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Abstract: We define twistorial topological strings by considering tt∗ geometry of

the 4d N = 2 supersymmetric theories on the Nekrasov-Shatashvili 1
2
Ω background,

which leads to quantization of the associated hyperKähler geometries. We show that

in one limit it reduces to the refined topological string amplitude. In another limit it

is a solution to a quantum Riemann-Hilbert problem involving quantum Kontsevich-

Soibelman operators. In a further limit it encodes the hyperKähler integrable systems

studied by GMN. In the context of AGT conjecture, this perspective leads to a

twistorial extension of Toda. The 2d index of the 1
2
Ω theory leads to the recently

introduced index for N = 2 theories in 4d. The twistorial topological string can

alternatively be viewed, using the work of Nekrasov-Witten, as studying the vacuum

geometry of 4d N = 2 supersymmetric theories on T 2× I where I is an interval with

specific boundary conditions at the two ends.
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1 Introduction

Supersymmetric theories have a rich vacuum structure. On the other hand studying

degenerate states as a function of parameter space in a quantum mechanical system

is well known to lead to Berry’s connection on the parameter space. Combining these

two ideas, it is natural to ask what is the geometry of the vacua for supersymmetric

quantum theories. It is most natural to study this when we consider the space to be

a compact flat geometry such as tori. This question has been answered for theories

with 4 supercharges in d = 2, 3, 4 dimensions [1, 2] leading to a highly nontrivial

geometry known as tt∗. For more supersymmetry the vacuum geometry in a sense

becomes too rigid and more universal and thus less interesting. It is natural to ask

if there is any way which we can get a non-trivial vacuum geometry out of theories

with say 8 supercharges, and in particular for 4d theories with N = 2 supersymmetry

(for other attempts in this direction see [3]).

Motivated by the similarity between tt∗ geometry for theories with 4 supercharges

and open topological string amplitudes, in [4] a twistorial extension of topological

string was proposed. The main aim of this paper is to make this more precise

and compute the corresponding amplitudes in some simple cases. Translating the

proposal in [4], we come up with a natural definition of twistorial topological string, in

terms of the corresponding target space physics. For topological B-model the target

physics involves type IIB theories on local Calabi-Yau threefolds and for A-model

it involves M-theory compactifications on local Calabi-Yau threefolds times a circle.

In both cases we end up with a theory in 4 dimensions with N = 2 supersymmetry.

The basic idea is to consider the 1
2
Ω background [5] with some parameter ε1. In

M-theory picture this involves rotating the 3-4 plane by ε1 as we go around the 5-th

circle (and doing a compensating rotation in the non-compact Calabi-Yau 3-fold to

preserve supersymmetry). In the B-model it is more implicit but can be viewed as

mirror to the above operation. As argued in [5] in such a case we end up with a

theory in 2d which has N = 2 supersymmetry with infinitely many discrete vacua

where the Coulomb branch parameters are quantized ~a = ~kε1 with a mass gap. This

allows us to study the associated tt∗ geometry, by putting the theory on a circle of

length R = 1/ε̃2. The theory will have natural D-branes labeled by vacua ~k, and a

phase ζ depicting the choice of which combination of two supercharges we preserve

on the D-brane. tt∗ geometry [1] can be used [6] to compute the wave function of

such D-branes when we take the overlap of these states with vacua of the theory.

The phase ζ can be extended to the full complex plane excluding 0 and ∞ and

will play the role of twistor parameter for us. The D-brane amplitudes define the
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twistorial topological string amplitudes. One can show that in the limit R → 0

and ζ → 0 keeping ζ/R ≡ ε2 finite, we get a discretization of refined topological

strings at Coulomb branch parameters given by ~a = ~kε1, which is sufficient to give

an unambiguous perturbative expansion in εi. In this limit, the amplitudes reduce

to that of refined topological strings, or equivalently to the full Ω background with

parameters ε1, ε2.

One can also interpret this structure in terms of the geometry of N = 2 super-

symmetric vacua in 4d along the lines of [7]. This leads to a direct interpretation of

twistorial topological strings in terms of a tt∗ geometry for the N = 2 theories in

4d. Consider the 4d theory on T 2× I where I is an interval of length L and T 2 with

radii 1/ε1, 1/ε̃2 (and the tilt of the T 2 given by an additional angle θ leading to the

complex moduli of torus τ = θ
2π

+ i ε1
ε̃2

). On one end of the the interval I we put a

D-brane which is related to Dirichlet condition along one of the cycles of the T 2 for

electric gauge components (and its supersymmetric completion). On the other end

we have a 1
2
Ω deformation which can be viewed as a D-brane (brane of “opers”) of

a 3d theory obtained from compactification of the 4d theory on the same circle. In

other words, from the perspective of the resulting 3d theory we have a space given

by S1 × I where the supersymmetry is reduced to 4 supercharges by the D-branes

on both ends. This results in vacua labeled by ~k, which we can study in the usual

tt∗ setup, treating S1 as the circle in 2d. The D-brane wave function of this geome-

try, in the limit the length L of the interval goes to infinity, leads to the twistorial

topological string.

