to the background B field corresponds to a∫
d4xB ∧ F term and the vev of the scalar field φ corresponds to the FI parameter

for the U(1) field. For each such 2-form symmetry, we have, in addition to the choice

of the vev of φ which is generically parameterized by25 R, we choose a 2-form B on

T 3 which is periodic (assuming, as is typically the case, that the integrals of ∗J = F

are quantized), which then is parametrized again by a T 3. Thus, altogether, we get

the parameter space T 3 × R. If we have r such 2-form symmetries this gives the

parameter space becomes

(T 3 × R)r.

24 This is the most general flavor twisting in T 3 whenever the flavor group is an Abelian group

times a product of simple groups of isotype AN−1 and Cn which have all dual Coxeter labels equal

1. For more general flavor groups GF , the space T 3r/Weyl gets replaced by the moduli spaceM3 of

communing triples in GF which is a disconnected space (see [75, 76]). Restricting ourselves to the

tt∗ geometry of the largest connected component ofM3, we reduce back to the situation discussed

in the text.
25We will discuss some examples where the 4d theory is a probe in a 6d (1, 0) theory where the

vev is parameterized by an S1, instead of R. In such a case we get T 4 as the parameter space.
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The 4 dimensional N = 1 supersymmetric theories do admit BPS strings, with the

central term being controlled by the scalar vev (which in the U(1) gauge theory case

corresponds to FI-term) in the tensor multiplet. Let us call this real parameter µ,

which denotes the tension of the string. Now consider compactifying the theory on

T 2 to 2-dimensions with a complex structure ρ. The parameter µ gets complexified

by the component of the B12 along the T 2. Let us call this x12, i.e.

µ→ µ+ i x12.

In particular the strings will have a BPS tension proportional to µ. However now we

have in addition a more refined sector in the 2d theory which will be labeled by a

pair of integers n1, n2 depending on wrapping number of the string around the two

cycles. Then the norm of the central term in this sector will be the length of the

string times the tension, i.e.,

Wn1,n2 = µ(n1R1 + in2R2)

where we have taken the T 2 to be a rectangular torus of radius R1, R2. Redefining

µ̂ = R1µ, we have

Wn1,n2 = µ̂(n1 + ρ n2)

where ρ denotes the complex structure parameter for T 2. We are thus in the same

situation as doubly periodic W ’s discussed in section 3. As discussed there, the tt∗

geometry in that case become that of self-dual Yang-Mills and its generalizations to

higher dimensions, corresponding to hyper-holomorphic connections.

The chiral operators of the 2d theory will now correspond to surface operators

wrapped around the T 2 fiber over each point in the 2d theory. The fact that they are

surface operators follows from the fact that they couple to µ whose imaginary part

includes the expectation value of B along the T 2 which can be gauged away locally,

and is only accessed by operators wrapping the entire T 2.

7.3 Partition functions on elongated S3 × S1 and S2 × T 2

Just as in the 3d case, we recall that the tt∗ geometry has more information than just

the vacuum bundle and in particular it has a preferred basis of vacua corresponding

to chiral operators, coming from the topologically twisted path integral on semi-

infinite cigar. Consider a rectangular T 3 geometry and choose one of the circles to

be the circle we was to contract inside the cigar (see Fig. 17):

We can consider D-brane boundary conditions and we can compute this, as

before, in terms of Πa
i . Or we can consider capping another circle obtaining a compact

geometry. Moreover we have three inequivalent choices to cap the other circle. If we

choose the same circle to contract on the other cigar as well, we would be computing

the usual gij metric and ηij of the 2d theory depending on whether both cigars are
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Figure 17: The states of the 4d theory on T 3 can be obtained by doing the path

integral on an infinite cigar times T 2, with surface operator, wrapping T 2 being

inserted at the tip of the cigar.

topological, or one is topological and the other anti-topological. The path-integral for

this configuration will have the topology of infinitely elongated T 2×S2. On the other

hand if we contract one of the other circles on the second cigar, we will get something

which has the topology of infinitely elongated S1×S3. As explained in the context of

the 3d problem these can all be computed. In this case the analog of S-transformation

will be played by a non-abelian discrete subgroup of SO(3,Z) ⊂ SL(3,Z), generated

by π/2 rotations of 12, 23, 31 planes.

7.4 Gauging and ungauging

As discussed in the context of Nahm transformation, we expect that making the

flavor symmetry dynamical has the effect of mapping the tt∗ geometry to its Nahm

transform. In the context of a 4d theory with a U(1) flavor symmetry, as already

discussed, we expect to get monopole equations on T 3. On the other hand for a gauge

U(1) symmetry we expect to get self-dual connections on R × T 3. Indeed the two

are Nahm transforms of one another. In particular, if we consider the Fourier-Mukai

transform of the self-dual connection on R×T 3 we expect a T-dual geometry, which

gets rid of one dimension (given by R) and maps T 3 to the dual T 3, which is indeed

the expected geometry for the dual system.
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8 Examples of tt∗ geometry in 4 dimensions

In this section we would like to discuss some examples of tt∗ geometries which arise

from four-dimensional N = 1 theories compactified to 2d (2, 2) on a torus of complex

structure τ and area A. Although the analysis is not conceptually different from the

3d and 2d examples which appeared in the previous sections, the existence of various

anomalies in four dimensions field theories complicate our work.

The basic example of a single free chiral multiplet in four dimensions illustrates

well the situation. The KK reduction on a 2-torus gives us a double tower of 2d

chiral multiplets, of masses µk,n = µ+ 2π
Rz

(k + τn), where k, n are the KK momenta

and Rzµ = θ3 + τθ2 is the complex combination of the two flavor Wilson lines on T 2
τ ,

which behaves as a twisted mass parameter for the theory reduced to two dimensions.

Correspondingly, we should expect the tt∗ geometry to be a triply-periodic U(1) BPS

Dirac monopole solution, defined on the T 3 parameterized by the three flavor Wilson

lines θ1,2,3, the standard θ1 = 2πx and the internal θ2 = 2πy and θ3 = 2πz.

There is an obvious problem with that: there are no (non–trivial) single-valued

harmonic functions on a compact space. In other words, we can assemble the triply-

periodic array of Dirac monopoles, but we cannot make the solution fully periodic in

the three Wilson lines. For simplicity, let’s take momentarily τ = iRz
Ry

and assemble

a periodic array of the doubly-periodic monopole solutions we encountered in 3d.

Formally this will correspond to a harmonic function of the form

V4d(x, y, z) = v(z) +
∑

(k,`) 6=(0,0)

V (k, `) e2πikx+2πi`y cosh

[
2π

Rz

√
R2
xk

2 +R2
y`

2

(
z − 1

2

)]
(8.1)

where

V (k, `) = − RxRy

2
√
R2
xk

2 +R2
y`

2 sinh
[
π
Rz

√
R2
xk

2 +R2
y`

2
] . (8.2)

The harmonic function V4d(x, y, z) has a source which corresponds to the periodic

array of doubly-periodic Dirac monopoles if and only if the first derivative of the zero-

mode v(z) has discontinuity 2πRxRy
Rz

at all integer z. This is impossible for a function

which is both harmonic and periodic; indeed harmonicity requires something like

v(z) =
2π

Rz

(
(k +

1

2
)z − 1

2
k(k + 1)

)
k < z < k + 1. (8.3)

Thus the Higgs field fails to be periodic by V (z + 1) − V (z) = 2π
Rz

(z + 1
2
). Corre-

spondingly, the field strength of the gauge connection on the x–y torus will not be

periodic in the z direction, but rather the total flux will increase by one as z → z+1.
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Of course, we can make slightly different choices to sacrifice periodicity, say, in the

y direction and keep periodicity in the z direction.

The lack of periodicity is also visible from the twisted effective superpotential

for a 4d chiral multiplet compactified to 2d, or better its first derivative. Indeed, the

contribution of tt∗ B–matrix (3.6), written as a sum of the corresponding matrices

Bn,m for the decoupled Yn,m KK modes, is26

B =
∑
n,m∈Z

log

[
z + n

2Rz

+ i
y +m

Ry

]
regularization−−−−−−−−−→ log Θ

(
z + yτ, τ = i

Rz

Ry

)
, (8.4)

where

Θ(w, τ) ≡ θ1(πw | τ) = 2
∞∑
n=0

(−1)n q
1
2

(n+ 1
2

)2 sin
(
(2n+1)πw

)
, q = exp(2πiτ). (8.5)

Under a translation y → y + 1, the log Θ(z + yτ, τ) shifts by

iπ − 2πi(z + yτ)− πiτ.