In the limit ε1 → 0, we find evidence that the theory reduces to the hyperKähler

geometry studied by Gaiotto-Moore-Neitzke in [9]. More precisely, we obtain a quan-

tum version of this geometry by keeping θ finite, what we call the θ-limit, and obtain

a quantum Riemann-Hilbert problem for the line operators. The twistorial partition

function is a wave function associated to this quantum Riemann-Hilbert problem.

There is a further limit, a ‘classical limit’ where θ → 0, where we make contact with

the standard version of the story of [9]. In this limit we expect that the twistorial

topological string partition function gets related to the objects introduced in [10]

as part of the construction of a hyperholomorphic line bundle over the hyperKähler

moduli space which is the target of the 3d sigma model. We show that this is indeed

the case for some simple examples. We can also consider, in the θ limit, to make the

2d time to be correlated with the phase of the supersymmetry we preserve on S1 as

in [11]. In this context we make contact with the work [12], where the trace of the

monodromy of the tt∗ geometry in this limit was the object of study.

We can also study other twistorial invariant (i.e. wall-crossing invariant) ob-

jects in the tt∗ setup. In particular we study the metric on the ground state vacua

(leading to Berry’s connection). Among the vacua, there is a distinguished one, cor-

responding to the insertion of the identity operator in topologically twisted theory.

Studying its norm 〈0|0〉 leads to a partition function which depends only on masses
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of the 4d theory as well as the (ε1, ε̃2, θ). It is the twistorial extension of combining

topological string amplitudes with anti-topological string amplitudes. In the usual Ω

background, a similar object has been related to partition function of the 4d theory

on S4 [13], and in the context of M5 branes on Riemann surfaces the resulting ampli-

tudes have been related to Toda theories [14, 15]. In these cases we find a twistorial

extension of the resulting theories. Another object one studies in the 2d setup is the

CFIV index [16]. We provide evidence that in the limit ε1 → 0, θ → 0 this index

becomes equivalent to the recently studied AMNP index [17] of the associated 4d

theories. In addition, studying the R-flow of the 2d theory [11, 18] leads to the 4d

quantum KS monodromy studied in [12].

In a sense twistorial topological string can be viewed as quantizing the hy-

perKähler geometry associated to circle compactifications of 4d N = 2 theories,

where one of the parameters (ε1) quantizes the Coulomb branch base, and another

parameter (θ) quantizes the Jacobian fiber of the hyperKähler space.

For a different approach to a “twistorial” extension of the topological string see

[8].

The organization of this paper is as follows: In section 2 we review the defini-

tion of twistorial open topological string [4]. In section 3 we define twistorial closed

topological strings. We do this in two ways: One is to use large N dualities of

topological strings, which we review and use as a spring board for a twistorial defi-

nition of closed topological string. We also give alternative, more general definition

of twistorial topological string without employing large N dualities, using tt∗ of 1
2
Ω

background. We also reinterpret this in terms of studying tt∗ geometry by placing

branes on the boundaries of the space. Furthermore we discuss the various interesting

limits one can take, including in particular the θ-limit. We study the θ-limit in more

detail, and relate it to a quantum Riemann-Hilbert problem, in section 4. In section

5 we study twistorial extension of matrix models by studying (2,2) supersymmetric

LG matrix models and the associated D-brane wave functions, and solve explicitly

the twistorial extension of the Gaussian matrix model and a number of related ex-

amples (which have abelian tt∗ geometries). This example leads, by large N duality,

to the twistorial extension of the conifold (a.k.a. N = 2 SQED) which is discussed

in section 6. In section 7 we evaluate the three point function for the twistorial Li-

ouville theory (both the twistorial conformal block as well as the twistorial 3–point

function). We also show how the AMNP index is related to the CFIV index. In

section 8 we study the classical limit (C-limit) of the twistorial topological string

and make contact with the hyperholomorphic line bundle on moduli space of N = 2

studied in [10], as well as the twistorial line operators studied in [9]. In section 9 we

close by presenting some concluding remarks. Some technical details and extensions

of the ideas discussed are relegated to appendices.
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2 Open twistorial topological string

In this section we first quickly review tt∗ geometry and then show how it is connected

to the open topological string.

2.1 A lightning review of tt∗

Consider a quantum field theory in 2 dimensions with (2, 2) SUSY, which is massive,

i.e. there is a discrete set of m vacua, each with a mass gap. Putting such a theory on

a spatial circle of length R, we obtain a Hilbert space with an m-dimensional ground

state subspace. Varying parameters of the theory (deforming by chiral operators),

we get a Berry connection on the bundle of Hilbert spaces over parameter space,

which restricts to a unitary connection D on the m-dimensional ground state bundle.

Moreover, we have the tt∗ equations [1, 19]: if we define the “improved” connection

∇ζ = D +R
C

ζ
, ∇ζ = D +Rζ C

where C denotes the action of the chiral operators on the vacua, and ζ ∈ C× is

arbitrary, then

[∇ζ ,∇ζ ] = [∇ζ ,∇ζ ] = [∇ζ ,∇ζ ] = 0.

We refer to ∇ζ , ∇ζ as the tt∗ Lax connection.

Our major objects of study will be flat1 sections ψ of the tt∗ Lax connection,

obeying

∇ζψ = ∇ζψ = 0.

There is a distinguished set of such sections Db, b = 1, . . . , N , obtained, as we

explain below, from boundary states corresponding to a distinguished set of D-branes.

These D-branes break half the supersymmetry; which half of the supersymmetry they

preserve is characterized by an angle φ, which is related to the ζ appearing above

by ζ = exp(iφ). Thus, for the flat sections arising from D-branes the parameter ζ is

restricted to have |ζ| = 1.

Vacua of the theory also play a distinguished role. They are in 1-1 correspondence

with the chiral ring elements. For the chiral ring element a, the vacuum state 〈a| is

obtained by performing the path integral over a “cigar” geometry, with a topological

twist near the tip, and the chiral operator a inserted at the tip [1]. This gives a

holomorphic section of the vacuum bundle. One can also choose a unitary section

of the vacua, by suitably normalizing them. Thus, to associate wave functions to

D-branes Db we consider

ψab = 〈a|Db〉.
1 From the higher–dimensional hyperKähler perspective of [2] ψ is a (non–flat) section of the

vacuum hyperholomorphic bundle which is holomorphic in complex structure ζ.
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In particular, letting a be the identity operator gives a distinguished element

ψ0
b = 〈0|Db〉.

Sometimes we will drop the superscript for this distinguished wave function and

denote it simply as ψb. Note that this will depend on the choice of basis for the

vacuum. The holomorphic versus the unitary basis differ by the normalization factor

1/
√
〈0|0〉. Both bases will be useful for us. We will be implicit about which choice

of basis we make for the vacuum, until the examples sections.

Now suppose the theory is an N = 2 Landau-Ginzburg model, with chiral multi-

plet fields Xi and a holomorphic superpotential W (Xi). In this case the distinguished

D-branes can be described explicitly; they impose Dirichlet type boundary conditions

on the Xi, restricting them to Lagrangian cycles Db. Each cycle Db is a “Lefschetz

thimble” beginning from a critical point of W , along which Re(W/ε2)→∞ [6]. The

chiral ring elements can also be described explicitly: indeed the chiral ring is the

Jacobian ring R = C[Xi]/〈∂jW 〉, so each chiral ring element a corresponds to some

holomorphic function fa(X).

The explicit computation of the ψab is in general very difficult, and no closed

form for them is known, except in a handful of cases. However, there is a limit in

which they simplify: fix some ε2 ∈ C and take

ζ = R ε2, R→ 0. (2.1)

We call (2.1) the asymmetric limit. For a Landau-Ginzburg theory, we then have an

explicit formula:

lim
asym

ψab =

∫
Db

dX fa(X) exp(−W (X)/ε2)

and in particular

lim
asym

ψ0
b =

∫
Db

dX exp(−W (X)/ε2). (2.2)

However, we emphasize that there is something unphysical about this limit: we have

continued ζ away from the locus |ζ| = 1, so that the corresponding state ψb no

longer has a direct interpretation as a D-brane in the original theory. This is like

taking a non-unitary deformation of the theory, in which we set W = 0 and replace

W → W/ε2.

2.2 Connection with open topological strings

The kind of N = (2, 2) theories we have just discussed can naturally arise from string

theory, as follows. Fix a non-compact Calabi-Yau threefold CY , with a non-compact

holomorphic curve Y ⊂ CY . We consider the Type IIB superstring on CY × R4,

with D3-branes on a subspace Y × R2. The theory admits Ω-deformation [20], with

parameters
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• ε1 for a rotation in the x3 − x4 plane (transverse to the brane),

• ε2 for a rotation in the x1 − x2 plane (along the brane).

If we hold ε2 = 0 (the Nekrasov-Shatashvili limit [5] or 1
2
Ω background), this system

has 2-dimensional Poincaré invariance and N = (2, 2) supersymmetry.2

Indeed, if we consider a single D3-brane, the theory can be described as a

Landau-Ginzburg model, where the superpotential W = W (X, ε1,~t ) is a “holomor-

phic Chern-Simons”-type functional, a function of fields X representing deformations

of the holomorphic curve Y [21], depending on background parameters ~t controlling

the complex structure moduli of CY . Thus, the theory with the full Ω-background

turned on can be viewed as a deformation of this 2-dimensional Landau-Ginzburg

model; this viewpoint will be useful momentarily.

The physical setup just discussed has an analogue in the topological string: we

consider the B model on CY with a brane on Y ⊂ CY . It has been found in this

case [22–24] that the refined open topological string partition function is

Zopen =

∫
dX exp

[
− 1

ε2
W (X, ε1,~t )

]
.