This corresponds to the choice of V which fails to be periodic in the y direction.

Finally, we can express the problem in terms of the spectral curve

ep = Θ(z + yτ, τ) (8.6)

which is not a well-defined curve in C∗ × T 2.

The relation to the anomaly in the 4d flavor symmetry of a single chiral field

becomes a bit more obvious if we imagine a collection of 4d chiral multiplets, having

charges qi ∈ Z under the flavor symmetry. The Bµ matrix (equal to the value of the

derivative of the effective superpotential with respect to µ ≡ z + yτ on the reference

vacuum, cfr. §. 4 satisfies

Bµ =
∑
i

qi log Θ
(
qi(z + yτ), τ

)
. (8.7)

Under a translation y → y + 1 it shifts by

− πi(2µ+ τ)
∑
i

q3
i + iπ

∑
i

q2
i (8.8)

Thus the coefficient of the dangerous shift linear in µ = z + yτ is the coefficient of

the total U(1)3 anomaly. Eqn.(8.8) is equivalent to the statement that

expBµ ≡ exp
(
∂µW |vacuum

)
26 The sum is not absolutely convergent, and hence the order of summation matters (in partic-

ular, different orders lead to functions which fail to be periodic in different directions). Here the

symmetric Eisenstein order convention is implied.
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is a section of a line bundle L over the elliptic curve of period τ with Chern class

c1(L) =
∑
i

q3
i . (8.9)

In particular, the U(1)3 anomaly coefficient measures the failure to commute of the

two translations Tz : z → z + 1 and Ty : y → y + 1.

More generally, if we look at multiple U(1) flavor symmetries, with 4d chirals of

charges qi,a under the a-th flavor symmetry, the coefficient of µc in the discontinuity

of Bµa ≡ ∂µaW
∣∣
vacuum

under µb → µb + τ equal to

− 2πi
∑
i

qi,aqi,bqi,c. (8.10)

Thus any mixed anomaly between the U(1) flavor symmetries will cause trouble

with the periodicity of the tt∗ geometry. We will encounter similar statements for

non-Abelian flavor symmetries, by considering their Cartan subgroup.

For example, consider a theory of two 4d chirals. The theory has a non-anomalous

“vector” flavor symmetry which rotates a chiral in one direction, and the other chiral

in the opposite direction and an anomalous “axial” symmetry which rotates them in

the same direction. If we do not turn on a Wilson line for the axial symmetry, the tt∗

geometry for the vector symmetry is well defined, but trivial, as the contribution of

the two chirals essentially cancels out. On the other hand, if we allow a generic fixed

flavor Wilson line µ′ for the “axial” flavor symmetry and study the tt∗ geometry for

the vector symmetry we still have some trouble, although less serious: the harmonic

function V is not periodic, but it shifts by a constant (i.e. e∂µW |vacuum is a section of a

topologically trivial line bundle). Now the tt∗ connection has a curvature F = ∗dV
which is strictly periodic, and hence well–defined (up to gauge transformations).

Correspondingly, the spectral curve

ep =
Θ(µ+ µ′, τ)

Θ(−µ+ µ′, τ)
(8.11)

is not a well-defined curve in C∗ × T 2, as p is multi-valued by 4πiµ′. Unlike the

case with a single chiral field, this spectral curve can still make sense as a curve in a

non-trivial C∗ bundle over T 2, and the tt∗ monopole geometry can make sense if we

think about the Higgs field as a periodic scalar field whose profile is a section of an

affine bundle over T 3.

To gain more insight into this case it is useful to consider the 5-brane construction

of the last section associated with this geometry by viewing the 4d theories as probes

of 6d (2,0) or (1,0) theories. As discussed in [62] the 5-brane geometries which are

on a cylinder, instead of a plane, are equivalent to 6d theories. Moreover as noted in

[63, 64, 72] the 6d theories can be viewed either as circle compactification of 6d gauge

theories or (1,0) SCFT’s theories. For example consider the brane geometry given
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τ

2μ '

Figure 18: A Single M5 brane in the presence of a Taub-NUT, is dual, after com-

pactification on a circle, to this 5-brane web diagram on a cylinder with circumference

τ . The mass parameter m = 2µ′ is induced from the R-twist around the compactified

circle leading to N = 2∗ theory in 5d with adjoint mass m.

by Fig. 18. This corresponds to an M5 brane geometry compactified on a circle with

a twist around the circle corresponding to a mass m = 2µ′, which in 5d becomes the

U(1), N = 2∗ theory where µ′ is the mass parameter for the adjoint field. Note that

the plane geometry is twisted, in that as we go around the vertical direction, we shift

along the horizontal direction by an amount µ′. Indeed, upon compactification on

another circle, this gives rise to an N = 2 theory in d = 4 with the Seiberg-Witten

curve given by [62]

ep Θ(−x+ µ′, τ)−Θ(x+ µ′, τ) = 0

where this is an equation for x and p.

The 4d probe of M5 brane, upon compactification on a circle, corresponds to 3d

theories corresponding to the suspended branes, where the suspended brane ends on

the web at x = µ. This gives rise to a theory with two chiral fields of masses µ+ µ′

and −µ+ µ′. See Fig. 19.

In fact this geometry gives rise to the spectral curve eq.(8.11), and this is be-

cause the brane probe theory supports two chiral fields (reflected in this case by the

two 1-branes stretched between the web and the D3 brane). The fact that the µ

parameter is periodic (while in the 3d case it took values in R) is simply a reflection

of the fact that the vertical direction is periodic, and as the spectator goes around
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μ '−μ μ

Figure 19: This web diagram is dual to 4d theory with two chiral fields of masses

µ′ + µ and µ′ − µ. The variable µ which changes with the position of the spectator

brane is a periodic variable.

the vertical direction by τ it comes back to the original position, thus giving a pa-

rameter space T 3. The lack of periodicity of the Higgs field, i.e. the shift in the

horizontal direction as we go around the vertical direction, will give rise to a general-

ized tt∗ geometry which as discussed in section 3 corresponds to the Nahm transform

of hyperholomorphic connections on a non-commutative space. Moreover as found

for this model in eq.(3.89) the non-commutativity parameter is proportional to µ′.

The non-commutativity would disappear, and we get the ordinary tt∗ commutative

geometry, if we set µ′ = 0 and avoid turning on Wilson lines for anomalous flavor

symmetries. We can also consider more chiral fields which corresponds to a 4d probe

of the (1, 0) theory given by an M5 brane probing an An−1 singularity. See Fig. 20.

If we use n chirals of charge 1, n of charge −1 we get a spectral curve:

ep =
∏
a

Θ(µ− µa, τ)

Θ(−µ+ µ′a, τ)
(8.12)

Again, if we want to avoid the anomalous flavor symmetry we can turn off the axial

flavor Wilson lines and set
∑

a µa−
∑

a µ
′
a = 0. Without loss of generality we can set∑

a µa =
∑

a µ
′
a = 0 by shifting µ if necessary. This is a sensible spectral curve, and

corresponds to a triply-periodic collection of U(1) Dirac monopoles n of charge 1 and

n of charge−1, at positions ~θa and ~θ′a on T 3 constrained to satisfy
∑

a
~θa =

∑
a
~θ′a = 0.

The obvious next step is to gauge the U(1) flavor symmetry, to get N = 1 SQED

with n flavors. Although the theory has a Landau pole, the tt∗ geometry is oblivious
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Figure 20: This web diagram includes a 4d subsector with 2n = 8 chiral fields of

charges (+14,−14) under the U(1) flavor symmetry.

to the 4d gauge coupling, and should thus be relatively well-defined. As this is simply

a Nahm transform of the previous problem, the spectral curve is

et =
∏
a

Θ(σ − µa, τ)

Θ(−σ + µ′a, τ)
(8.13)

where t is the (complexified) FI parameter. We can better write the equation as

et
∏
a

Θ(−σ + µ′a, τ)−
∏
a

Θ(σ − µa, τ) = 0 (8.14)

This equation is a degree n theta function on the torus, and has n zeroes σ∗i , which

represent the gauge Wilson lines in the n vacua of the theory compactified on T 2. In

terms of brane diagrams, the spectator brane is now oriented vertically. See Fig. 21.