Now let us consider a slightly fancier situation, where we have N branes rather than

one, and a particular choice for CY , as follows. Consider a hypersurface in C4 of the

form

y2 = W ′(x)2 + uv

where W (x) is a polynomial of degree n+ 1, and W ′(x) has n simple zeroes. Each of

these zeroes gives a conifold singularity; blowing each of them up to an exceptional

cycle Yi ' P1 gives a smooth Calabi-Yau threefold, which we take to be our CY .

Now we can wrap ki D3-branes around the cycles Yi × R2, as we considered above.

Let N =
∑
ki.

The corresponding open topological string amplitude is known to be [22–24]

Zopen(~k, ε1, ε2) =

∫
D~k

dxj ∆(x)
ε1
ε2 exp

(
− 1

ε2

∑
j

W (xj)
)
. (2.3)

Here ∆(x) is the squared Vandermonde,

∆(x) =
∏
j1 6=j2

(xj1 − xj2),

and the integration cycle D~k is defined by integrating ki of the xj along the steepest-

descent contour emanating from the i-th critical point of W (along this contour

Re(W/ε2)→ +∞ while Im(W/ε2) remains fixed, so that the integral is convergent).

2 Although we are focusing on the B-model to be concrete, all of this discussion has a parallel

version in the A-model; the corresponding physical picture would involve M-theory on an R4 bundle

over CY × S1, where as we go around S1 we rotate R4 by angles ε1, ε2.
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Now here is the key point: (2.3) can be identified with the asymmetric limit of

a tt∗ flat section in the physical N = (2, 2) theory! Indeed, in this case the physical

theory is a gauged Landau-Ginzburg model, where the field Φ is an N×N matrix, we

have a gauge group U(N), and the superpotential is TrW (Φ). Upon integrating out

the gauge dynamics the Landau-Ginzburg model is replaced by an effective version,

where the fields are just the eigenvalues xj of Φ, with the superpotential

Weff (x) =
∑
j

W (xj) + ε1
∑
j1 6=j2

log(xj1 − xj2). (2.4)

We now revisit the formula (2.2) for the asymmetric limit of the tt∗ flat sections

corresponding to D-branes of this 2-dimensional model. The integration cycle D~k is

the Lefschetz thimble attached to the critical point of W eff labeled by ~k.3 Thus,

(2.2) is identical to (2.3):

Zopen(~k, ε1, ε2) = lim
asym

ψ0
~k
(ε1, ε2).

It was this observation that motivated the definition of the “twistorial open

topological string” in [4]. Namely, on the tt∗ geometry side we can move away from

the asymmetric limit, and this means that we have a deformation on the topological

string side as well: we define [4]

ψtwistopen (~k, ε1, ε̃2, ζ) = ψ0
~k
(ε1, ε̃2, ζ),

where we introduced the notation

ε̃2 = R−1

with R the length of the circle which appears in the tt∗ story.4

More generally, for any choice of CY , we expect that the ordinary open topologi-

cal string can be recovered as the asymmetric limit of the tt∗ flat section correspond-

ing to the D-brane, and thus for any CY we define the twistorial open topological

string partition function to be ψ0
b , i.e. the overlap between the tt∗ flat section corre-

sponding to a boundary condition b and the topological ground state.

Now, note that in the above example the superpotential Weff is actually mul-

tivalued due to the logarithm. This introduces a wrinkle in the tt∗ geometry story:

we need to consider a cover of the field space, on which Weff is single-valued. In

particular, each vacuum ~k gets replaced by an integer’s worth of vacua on this cover.

It is convenient to work in a different basis for the vacua, introducing a phase θ

Fourier dual to this integer. Thus the coupling constants of the twistorial topolog-

ical string include, in addition to the parameters ε1 and ε̃2, the new circle-valued

3 More precisely, this is the description for ε1 = 0; for ε1 6= 0 the critical points are deformed,

as we discuss later in this paper, but their labeling does not change.
4 Note that rescaling the length by a factor of R changes W → RW .
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parameter θ. Similar additional parameters were encountered in [2], where it was

shown that solutions of the resulting extended version of tt∗ can be understood as

hyperholomorphic connections over the extended parameter space; in the examples

we consider below, we will find the same structure.

Additional angular variables will emerge, which also allows us to make contact

with the setup of [9, 25, 26], as we now explain. Consider the local Calabi-Yau

geometry

uv = f(x, y).

This can be interpreted as in geometric engineering context as a 4d theory with SW

curve f(x, y) = 0. Furthermore we can consider B-branes given by u = 0, x = x0

parameterized by a point x0 on the SW curve. In the uncompactified worldsheet

2d theory of this brane we get a 2d theory which (in the ε1 = 0 case) has a super-

potential W (x0) with dW = y(x0)dx0 where ydx is the SW differential [21]. From

the 4d viewpoint, this can be interpreted as a surface operator [27] whose moduli

is parameterized by x0. The tt∗ geometry for this theory would be, by the defini-

tion above, the open twistorial topological string. Note however, in this setup we

have extra parameters in the target space geometry having to do with the choice

of the electric and magnetic Wilson lines around the circumference of S1 in the tt∗

geometry. This is consistent with the fact that the 2d LG theory has a multi-valued

superpotential and extra parameters can also be introduced for it. In fact this case

has been studied from the perspective of target 4d theory in [26] (see also [2]). In

particular it is shown there that as we take x0 around a cycle γ of the SW curve

the D-brane wave function picks up monodromy Xγ, where Xγ can be interpreted

as the line operators of [9, 25]. In this way we make a connection between twistorial

aspects of hyperKähler geometry associated with 4d, N = 2 theories compactified

on a circle, with open twistorial topological string. More precisely, as we will discuss

later in the paper, this connection arises in the limit ε1, θ → 0.

3 Closed twistorial topological strings

In the last section we have defined the open twistorial topological string in terms of

the tt∗ geometry associated to the corresponding physical D-brane. Now we would

like to give a compatible twistorial extension of the closed sector of the topological

string. There are two ways this can be done in principle. In §3.1 below we use the

large N duality of the topological string [24, 28, 29] to give one such definition. Then

in §3.2 we give another definition purely from the target space point of view, and

argue that the two approaches are equivalent. Finally in §3.5 we reformulate this

definition in terms of the results of [5], which provides a direct 4d tt∗ interpretation.

For concreteness, we continue to consider only the topological B model through-

out this section, though similar considerations apply to the A model.
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3.1 Large N duality and closed twistorial topological strings

For a closed topological string setup which has an open topological string dual, we

can simply define the closed twistorial topological string partition function to be the

same as the open twistorial topological string partition function:

ψtwist(~t, ε1, ε̃2, θ, ζ) = ψtwistopen (~k, ε1, ε̃2, θ, ζ).

Here the moduli on the two sides are related by

~t = ε1~k, (3.1)

where the components ti of ~t are the closed string moduli, and the components ki
of ~k are the numbers of branes wrapped around cycles Yi on the open string side.

The closed twistorial topological string is not symmetric under the exchange ε1 ↔ ε̃2,

unlike the usual closed topological string; this is why we have been using the notation

ε̃2.

Note that according to this definition the closed twistorial topological string

does not make sense for arbitrary values of ti, since the ki in (3.1) have to be integers

(although in some examples below we will see that the partition function admits

a natural continuation away from the integral locus.) However, in a perturbative

expansion around ε1 = 0, we would not see this quantization; then we expect to get

functions defined on the full Coulomb branch (arbitrary ~t ).

Let us consider again the main example discussed in §2.2. The holographic dual

of the open topological string theory we considered there is the closed topological

string for the local Calabi-Yau hypersurface

y2 = W ′(x)2 + P (x) + uv,

where P (x) is a polynomial of degree n− 1, whose coefficients are fixed in terms of ~k

as in [22]. Thus, we may define the closed twistorial topological string for this local

Calabi-Yau as

ψtwist(~t = ~kε1, ε1, ε̃2, θ, ζ) = ψtwistopen (~k, ε1, ε̃2, θ, ζ).

To recover the usual closed topological string from our twistorial extension, we

repeat what we did for the open sector: namely, we take ζ → 0, θ → 0, and ε2 →∞
while holding ε̃2ζ = ε2 finite. As we argued in §2.2, in this limit the open twistorial

topological string reduces to the ordinary open topological string; via the topological

large N duality, we then recover the ordinary closed topological string partition

function:

Ztop(~t, ε1, ε2) = lim
ε̃2→∞, (ζ,θ)→0,

ζε̃2=ε2

ψtwist(~t, ε1, ε̃2, θ, ζ).

Note that in this limit we still have the quantization constraint that each ti is an

integer multiple of ε1, which suffices to define Ztop in a perturbative expansion in ε1.
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3.2 Target space interpretation of closed twistorial topological string

In this section we give an alternative definition of the closed twistorial topological

string, which is more general and does not use a largeN duality. Its only disadvantage

is that it is not easy to compute it when an explicit dual open string description is

lacking.

Suppose given an N = 2 theory in 4 dimensions. We may place this theory in

the 1
2
Ω background with parameter ε1, corresponding to a rotation in the x3 − x4

plane. We thus get a theory in 2 dimensions with N = (2, 2) supersymmetry. Now

we consider tt∗ geometry for this 2d theory. This involves studying the Hilbert space

on a circle S1
R, and we take the circle radius to be

R = 1/ε̃2.

Moreover, in this theory there is a global symmetry corresponding to the rotation in

the x3−x4 plane, and we can also turn on a Wilson line around S1
R for this symmetry,

with holonomy eiθ (thus as we go around S1
R we are rotating the x3 − x4 plane by

an angle θ while compensating it with the a U(1) ⊂ SU(2) R-symmetry to maintain

supersymmetry).