Geometrically, the tt∗ geometry is a triply-periodic instanton geometry, i.e. an

instanton in Rt × T 3. The complexified FI parameter t is a coordinate on Rt × S1,

while by definition the zeroes σ∗i characterize the holomorphic SU(n) bundle on the
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t

Figure 21: This web diagram together with the probe engineers SQCD with 4

flavors. The theory has 4 vacua. The FI parameter of the U(1) theory is controlled

by t, the position of the spectator brane. The rank of the group depends on how

many branes we suspend between the spectator brane and the web. For U(nc) we

need nc suspended branes.

remaining T 2 directions. Thus the µ′a and µa parameters label the holomorphic

SU(n) bundle at large positive and large negative t respectively. This instanton

solution appears to be rigid. The spectral curve, for example, has no moduli.

8.1 SQCD

Much as it happens for the Grassmanian GLSM [7] (see also the review in [14]),

the twisted chiral ring relations for an U(nc) four-dimensional gauge theory with nf
flavors are closely related to the ones for a U(1) theory, and can be engineered as in

the case of U(1) SQED discussed above, by taking nc suspended D-branes. In this

case each of the Wilson lines σi in the Cartan of U(nc) must solve

et
∏
a

Θ(−σi + µ′a, τ)−
∏
a

Θ(σi − µa, τ) = 0 (8.15)
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Figure 22: This web diagram is a circle compactification of the 6d (1,0) SCFT of

m M5 branes in the presence of An−1 singularity.

with the extra constraints that they should be distinct solutions.

Thus the
(
nf
nc

)
vacua of the system coincide with the possible choices of nc distinct

roots of the above degree nf theta function.27 It is pretty clear that the tt∗ geometry

should thus be the rank
(
nf
nc

)
triply-periodic instanton obtained as the nc-th exterior

power of the rank nf bundle described above.

In order to describe the tt∗ geometry for the true SQCD theory, i.e. a SU(nc)

gauge theory with nf flavors, we need to “ungauge” the diagonal U(1) gauge sym-

metry, i.e. do a Nahm transform of the rank
(
nf
nc

)
triply-periodic instanton to some

triply-periodic monopole geometry for the vector U(1) flavor symmetry.

8.2 4d probes of more general 6d (1,0) SCFT’s

It is natural to consider more general singly periodic web diagrams. See Fig. 22. In

this case we have n horizontal directions on the web broken by m vertical directions.

This 5d theory corresponds to compactifications of the 6d (1, 0) SCFT, given by m

parallel M5 branes probing an An−1 singularity, on a circle [64, 72]. The distance

between the vertical lines relate to the separation of M5 branes. Taking the spectator

27 The remaining n − nc roots are nothing else but the Wilson lines of the Seiberg-dual gauge

group.
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5-brane in the vertical direction and suspending a D3 brane, gives rise in 6d, to a

4d theory with N = 1. The corresponding theory will have n vacua, giving rise

to tt∗ geometry of SU(n) instantons on R × T 3 with instanton number m. The

corresponding spectral curve would be given by

m∑
k=0

ak e
kt

n∏
a=1

Θ(−σ + µka, τ) = 0, (8.16)

which gives us a more-general SU(n) instanton geometry on Rt×T 3, with boundary

conditions at large |t| still controlled by the µ0
a and µna parameters.28

Strictly speaking, it is not obvious that the U(1) gauge group associated to the FI

parameter t will survive the field-theory limit. It is more-likely that a well-defined co-

dimension two defect in the (1, 0) 6d theories would support an U(1) flavor symmetry

in its world volume, and that the triply-periodic instanton tt∗ geometry is the result

of gauging that U(1) flavor symmetry. In order to describe the tt∗ geometry of the

original defect, we should do a Nahm transform back to a triply-periodic monopole

geometry, and re-interprete the spectral curve

m∑
k=0

ak e
kp

n∏
a=1

Θ(−σ + µka, τ) = 0 (8.17)

as the spectral curve for a U(N) triply-periodic monopole solution on T 3
m, in the

presence of n Dirac monopoles of charge 1 and n of charge −1.

It is also natural to ask if we can get instantons on T 4, by having a ‘periodic’

version of FI parameter t. This is indeed possible, because we can consider the doubly

periodic brane geometry, i.e. 5-branes not on a cylinder but on a T 2. See Fig. 23.

As noted in [63] this geometry will engineer the little string theories. More

specifically this corresponds to m M5-branes probing an An−1 singularity where one

transverse dimension to the M5 branes has been compactified on the circle. This

would then lead to the parameter space being T 4 and the tt∗ geometry would cor-

respond to SU(n) instantons of instanton number m on T 4.29 The corresponding

spectral curves will involve level (n,m) genus 2 Θ functions as discussed in [62].

As already discussed, to obtain the conventional tt∗ geometry we had to turn off

anomalous flavor Wilson lines. Moreover we have argued that when we turn them

on the tt∗ geometry becomes non-commutative. Given the unusual nature of this

result it is interesting to note that we can get a confirmation of our results from a

28 The (n−1)m+(m+1)−1 = nm complex normalizable moduli coming from the choices of the

other µia, the ak, and getting rid of one overall normalization for the equation, combine with the

moduli of the line bundle over the spectral curve to give a moduli space of solutions of hyperKähler

dimension mn.
29Exchanging the vertical and the horizontal direction will map this to SU(m) instantons of

instanton number n, which is an instance of Fourier-Mukai/Nahm transformation.
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Figure 23: This web diagram is a circle compactification of the little 6d string theory

of m M5 branes in the presence of An−1 singularity with one transverse circular geom-

etry. Adding a spectator brane and a probe to this geometry realizes the tt∗ geometry

associated to SU(n) instantons with instanton number m on (non-commutative) T 4.

different perspective from the elegant work [73, 74]. In particular they show that the

moduli space of non-commutative instantons on T 4 is given by the moduli space of

the (1, 0) superconformal theories we have discussed. Moreover they show that the

spectral curve for such instantons are precisely the associated Seiberg-Witten curves.

The non-commutativity is mapped to horizontal and vertical shifts as we go around

the cycles of the plane of the 5-branes. This agrees with what we expected in that

when we have 4d flavor symmetries which would have anomalies (if gauged) we get

non-commutative versions of tt∗ geometry. Note that in these contexts the value of

non-commutative parameters are not part of the moduli space of the tt∗ geometry.

They are fixed background values. Moreover turning on the angular parts of the

mass parameters, we expect to get 3 non-commutativity parameter for each periodic

direction of the 5brane plane in agreement with the results of [73, 74].

There is a further modification of this setup, which is worth mentioning. On the

periodic fivebrane web picture, it corresponds to having the bundles of semi-infinite

fivebranes end on groups of D7 branes, as in [81].

Alternatively, if we T-dualize to a system of D6 branes crossing NS5 branes
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[80], we can consider the full Hanany-Zaffaroni setup which includes D8 branes, to

describe a somewhat larger class of (1, 0) theories which can be interpreted, as in

lower dimensional cases, as “Higgs branch descendants” of the 6d theories described

above, i.e. sit at the bottom of an RG flow initiated by turning on some special Higgs

branch vevs. The spectral curve is a slight generalization of the above:

e(N+1)τ
∏
a

Θ(−σ + µ′a, τ)n
′
a+

N∑
k=1

e(N+1−k)τ
∏
a

Θ(−σ + µ′a, τ)max(n′a−k,0)Θ(σ − µa, τ)max(na+k−N−1,0)Θ(k)
n (σ, τ)+∏

a

Θ(σ − µa, τ)na = 0 (8.18)

which is constructed in such a way to describe U(N) triply-periodic monopole solu-

tion on T 3
m, in the presence of Dirac monopoles of charge na and −n′a.

9 Line operators and the CFIV index

The tt∗ geometry in 2 dimensions led, in particular, to the calculation of a new

supersymmetric index, the CFIV index [23], given by30

Qab = lim
L→∞

iβ

2L
Trab(−1)FF e−βH (9.1)

where the space is taken to be a segment of length L with boundary conditions a, b

at the two ends, and we take the infinite volume limit L→∞. Qab can be identified

with the tt∗ connection in the direction of RG flow, in a suitable gauge.

Qab is an index in the sense that it depends only on a finite number of parameters

in the theory (F-terms) and is insensitive to all the others. In the limit β → ∞
it becomes an index in the ordinary sense, which counts the net number of short

supersymmetry representations in the Hilbert space sector specified by the boundary

conditions a, b. Furthermore, one can exchange space and Euclidean time and relate

Qab to the expectation value of the axial R-symmetry charge Q5 (using the 2d fact

that j5
µ = ∗jFµ ), which is broken away from the conformal point:

Qab =
1

2
〈a|Q5|b〉.

30 The peculiar overall factor 1/2 in the rhs is an artifact of the choices of normalization of the

charges. The Fermi number F is normalized in such a way that the supercharges have Fermi number

±1. Then the odd superspace coordinates θ also have charges ±1. Instead the Qab is normalized

in such a way that, at criticality, the difference between its maximal and minimal eigenvalues is ĉ.

Effectively, this is the same as assigning axial charge 1 to the superpotential W , and hence charges

±1/2 to the θ’s. Therefore Qab is 1/2 the CFIV index.
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This can be interpreted as the action of the operator

Q5 =

∫
S1
β

(
jFβ +Q–exact

)
on the ground states:

Qab =
1

2

〈
a
∣∣∣ ∮

S1
β

jFβ

∣∣∣ b〉 (9.2)

where by jFβ we mean the component of the Fermion number R-current jF in the

direction of S1
β. At the conformal point, this corresponds to the spectrum of the

R-charges of the Ramond ground states, which by spectral flow, gives the spectrum

of chiral operators in the theory. Twice the highest eigenvalue of Q5 corresponds

to ĉ, the central charge of the N = 2 theory. Away from the conformal point, even

though Q5 is no longer conserved, one can still compute its spectrum restricted to the

ground states, and it was shown [23] that the entire spectrum of Qij is monotonically

decreasing as we flow to the infrared. Applied to the highest eigenvalue of Q5 as one

flows from one fixed point to another, this leads to the statement that along RG flow

ĉ decreases.

It is natural to ask what are the physical implications of the CFIV index, applied

to theories which arise from 3 or 4 dimensions. In this section we take some pre-

liminary steps in this direction trying to find the physical meaning of this quantity.

Moreover we compute it explicitly for the case of free chiral fields in 3 dimensions

with a twisted mass.

9.1 CFIV index and 3d theories

Consider a 3d theory, compactified on a rectangular torus with periods R, β. We

can view this as a 2d theory on a spatial circle of length β, by viewing the 3d fields

as an infinite tower of KK modes arising from compactification on a circle of length

R. The conserved 2d R-symmetry which corresponds to the fermion number F will

lift in the 3d context to the conserved 3d R-symmetry which is present for all 3d

theories with N = 2. We can thus interpret the expression (9.1) as computing the

same quantity, except that the space is now two dimensional, comprising of R1×S1,

where the length of R1 is taken to be L and we take L → ∞, and the length of

S1 is R. Moreover the answer can now depend on xi, yi, where the yi’s correspond

to the imaginary part of the 2d coupling parameters, and xi’s can be viewed as an

additional insertion of flavor fugacities around the β circle:

Qab(xi, yi,mi, ρ) = lim
L→∞

iβ

2L
Trab

[
(−1)FF e−βH+2πixifi

]
(9.3)

where we have separated out the imaginary piece yi from the real part mi of the

twisted mass parameters, and set ρ = β/R = −iτ ; fi denote the i-th flavor charge.
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We will compute this quantity for the case of the 3d free chiral model and verify this

Hilbert space interpretation.

Moreover, we can also look at this quantity from the perspective of the dual

channel. Namely we can consider the Hilbert space of the 3d theory on a T 2 with

periods (β,R) and flavor Wilson lines (xi, yi) around the two cycles. In this context

we have

2Qab(xi, yi, µi, ρ) =
〈
a
∣∣∣ ∮

S1
β

∮
S1
R

jFβ

∣∣∣ b〉
(βxi ,Ryi )

≡ βR
〈
a
∣∣ jFβ ∣∣ b〉(βxi ,Ryi )

. (9.4)

Of course, by interchanging the role of the two circles, the CFIV index also computes

the vacuum matrix elements of the other component of the current jFR (the third

component, jFL , has vanishing matrix elements between vacua).

9.2 Possible interpretations of Q in terms of line operators

In the case of 2d, at the conformal fixed point the (differences) in the spectrum of Q

determine the dimension of chiral fields. In particular in that case we have

Φi(0)Φi(z) ∼ A

|z|2Qi
, z ∼ 0,

where Qi denote the charge of the chiral field Φi, and A can be read from the β → 0

behavior of the tt∗ metric [1]. It is natural to ask if a similar statement holds for the

case of 3d theories at their conformal limit where mi = 0. In this case, as already

mentioned, the chiral fields are replaced by line operators, and so the question would

be: How the partition function of the theory depends on separation |z| of a line

operator and its conjugate?

Consider the line operators wrapping the S1
R. From another perspective, this can

be interpreted as a particle defect. A natural question in this context would be how

the energy of the system depends on the separation between a line operator and it

conjugate, i.e. the Casimir energy of line operator/ anti-line operator system. If Q is

related to such an energy, as we increase R→∞ for a fixed β, i.e. as we take ρ→ 0,

Q should grow linearly in R since the energy E(R, |z|) should be proportional to the

spatial size R of the system, up to finite size corrections. So we would expect Q/R

to have a finite limit as R→∞. As we shall see in the explicit example below, this

is indeed the case. It would be interesting to see if Q/R in this limit is related to

the Casimir energy of pairs of conjugate line operators. It would also be interesting

to connect the conformal limit of this computation to the cusp anomalous dimension

for line operators (see e.g. [82]).
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9.3 On the CFIV index for the 3d chiral model

We consider the free chiral model in 3d with twisted mass m which upon reduction

on a circle of radius R is equivalent to the 2d (2,2) LG model (6.2) with

W (Yn) =
∑
n∈Z

(
1

2

(
m

2π
+ i

n+ y

R

)
Yn − eYn

)
.

We further consider putting the theory on a tt∗ circle of length β. We set ρ = β/R =

−iτ . We write x for the vacuum angle with period 1, y for the second angle (also

with period 1) associated with the imaginary part of the 2d twisted mass, and set

z = β m/2π; then the 3d real mass (made dimensionless by multiplying it by β) is

2πz.

The CFIV index for this model is the sum over the KK modes of the CFIV

index for the 2d single–mode theory. In appendix A.3 we present several convenient

expressions of this last index. From, say, eqn.(A.35) we have

Q(x, y, z, ρ) =

= − 1

π

∑
n∈Z

∑
k≥1

sin(2πkx)

k

(
2πk

∣∣z + i(y + n)ρ
∣∣) K1

(
2πk

∣∣z + i(y + n)ρ
∣∣). (9.5)

See eqn.(9.24) below for the Poisson–resummed expression of Q(x, y, z, ρ) as a double

Fourier series in the two periodic variables x, y.

Q(x, y, z, ρ) has two interesting limits. One is R→ 0 at β fixed, that is, ρ→∞,

while keeping yρ fixed. In this case all terms in the sum over the KK modes n, except

for the zero mode n = 0, vanish exponentially, and we get back the 2d expression

with complex twisted mass m+ 2πiy/R.

The second one is the opposite limit R → ∞. Before computing it, let us list

the physical properties we expect the answer to have.