It is known from [5] that in this 2-dimensional theory we have a discrete set of

vacua labeled by integer vectors ~k = (k1, . . . , kr), with r the complex dimension of

the Coulomb branch of the original N = 2 theory. Thus, there is a natural basis

of supersymmetric D-branes for this 2-dimensional theory, labeled by the discrete

parameter ~k together with a continuous parameter ζ determining which half of susy

the D-brane preserves. In parallel to what we did above, we will consider the overlap

between such a D-brane state and the topological vacuum; we propose to define the

closed twistorial topological string partition function ψtwist to be this overlap. To

do so, we need to relate the parameter ~k to the Coulomb branch moduli ~t on which

ψtwist is supposed to depend. When our N = 2 theory is a Lagrangian gauge theory,

and when we work in the classical approximation, the results of [5] would lead to the

identification ~t = ~kε1. More generally this ~t should be viewed as ε1 deformation of

the Coulomb branch parameter, in terms of which the Nekrasov partition function

is expressed. Thus we define

ψtwist(~t = ~kε1, ε1, ε̃2, θ, ζ) = 〈0|~k, θ, ζ〉ε1, R=1/ε̃2 .

One tricky point requires discussion. Our description of the vacua is not sym-

metric under electric-magnetic duality: in writing ~t = ~kε1, we are saying the vacua

correspond to points where the Coulomb branch scalars ti in a particular electric-

magnetic duality frame are quantized. In fact, in our description we used a basis

which is electric-magnetic dual to that used in [5]. In the 2-dimensional theory, this

asymmetry between electric and magnetic can be understood as coming from the
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boundary conditions imposed at spatial infinity; alternatively this boundary condi-

tion can also be understood as coming from a boundary condition at infinity in the

original 4-dimensional theory; this mechanism was discussed in [7].

3.3 Equivalence via physical large N duality

We have now offered two definitions of the closed twistorial topological string. Each

involves tt∗ geometry for some 2-dimensional field theory; in one case the theory was

living on the noncompact part of the worldvolume of a D3-brane of the Type IIB

superstring in 1
2
Ω-background; in the other case the theory came from taking a 4-

dimensional N = 2 theory and turning on a 1
2
Ω-background. We will now argue that,

in cases where they are both applicable, the two definitions are actually equivalent,

because the two 2-dimensional theories in question are equivalent.

The basic idea of the equivalence is a physical version of the open/closed duality

of topological strings. Such ideas have been used before. In particular, in [30] the

topological open/closed duality was embedded in the Type IIA superstring, which

was later applied to derive nonperturbative results for N = 1 supersymmetric the-

ories in four dimensions [31, 32]. The Type IIB version of this involves D5-branes

wrapping CP1 in CY , and filling the 4-dimensional spacetime, so that there is 4-

dimensional Poincaré invariance on both sides of the duality. In this paper, on the

other hand, we have been discussing D3-branes, which fill only 2 of the 4 noncompact

dimensions. However, once we have turned on the 1
2
Ω-background we have only 2-

dimensional Poincaré invariance, whether or not we have the D3-branes present; thus

at least on symmetry grounds there is no reason why there cannot be an open/closed

duality in this setting as well. Moreover, such a duality has been considered before in

the A model, in that case involving 5-dimensional and 3-dimensional theories [33, 34];

see also [35].

The main new point we make here is that the vacuum structures in the two

theories match. Indeed, in the open/closed duality story, we meet the quantization

law ~t = ~kε1, where ~k keeps track of the number of D-branes. On the other hand,

when we put an N = 2 theory in 1
2
Ω-background, as we have reviewed above, the

vacua are also labeled by integers ~k. This is a good consistency check, and part of

the motivation for writing ~t = ~kε1 in that context as well.

Strictly speaking, there is a slight mismatch here: to obtain all the vacua of

the N = 2 theory in 1
2
Ω-background, we should allow the components of ~k to be

arbitrary integers; on the other hand the numbers of D3-branes would naively be

restricted to be positive integers. It would be interesting to clarify this point. A

possible resolution could involve replacing the matrix model with gauge group U(N)

by a supermatrix model with gauge group U(N +M |M), for M →∞. As discussed

in [36], this would allow eigenvalues to occur with negative multiplicity.
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3.4 Extra phases and hyperKähler geometry

So far we have defined ψtwist to be a function of Coulomb branch moduli ~t (which

are quantized for finite ε1, but become continuous in the limit ε1 → 0). In examples

which we consider below, we will find evidence that ψtwist as ε1 → 0 should in fact

be viewed not as a function on the Coulomb branch, but rather as the restriction

of something involving a larger space M. The relevant M is the “Seiberg-Witten

integrable system” which has been considered before in many works, e.g.[37–39], and

played a key role in the study of BPS states of N = 2 theories in [9]. Let us quickly

recall the basics.