Physical expectations as R → ∞. The tt∗ amplitudes in this limit are correla-

tors of line operators wrapped on a cycle of large length R. Since the CFIV index

is believed to give the values of some kind of extensive quantity, like the Casimir

energy of the vacuum states on T 2 created by the line operators, we expect that,

asymptotically for large R and fixed β, Q becomes proportional to R

Q(x, y, z, β/R)

∣∣∣∣
R→∞

=
R

β
· f(x, y, z) + finite–size corrections, (9.6)

where f(x, y, z)/β is the finite linear density of the said extensive quantity, which

should scale with the temperature β−1 by dimensional considerations. We also expect

the function f(x, y, z) to be y–independent, since a finite flavor twist over a circle of

infinite length should not affect the value of the local density of an extensive quantity.
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Moreover, as a function of x, f(x, y, z) should be periodic of period 1 and odd (this

last condition reflects consistency with CPT). Finally, since the mass of the physical

particle in 3d is 2π|z|/β, and the CFIV index is a Hilbert space trace of the form

(9.3), for large values of the mass m = 2π|z|/β the density Q/R should have the

standard thermodynamical expression

1

β
f(x, y, z) ∼ iβ

2

(
e2πix − e−2πix

)∫ d2p

(2π)2
e−β
√
p2+m2

=

=
i

4π

(
e2πix − e−2πix

)( 1

β
+m

)
e−βm,

(9.7)

where the factors e±2πix arise from the role of e2πix as particle number fugacity, and

their relative combination is fixed by PCT and reality of f(x, y, z). In fact, the rhs

turns out to be the exact expression of the terms proportional to e±2πix in the Fourier

expansion of f(x, y, z). This means that multiparticle states of total flavor charge

±1 do not contribute to Q. This last statement is exact for all R, not just for R

large. Indeed, the term proportional to e2πix in eqn.(9.5) is

iβ

2π
e2πix

∑
n∈Z

(∣∣m+ 2πi(y + n)/R
∣∣) K1

(
β
∣∣m+ 2πi(y + n)/R

∣∣) ≡
≡ iβ

2
e2πix

∑
n∈Z

+∞∫
−∞

dp

2π
e−β
√
p2+(2π)2(n+y)2/R2+m2

,

(9.8)

which is the partition function of a particle of mass m in an infinite cylinder of

circumference R and holonomy exp(2πiy).

More generally, given that this theory has only one physically distinct vacuum,

we may think of computing the trace in eqn.(9.1) by inserting a complete set of

intermediate states, which may be taken to be free particle states; this implies that

the coefficient of e2πikx in the Fourier expansion of Q (and hence of f) should be

O(e−β|k| |m|) for large |m|. Again, this is manifestly true for the expression (9.5).

The function f(x, y, z). Before showing that these expectations are correct, and

giving an explicit formula for f(x, y, z), we rewrite the expression (9.5) in a more

compact and illuminating form. We start form the following integral representation

of K1(w)

K1(w) =
1

w

∫ ∞
0

dt e−t−w
2/4t |argw| < π/4. (9.9)

Plugging this formula into (9.5) we get

Q(x, y, z, ρ) = − 1

π

∑
k≥1

sin(2πkx)

k

∞∫
0

dt e−t

(∑
n∈Z

e−4π2k2(z2+(y+n)2ρ2)/4t

)
. (9.10)
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The expression inside the big parenthesis is a θ3 function. To get a rapidly convergent

expression for ρ small we have just to express this function in terms of the θ–function

for the inverse period using its modular transformation properties. More precisely,

we have∑
n∈Z

e−4π2k2(z2+(y+n)2ρ2)/4t = e−π
2k2(z2+y2ρ2)/t

∑
n∈Z

(
e−2π2k2ρ2/t

)n2/2 (
e−2π2k2ρ2y/t

)n
=

= e−π
2k2(z2+y2ρ2)/t θ3

(
iπ2k2ρ2 y/t | iπk2ρ2/t

)
,

(9.11)

where

θ3(w|σ) =
∑
n∈Z

qn
2/2 e2inw, q = e2πiσ. (9.12)

Thus

Q(x, y, z, ρ) =

= − 1

π

∑
k≥1

sin(2πkx)

k

∞∫
0

dt e−t e−π
2k2(z2+y2ρ2)/t θ3

(
iπ2k2ρ2 y/t | iπk2ρ2/t

)
.

(9.13)

The simplest way to compute the ρ→ 0 (i.e. the R→∞) limit is to replace the

theta function by its S–modular transform

θ3

(
w |σ

)
= (−iσ)−1/2 exp

(
− iw2/πσ

)
θ3

(
− w/σ | − 1/σ

)
, (9.14)

which gives

Q(x, y, z, ρ) =

= − 1

(π)3/2 ρ

∑
k≥1

sin(2πkx)

k2

∞∫
0

dt
√
t e−t−π

2k2z2/t θ3

(
−πy

∣∣∣ it

πk2ρ2

)
.

(9.15)

The function f(x, y, z) is defined by taking first the infinite size limit R → ∞
at fixed x, y, z. In the limit ρ → 0 (R → ∞) the theta function in the integrand

of (9.15) may be replaced by its asymptotic expression, which is just 1. Thus, since

ρ = β/R, for large R

Q(x, y, z, β/R) ≈ − R

(π)3/2 β

∑
k≥1

sin(2πkx)

k2

∞∫
0

dt
√
t e−t−π

2k2z2/t, (9.16)

Now,

∞∫
0

exp
(
− t− w2

4t

)√
t dt =

1√
2
w3/2 K3/2(w) ≡

√
π

2
e−w (1 + w) (9.17)
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and

Q(x, y, z, β/R) ≈ −R
β

1

2π

∑
k≥1

sin(2πkx)

k2
e−2πk|z|

(
1 + 2πk|z|

)
, (9.18)

which is of the expected form with

f(x, y, z) =
1

4πi

(
Li2
(
e−2π(|z|+ix)

)
− Li2

(
e−2π(|z|−ix)

))
+

+
|z|
2i

[
log
(
1− e−2π(|z|−ix)

)
− log

(
1− e−2π(|z|+ix)

)]
.

(9.19)

This expression exactly matches the physical predictions (9.7). In particular, f(x, y, z)

is independent of y, periodic and odd in x, and has a leading behavior for large |m|
as expected, eqn.(9.7). As already mentioned, the coefficient of e±2πix in the Fourier

expansion of f(x, y, z) are exactly given by eqn.(9.7).

In particular, at z = 0 we have

f(x, y, 0) = − 1

2π
Π(x), (9.20)

where Π(x) is the Lobachevsky function (a.k.a. the Clausen integral), which expresses

inter alia the volume of the ideal tetrahedra in hyperbolic 3–space. One has

Π(x) =
∑
m≥1

sin(2πmx)

m2
=

Li2(e2πix)− Li2(e−2πix)

2i
= −

2πx∫
0

log
(

2 sin
(
s/2
))
ds.

(9.21)

The double Fourier series for Q. We can write alternative expressions for the 3d

chiral CFIV index which are more convenient for computing sub–leading corrections

to the large R behaviour (9.18). We start from eqn.(9.15)

Q(x, y, z, ρ) =

= − 1

(π)3/2 ρ

∑
k≥1

sin(2πkx)

k2

∞∫
0

dt
√
t e−t−π

2k2z2/t θ3

(
−πy

∣∣∣ it

πk2ρ2

)
=

= − 1

(π)3/2 ρ

∑
k≥1

sin(2πkx)

k2

∞∫
0

dt
√
t e−t−π

2k2z2/t
∑
n∈Z

e−tn
2/k2ρ2 e−2πiny.

(9.22)

The integral in t may be computed using

∞∫
0

dt
√
t e−at−b/t =

√
π

2 a3/2

(
1 + 2

√
ab
)
e−2
√
ab Re a, Re b > 0. (9.23)
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This allows us to rewrite the CFIV index explicitly as a double Fourier series in x

and y:

Q(x, y, z, ρ) =
1

ρ
f(x, 0, z)− ρ

π

∑
k≥1
n≥1

k sin(2πkx) cos(2πny)

(n2 + k2ρ2)3/2

[
ρ+ 2π|z|

√
k2ρ2 + n2

]
×

× exp
(
− 2π|z|

√
n2/ρ2 + k2

)
,

(9.24)

which, of course, matches with the result one would obtain starting with the known

double Fourier series for the tt∗ metric of the 3d chiral field.

Finite–size corrections. The first term in the rhs of the exact equation (9.24)

is the previous asymptotic behavior as ρ → 0 (keeping fixed 2π|z|/ρ ≡ |m|R). One

may go on and compute the corrections in powers of ρ2. The first correction is O(ρ2)

Q− 1

ρ
f(x, y, z) =− ρ2

2π

[
Li3(e−|m|R+2πy) + Li3(e−|m|R−2πy)+

+ |m|RLi2(e−|m|R+2πy) + |m|RLi2(e−|m|R−2πy)
]

+O(ρ4).

(9.25)

9.4 General 3d N = 2 models: large mass asymptotics

From the previous physical discussion, we expect that the limit

lim
R→∞

1

R
Q(R) (9.26)

exists for all 3d N = 2 models compactified to 2d on a circle of length R. This will

correspond to the energy per unit length of the system described at the beginning

of the section. This fact may be checked explicitly for large twisted masses/FI

parameters. Indeed, in this limit the tt∗ equations linearize (this being just the

statement that a non–Abelian monopole looks Abelian far away from its sources)

and we get

Qab ≈
iR

2

(
∆ab

∫
d2p

(2π)2
e−β
√
p2+m2

ab +

+
∑
k∈Zr

primitive

∆(k)ab e
2πik·x

∫
d2p

(2π)2
e−β
√
p2+mab(k)2+

+
∑
`≥2

∑
k∈Zr

primitive

c(`,k) e−`βmab(k) e2πi`k·x + sub–leading

) (9.27)

where x = (x1, . . . , xr) are the flavor chemical potentials, mab(k) (resp. mab) is the

mass of the lightest particle in the 3d Hilbert space sector Hab having flavor charges

k (resp. being flavor neutral); the coefficients c(`,k) are polynomially bounded in
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terms of the masses, and hence the terms in the last line are to be thought of as

‘subleading’. The coefficients ∆ab and ∆(k)ab are integers which satisfy the PCT

conditions

∆ba = −∆ab, ∆(k)ba = −∆(−k)ab, (9.28)

and count the net multiplicities, in the sense of the CFIV susy index, of 3d BPS par-

ticles having the corresponding quantum numbers. Note that the sum in eqn.(9.27)

is over the primitive flavor charge vectors only. In writing the above equation we

made use of a genericity assumption, namely that there are no accidental alignments

in the 2d effective central charge complex plane.

The bottom line is that is we may read the 3d BPS spectrum of a N = 2 theory

from the asymptotical behavior at infinity of the associated (higher dimensional) tt∗

monopole fields. In turn this spectrum may be related, through the CFIV index,

with the scaling behavior with the separation ∆ of an extensive energy–like quantity

associated with a configuration of two parallel line operators placed at the distance

∆.
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A Proofs of identities used in §.3.1

A.1 Eqns.(3.55) and (3.56)

We set ζ = 1 by rescaling µ and µ̄. Then from eqn.(3.53)

Φ(x, µ, µ̄) =
1

2πi

(∫ ∞
0

dt

t− i
∑
m≥1

e−2πm(µt+µ̄t−1+ix)

m
−
(
i↔ −i

))
, (A.1)

and perform the change of variables t = s−1

Φ(x, µ, µ̄) =
1

2πi

(∫ ∞
0

i ds

s(s+ i)

∞∑
m≥1

e−2πm(µ̄s+µs−1+ix)

m
−
(
i↔ −i

))
=

=
1

2πi

 ∞∫
0

ds

(
1

s
− 1

s+ i

) ∑
m≥1

e−2πm(µ̄s+µs−1+ix)

m
−
(
i↔ −i

) =

=
1

2πi

(∫ ∞
0

ds

s− i
∑
m≥1

e−2πm(µ̄s+µs−1−ix)

m
−
(
i↔ −i

))
+

+
1

2πi

(∑
m≥1

2i sin(2πmx)

m

∫ ∞
0

ds

s
e−2πm(µ̄s+µs−1)

)
.

(A.2)

Comparing with eqn.(3.50) we get the desired functional equation for Φ

Φ(x, µ, µ̄)− Φ(−x, µ̄, µ) = L(x, µ, µ̄). (A.3)

As stated in the main body of the text, this is equivalent to the equation for the tt∗

metric in terms of the amplitudes Π (at, say, ζ = 1)

log Πcan − log Π∗can = logG− log |η| ≡ L, (A.4)

where Πcan are the amplitudes in the canonical base (in which η = 1), that is,

log Πcan = log Π +
1

2
log µ. (A.5)

Then, in view of eqn.(3.48), eqn.(A.4) reduces to (A.3) since Φ(x, µ, µ̄)∗ = Φ(−x, µ̄, µ)

on the physical slice where µ̄ = µ∗.

In view of eqn.(3.53), eqn.(3.56) follows from the obvious identity, valid for all

natural numbers n,

log
(

1− e−2πn(µt+µ̄t−1+ix)
)

=
n−1∑
k=0

log
(

1− e−2π(µt+µ̄t−1+ix+ik/n)
)
. (A.6)
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A.2 The asymmetric UV limit µ̄→ 0

Again we set ζ = 1 by a redefinition of the µ, µ̄, and we assume first the redefined

µ, µ̄ to satisfy Reµ, Re µ̄ > 0. From eqn.(3.48) we have(
∂µ − ∂x

)
log Π(x, µ, µ̄) = log µ− 1

2µ
+
(
∂µ − ∂x

)
Φ(x, µ, 0), (A.7)

while from eqn.(3.53),

2πiΦ(x, µ, 0) =

∫ ∞
0

dt

t− i
log
(

1− e−2π(µt+ix)
)
−
(
i↔ −i

)
, (A.8)

from which we get(
∂µ − ∂x

)
Φ(x, µ, 0) = −i

∫ ∞
0

dt

1− e−2π(µt+ix)
−
(
i↔ −i

)
=

= 2
∑
n≥1

sin(2πnx)

∫ ∞
0

dt e−2πnµt =

=
1

πµ

∑
m≥1

sin(2πnx)

n
=

1

µ

(
1

2
− x
)
.

(A.9)

Plugging this result in (A.7), we get(
∂µ − ∂x

)
log Π(x, µ, 0) = log µ− x

µ
. (A.10)

This equation has the general solution

log Π(x, µ, 0) = −x log µ+ f(x+ µ), (A.11)

for some function f(w). To fix f(w) it is enough to compute log Π(x, µ, 0) for a fixed

value of x (and all µ). We shall compute it for x a half–integer.

A.2.1 log Π(x, µ, 0) for x ∈ 1
2
Z

For x ∈ Z we have

Φ(x ∈ Z, µ, µ̄ = 0) =
1

2πi

(∫ ∞
0

dt

t− i
∑
m≥1

e−2πmµt

m
−
(
i↔ −i

))
=

=
1

π

∫ ∞
0

dt

t2 + 1

∞∑
m=1

e−2πmµt

m
=

=
1

π

∫ ∞
0

dt

(
∞∑
m=1

e−2πmµt

m

)
d

dt
arctan(t) =

= − 1

π

∫ ∞
0

arctan(t) dt
d

dt

∞∑
m=1

e−2πmµt

m
=

= 2µ

∫ ∞
0

dt
arctan(t)

e2πµt − 1
.

(A.12)

– 110 –



By a change of variables, we rewrite the last expression in the form

2

∫ ∞
0

dt
arctan(t/µ)

e2πt − 1
. (A.13)

Then from eqn.(3.58), we have

log Π(x ∈ Z, µ, 0) =

(
µ− 1

2

)
log µ− µ+ const.+ 2

∫ ∞
0

dt
arctan(t/µ)

e2πt − 1
. (A.14)

Now we invoke Binet’s formula

log Γ(z) = (z − 1/2) log z − z +
1

2
log(2π) + 2

∫ ∞
0

arctan(t/z)

e2πt − 1
dt, (A.15)

to conclude that, choosing the constant in (A.15) to be zero, for all µ with Reµ > 0,

we have

Π(x ∈ Z, µ, µ̄ = 0) =
Γ(µ)√

2π
, (A.16)

as claimed.