M is the total space of a complex integrable system arising as a torus fibration

over the Coulomb branch. To describe the torus fibers concretely, choose an electric-

magnetic splitting; then the fibers can be coordinatized by angles θei , θmi , where e,

m refer to “electric” and “magnetic”, and i = 1, . . . , r. From the point of view of

the N = 2 theory of the last section, M arises as the moduli space of the theory

we obtain by compactification to 3 dimensions on S1. Here the electric coordinates

θei are the holonomies of the abelian gauge fields around S1, while θmi arise from

dualization of the 3-dimensional gauge field. This compactified theory has N = 4

supersymmetry in 3 dimensions, from which it follows that M carries a natural

hyperKähler metric, as discussed in [40].

Concretely, what we are proposing is that ψtwist is best viewed as depending on

the angular parameters ~θe as well as ~t. Of course, in our discussion so far we have

not seen these extra parameters appear explicitly. We will argue in Section 3.6 below

that in fact they are fixed to
~θe = ~kθ (3.2)

which explains why we have not seen them so far.

Nevertheless it is sometimes useful to keep these extra parameters in mind, as

we will see below. In fact, as ε1 → 0 one can see due to periodicity of θi, that ti

and θi become effectively independent variables. In particular, in the C-limit which

we define in §3.7.4 below, we will identify the twistorial topological string partition

function (rescaled) with the quantity Ψ considered in [10], which did depend on the

extra parameters ~θe; to make this comparison, we will need to use (3.2).

3.5 Relation to Nekrasov-Witten

In the target space description of the closed twistorial topological string, given in

§3.2, we considered an N = 2 theory placed in 1
2
Ω-background, with parameter ε1

corresponding to rotation in the x3 − x4 plane. There is an alternative perspective

on the 1
2
Ω-background, due to Nekrasov-Witten [7], which gives some further insight

into this setup.

Nekrasov-Witten argue that the theory with 1
2
Ω-background is equivalent to a

theory without Ω-background. In the new theory the metric in the x3−x4 directions
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is modified to a cigar, whose asymptotic radius is 1/ε1. More precisely, this equiva-

lence is supposed to hold everywhere except for the tip of the cigar; at the tip, the

equivalence breaks down, so from the point of view of the new theory there is some

nontrivial insertion there. Now suppose that we compactify this new theory from 4 to

3 dimensions along the circle direction of this cigar. Away from the tip, then, we just

have the compactification of the original N = 2 theory to three dimensions on S1.

In the IR, this compactification gives rise to a 3d sigma model into the hyperKähler

space M reviewed in §3.4.

The cigar becomes a half-line in the spacetime of the compactified theory, pa-

rameterized by r =
√

(x3)2 + (x4)2. To describe the situation more completely, we

should now consider the boundary conditions on this half-line. At r = 0, the com-

pactification produces a boundary condition of the 3d sigma model, corresponding

to the local physics at the tip of the cigar. Nekrasov-Witten argue that this bound-

ary condition restricts the sigma model field to a certain subspace O ⊂ M. O is a

complex submanifold with respect to one of the complex structures of M, and also

Lagrangian with respect to the corresponding holomorphic symplectic form.5 We

do not know an explicit description of O in general; however, if our N = 2 theory

happens to be a theory of class S, then M is a moduli space of solutions of Hitchin

equations, and Nekrasov-Witten propose that in this case the O is the space of opers.

At r =∞ (or r = L after regulating) we should also fix a boundary condition. This

boundary condition is not dictated by the local physics of the original 4d N = 2 the-

ory; rather it corresponds to a choice of boundary condition in 4d, the same choice

which we discussed at the end of §3.2, which picks out a particular electric/magnetic

duality frame. From the 2d point of view it corresponds to another brane O′ in the

hyperKähler space M.

If we now compactify on the r interval to the x1− x2 plane, the vacua of the re-

sulting two-dimensional theory come from configurations where the sigma model field

is constant on the interval. Such configurations correspond to points of intersection

between O and O′. On the other hand, the theory we obtain by this compactification

is just the original N = 2 theory in 1
2
Ω-background; thus the vacua of this theory

correspond to these intersection points. This is one of the key observations of [7].

To apply this point of view to the twistorial topological string, we do tt∗ geometry

for the two-dimensional theory we obtain by this reduction, as we did in the previous

sections; in other words, we put the two-dimensional theory on a spatial circle, of

radius R = 1/ε̃2 (say in the x2 direction), and turn on a Wilson line eiθ around that

circle for the U(1) symmetry coming from rotations in the x3 − x4 plane (combined

5 The complex structure in question on M lies on the equator of the twistor sphere of M;

precisely which point of the equator we get is determined by the phase of the 1
2Ω-deformation

parameter ε1. Here we have taken ε1 to be real; having made this choice, we get a definite point

of the equator, sometimes referred to as “complex structure K”. The fact that O is complex

Lagrangian in this structure can then be summarized by saying that O is an (A,A,B) brane onM.