For x ∈ 1
2

+ Z,

log Π(x = 1/2, µ, 0) =

(
µ− 1

2

)
log µ− µ+ Φ(1/2, µ, 0), (A.17)

while, from identity (3.56)

Φ(1/2, µ, 0) = Φ(0, 2µ, 0)− Φ(0, µ, 0) (A.18)

which in view of eqns.(3.58)(A.16) is equivalent to

log Π(x = 1/2, µ, 0) = log Γ(2µ)− log Γ(µ)− 1

2
log µ− (2µ− 1/2) log 2. (A.19)

Using the Gamma function identity

Γ(2z) = π−1/2 22z−1 Γ(z) Γ(z + 1/2), (A.20)

this becomes

log Π(x = 1/2, µ, 0) = log Γ(µ+ 1/2)− 1

2
log µ− log

√
2π, (A.21)

as claimed.
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A.2.2 Kummer formula

For ε ∼ 0, one has

log Π(x, ε, 0) + x log ε = log
√

2π +

(
x− 1

2

)
log ε+

1

π

∑
m≥1

cos(2πmx)

m

∫ ∞
0

dt

t2 + 1
−

− 1

π

∑
m≥1

sin(2πmx)

m

∫ ∞
0

t dt

t2 + 1
e−2πmεt

(A.22)

One has ∫ ∞
0

t dt

t2 + 1
e−2πmε t = − log(2πm ε)− γ +O(ε) (A.23)∑

m≥1

cos(2πmx)

m
= − log(2 sin πx) (A.24)

∑
m≥1

sin(2πmx)

m
=
π

2
(1− 2x), (A.25)

and eqn.(A.22) becomes

log Π(x, ε, 0) + x log ε = log
√

2π − 1

2
log(2 sin πx) +

(
1

2
− x
)(

log 2π + γ
)

+

+
1

π

∑
m≥1

sin(2πmx)

m
logm+O(ε)

(A.26)

According to our results, the limit as ε → 0 of the lhs is log Γ(x) (for 0 < x < 1).

The resulting expression for log Γ(x) is the celebrated Kummer formula.

A.2.3 The ζ = 1 thimble brane function Φ(x, µ, µ̄) for Reµ ≷ 0

In §.3.1.2 we have saw that, for Reµ > 0, the solution to the tt∗ brane amplitude for

the model W = µY − eY , which corresponds to the basic Lefshetz thimble brane,

may be written in the form

Φ(x, µ, µ̄) =

∫
R

ds f(s) ≡−
∫
R

ds

2π

(
log
[
1− exp(−2πµ es − 2πµ̄ e−s − 2πi x)

]
e−s + i

+

+
log
[
1− exp(−2πµ es − 2πµ̄ e−s + 2πi x)

]
e−s − i

)
,

(A.27)

the integral being evaluated along the real axis R ⊂ C. The integrand f(s) has poles

at

s = sk ≡
iπ

2
+ k iπ. (A.28)
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In §.6.1.2, we need the expression for the function Φ(x, µ, µ̄) valid in the region

Reµ < 0, where eqn.(A.27) does not apply since the integral does not converge.

The integral of the meromorphic function f(s) along a contour γ ⊂ C, produces

a solution Φ(x, µ, µ̄)γ to the tt∗ brane amplitude equations provided:

• the integral
∫
γ
f(s) ds is convergent;

• in the physical region µ̄ = (µ)∗, the function Φ(x, µ, µ̄)γ satisfies the reality

condition

Φ(x, µ, µ̄)γ − Φ(−x, µ, µ̄)∗γ = L(x, µ, µ̄). (A.29)

For Reµ > 0 the function Φ(x, µ, µ̄)R defined by the rhs of (A.27) satisfies both re-

quirements by the functional equation (A.3), together with the identity Φ(x, µ, µ̄)∗R =

Φ(x, µ̄, µ)R valid in the physical region.

The Lefshetz thimble amplitude for Reµ < 0 is given by the integral along the

line Im π parallel to the real axis. This contour defines the function Φ(x, µ, µ̄)R+iπ.

From the symmetry of the integrand one see that

Φ(x, µ, µ̄)R+iπ = −Φ(1− x,−µ,−µ̄)R, (A.30)

where both sides are well–defined for Reµ < 0 and satisfy the reality condition

(A.29). However, ΦR+iπ is related to some amplitude of the form 〈x|D′〉, whereas we

need to compute for Reµ < 0 the amplitude Π ≡ 〈x|D〉 for the same basic brane

|D〉 which is associated to the function ΦR for Reµ > 0.

A.2.4 The limit µ̄→ 0 of Π in the negative half–plane

We already know that the µ̄ = 0 limit of the ζ = 1 Lefschetz thimble amplitude in

the positive half–plane Reµ > 0 is

log Π(x, µ, 0)R = log Γ(µ+ x)− x log µ− log
√

2π, 0 ≤ x ≤ 1 (A.31)

i.e. Φ(x, µ, 0)R = log Γ(µ+ x)− (µ+ x− 1/2) log µ+ µ− log
√

2π. (A.32)

While, from eqn.(A.30),

log Π(x, µ, 0) negative
half–plane

= −Φ(1− x,−µ, 0)R +

(
µ− 1

2

)
log µ− µ. (A.33)

Inserting eqn.(A.31), we get

log Π(x, µ, 0) negative
half–plane

= − log Γ(1−x−µ)−x log µ+iπ(x+µ−1/2)+log
√

2π, (A.34)

which is the expression used in the text.
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A.3 Explicit expressions for the CFIV new susy index

From the tt∗ metric, we can read the ‘new susy index’ which in the present case reads

(we set M = 2β|µ|)

Q(x,M) ≡ −M
2

∂L

∂M
= − 1

π

∑
m≥1

sin(2πmx)

m
(2πmM)K1(2πmM), (A.35)

where K1(z) is the Bessel–MacDonald function of index 1. This expression in par-

ticularly useful for large M (IR limit), where the terms in the sum after the first one

are negligible. Alternatively we have the Poisson re–summed expressions in terms of

a sum over monopole contributions, see eqn.(3.43).

The Poisson re–summed expression for L(x,M) ≡ logG(x,M) + log |µ| reads

L(x,M) = (1− 2x)
(

logM + γ
)
−

−
∑
k∈Z

log

( √
M2 + (x− k)2 + x− k√

M2 + (k − 1/2)2 + (1/2− k)
exp
[
−(x− 1/2)|k|

])
.

(A.36)

Then

Q(x,M) =

(
x− 1

2

)
+

1

2

∑
k≥1

[
(k − x)√

M2 + (k − x)2
+

(1− k − x)√
M2 + (1− k − x)2

]
(A.37)

from which we recover the UV result Q(x, 0) = x − 1/2. From the periodic U(1)

monopole point of view, Q(x,M) is the component r Aθ of the Abelian connection

A in cylindric coordinates (r = M, θ, x) in a suitable gauge.

Besides the two series representations of Q(x,M), (A.35) and (A.37), we give

two convenient integral representations. The first one, for 0 < x < 1, is

Q(x,M) =

(
x− 1

2

)
− M2

4

+∞∫
−∞

dξ

(ξ2 +M2)3/2

([
x+ ξ

]
+
[
x− ξ

])
, (A.38)

where [z] is the integral part of the real variable z. This formula may be obtained

replacing in the integrand M2(ξ2+M2)−3/2 with d[ξ(ξ2+M2)−1/2]/dξ and integrating

by parts: one gets the series (A.37); instead writing [z] = z − {z} and plugging in

the Fourier series expansion of {z} one gets the Bessel series (A.35).

The second one is particularly convenient for checking monotonicity properties

Q(x,M) = − sin(2πx)M

∫ ∞
0

e−πM(t+t−1) dt

1− 2 cos(2πx) e−πM(t+t−1) + e−2πM(t+t−1)
. (A.39)
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B Technicalities for the 3d chiral (§.6.1)

B.1 Details on the tt∗ metric for the 3d free chiral multiplet

As in §., we identify the 3d free chiral multiplet with twisted real mass m, compact-

ified on a circle of length Ry, as the 2d (2, 2) model with superpotential

W (Yn) =
∑
n∈Z

(
eYn − i

2

(m
2π

+ i
n+ y

Ry

)
Yn

)
. (B.1)

The length of the tt∗ circle is Rx, and we set ρ = Rx/Ry. x is the tt∗ vacuum angle

with period 1 and y is also a periodic variable of period 1. We write z = mRx/2π ∈ R.

The tt∗ quantities for the model (B.1) will be denoted by the boldface version of the

symbols used in §.3.1.2 and appendix A to denote the corresponding quantity for the

2d model obtained by neglecting all non–zero KK modes.

Since the various KK modes do not interact, formally we have

logG(x, y, z, ρ) = “
∑
n∈Z

logG
(
x, |iz − (n+ y)ρ|/2

)′′
, (B.2)

and we have to give a precise meaning to this expression. The 2d tt∗ metric G

depends on the chosen basis for the chiral ring R. In §. 3.1.2 the metric was written

in the so–called ‘point’ basis; in the chiral operator basis would read

G(x) operator
basis

≡ 〈exY | exY 〉 = ex log |µ|2 G(x)point
basis

. (B.3)

Instead of summing the series for logG, it is convenient to sum the series for its

derivative with respect to x; still at the pure formal level, we have

∂

∂x
logG(x, y, z, ρ) =

∑
n∈Z

∂

∂x
logG(x, |iz + (y − n)ρ|/2) =

=
∑
n∈Z

(
log
|iz + (y − n)ρ|2

4
− 4

∑
m≥1

cos(2πmx)K0

(
2πm|iz + (y − n)ρ|

))
,

(B.4)

where the first term in the large parenthesis in the rhs is the effect of the change of

basis (B.3) and the other terms are as in eqn.(3.37). One has the identity [68, 69]

log
z2 + y2

4
− 4

∞∑
k=1

cos(2πkx) K0(2πk
√
z2 + y2) =

= − 1√
z2 + y2 + x2

−
∑
k∈Z
k 6=0

(
1√

z2 + y2 + (x− k)2
− 1

|k|

)
− 2γ,

(B.5)
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and hence the rhs of eqn.(B.4) may be seen as a regularized version of the formal

expression

−
∑
n∈Z2

∑
k∈Z

1√
z2 + (y − n)2ρ2 + (x− k)2

+ const, (B.6)

that is, literally, the potential V for a doubly–periodic array of U(1) monopoles

located at (x, yρ, z) = (k, nρ, 0)(k,n)∈Z2 ⊂ R3. For a convenient choice of the additive

constant, the regularized version is [69]

V (x, y, z, ρ) = Λ− 1√
z2 + y2ρ2 + x2

−

−
∑

(k,`)∈Z2
(k, 6̀=(0,0)

(
1√

z2 + (y − `)2ρ2 + (x− k)2
− 1√

`2ρ2 + k2

)
,

(B.7)

where the constant Λ is

Λ = 2
(

log
4π

ρ
− γ
)
− 8

∞∑
k=1

∞∑
`=1

K0(2πmnρ). (B.8)

The function V in eqn.(B.7) is harmonic and doubly periodic, hence solves the

tt∗ equations. In order to identify it with the correctly normalized tt∗ metric, we

send the KK radius Ry to zero. In this limit we should recover the 2d answer of §.
3.1.2; indeed, we claim that

lim
ρ→∞

V =
∂

∂x
logG2d, (B.9)

where G2d is the 2d tt∗ metric but in the original point basis. This follows from the

Newman expression for the function V [69, 70]

V (x, y, z, ρ) =
2

ρ
log
(
2| sinπ(y+ix/ρ)|

)
−4
∑
`∈Z

∞∑
k=1

cos(2πkx)K0

(
2πk

√
z2 + (y − `)2ρ2

)
,

(B.10)

As ρ → ∞ (keeping yρ fixed) the first term vanishes as do all terms with ` 6= 0; we

remain with the 2d expression.

Besides (B.7)(B.10) there is a third equivalent expression of the function V (x, y, z, ρ)

which is useful (for additional representations of V in terms of Ewald sums and heat

kernels see [69])

V (x, y, z, ρ) = 2π
|z|
ρ
−

∑
(a,b)∈Z2

(a,b)6=(0,0)

1√
a2ρ2 + b2

exp
(
2πi ax+2πi by−2π

√
a2 + b2/ρ2|z|

)
(B.11)
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To get the expressions used in §.6.1, one has to use z = Rxm/2π, ρ = Rx/Ry

and perform an overall rescaling to get the standard normalization of the monopole

potential

V (x, y,m,Rx, Ry) =
Rx

2
V (x, y, Rxm/2π,Rx/Ry)

=
2Λ

Rx

− π
∑

(k,`)∈Z2
(k, 6̀=(0,0)

 1√
m2 + 4π2

Ry
(y − `)2 + 4π2

Rx

2
(x− k)2

− 1√
4π2

R2
y
`2 + 4π2

R2
x
k2


=
RxRy

2
|m| −

∑
(a,b)∈Z2

(a,b)6=(0,0)

RxRy

2
√
a2R2

x + b2R2
y

exp
(
2πi ax+ 2πi by −

√
a2R2

x + b2R2
y |m|

)
.

(B.12)

From the above computations we get for the 3d tt∗ metric (in a basis which

reduces to the 2d point basis as Ry → 0) we get

G(x, y,m,Rx, Ry) = exp

 2

Rx

x∫
0

V (x′, y,m,Rx, Ry) dx
′

 , (B.13)

which is eqn.(6.4).

To get the analogue expressions for tetrahedron theory we have just to shift V

by a term linear in m, as explained in the main body of the paper.

B.2 The asymmetric UV limit for the 3d brane amplitudes

The amplitudes for the 3d chiral model may be written as a product on the KK

modes:

log Π3d(m,x, y; ζ) =
∑
n∈Z

log Π2d

(
µ =

mRx

4π
+
iRx

2Ry

(y + n); ζ

)
. (B.14)

The asymmetric limit of the 3d amplitudes are then the product of the 2d asymmetric

limit. Here we limit ourselves to the case ζ = −1 corresponding to Neumann b.c., the

extension to ζ = +1 being straightforward. From eqn.(3.59), we have (for 0 ≤ x ≤ 1)

log Π3d(m; ζ = −1)
∣∣∣
asymmetric
UV limit

=

=
∑
n∈Z

log Γ

(
m

4π
+ x+

iRx

2Ry

n

)
− x

∑
n∈Z

log

(
m

4π
+
iRx

2Ry

n

)
, (B.15)

where

m = mRx +
2πiRx

Ry

y, (B.16)

is the complexified twisted mass measured in units of the inverse radius R−1
x .
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We insert in the expression (B.15) the Weierstrass representation of the Gamma

function

log Γ(z) = −γ z − log z −
∞∑
m=1

[
log
(

1 +
z

m

)
− z

m

]
. (B.17)

The idea is to invert the order of summation in m and n; unfortunately, the ex-

pression is not absolutely convergent (recall that in the asymmetric limit we have

infinitely many massless 2d fields), and this inversion is not legitimate. However, if

we take three derivatives with respect to m or x the double series becomes absolutely

convergent and the inversion of the summations will be allowed. Hence the result is

well–defined, without further prescriptions, up to a quadratic polynomial in and x

(related with the specification of the background field CS level).

With this warning, we perform the inverted–order sum formally, using the sym-

metric ζ–regularized sums∑
n∈Z

1 = 1 + 2ζ(0) = 0
∑
n∈Z

n = ζ(−1)− ζ(−1) = 0, (B.18)∑
n6=0

log n = iπ ζ(0)− 2 ζ ′(0) = −iπ/2 + log 2π, (B.19)

as well the identity

log s+
∞∑
n=1

log

(
1 +

s2

n2

)
= log sinh(πs)− log π. (B.20)

We get

log Π3d(ζ = −1) =− log Ψ
(
e−mRy−2πiy−4πx−2πRy/Rx ; e−4πRy/Rx

)
−

− Ry

4Rx

(
m+

2πiRx

Ry

y

)
− x log sinh

[
1

2
(mRy + 2πiy)

]
+ const.,

(B.21)

where the constant is independent of m, y.
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