– 14 –



=
θ/ϵ1

R

1/ϵ1

Figure 1: This figure shows the geometry of the 3d space in the Nekrasov-Witten

picture. The geometry is that of T 2 fibered over a line R where on one end of the

line we have the 1
2
Ω background and on the other the electric (or magnetic) D-brane

boundary conditions.

with R-symmetry to maintain supersymmetry). From the viewpoint of the original

4d N = 2 theory, we are considering a geometry which in the bulk looks like a 2-

torus fibration over the r − x1 plane — indeed we compactified on two circles, with

radii 1/ε1 and 1/ε̃2. If θ 6= 0 then this torus is not rectangular; its complex structure

parameter is given by

τ = i
ε1
ε̃2

+
θ

2π
. (3.3)

See Fig.1.

We have boundary conditions at r = 0 and r = L as described above. Thus

the tt∗ geometry we consider, from this point of view, is describing the ground state

geometry of the 4d N = 2 theory compactified on the torus with these particular

boundary conditions, in the limit L → ∞. (Keeping L finite would give a natural

extension of the twistorial topological string, which we will not consider in this paper,

but would be interesting to study.)

Finally, our definition of ψtwist is as in the previous sections. We consider the

massive vacua, corresponding to the intersection points ~k between O and O′ above.

Each such vacuum corresponds to a D-brane D~k(ζ) of the two-dimensional theory in

the x1 − x2 directions, and we compute the overlap

ψtwist = 〈0|D~k(ζ)〉.

Let us try to interpret this from our present point of view. The state 〈0| corresponds

to the topological path integral on a cigar in the x1 − x2 directions. In terms of the

torus compactification to the r − x1 plane, this means we are inserting a boundary

condition at x1 = 0, corresponding to the shrinking of the x2 circle. We also have

a second boundary condition at x1 → ∞, coming from the D-brane D~k(ζ), and the

boundary conditions at r = 0 and r = L as described above. Thus in the end ψtwist

– 15 –



is given by a path integral in the 2-dimensional theory over a strip with these 4

boundary conditions, in the limit L→∞.

3.6 Quantization of the hyperKähler integrable system

As we have been discusing, the twistorial topological string can be viewed as the

tt∗ geometry associated with the 1
2
Ω background, with parameter ε1. As such, the

Coulomb branch parameters are discretized. Here we argue that this discretization

actually extends to a discretization of the full hyperKähler space M.

We take the radius of the 2d circle where we are considering the tt∗ geometry to

be R and consider in addition a twist in the 3-4 plane by θ as we go around the circle.

We take the time direction to correspond to the 2d geometry along the cylinder and

we base our Hilbert space on the 2d circle. For a moment let us consider the limit

where ε1 = 0. In this case we simply have the compactification of the 4d N = 2

theory on a circle of radius R, where as we go around the circle we rotate the other

two spatial coordinates by θ. On this geometry one can consider line defects Xγ(ζ),

studied in [25], which correspond to supersymmetric Wilson-’t Hooft lines in the IR,

where γ denotes an element of the charge lattice and ζ (taken to be a phase) controls

which half of the supersymmetry the line operator preserves.

As was argued in [12, 25, 41], in this background the line defects become non-

commutative:

Xγ(ζ)Xγ′(ζ) = q〈γ,γ
′〉Xγ′(ζ)Xγ(ζ)

where

q = exp(iθ),

and 〈γ, γ′〉 denotes the symplectic inner product on the charge lattice.

Now consider turning on the 1
2
Ω background, letting ε1 6= 0. In the later sections

of this paper, we will find evidence through examples that in this context the above

commutation relations should be modified to

Xγ(ζ)Xγ′(ζ) = q(ζ)〈γ,γ
′〉Xγ′(ζ)Xγ(ζ) (3.4)

where

q(ζ) = exp

[
−2πRε1

ζ
+ iθ − 2πRε1ζ

]
= exp

[
−2πε1
ε̃2ζ

+ iθ − 2πε1ζ

ε̃2

]
(3.5)

In the “semi-flat” limit R � 1, this commutation relation can be interpreted as

follows. In this limit we have

Xγ(ζ) = exp

[
−2πRaγ

ζ
+ iθγ + 2πRaγζ

]
and so the relation (3.4) would follow from

[aγ, aγ′ ] = −ζ〈γ, γ′〉 ε1
2πR

= − 1

2π
ζ〈γ, γ′〉 ε1ε̃2,

[aγ, aγ′ ] = −1

ζ
〈γ, γ′〉 ε1

2πR
= − 1

2π

1

ζ
〈γ, γ′〉 ε1ε̃2,

(3.6)
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[θγ, θγ′ ] = −i 〈γ, γ′〉 θ. (3.7)

Moreover, in this limit we will find that the twistorial topological string partition

function behaves like a wave function. Namely, relative to the electric/magnetic

splitting picked out by our boundary condition, we have (see eqn.(3.8) below)

ψtwist ∼ exp[F (aei)/ζ
2ε1ε̃2 + F (aei)ζ

2/ε1ε̃2],

where we write {ei} for a basis of the electric charges, and F (aei) is the prepotential

of our N = 2 theory. As we change the electric/magnetic basis, this formula changes,

because the prepotential F changes by a Legendre transform. On the other hand

the above commutation relations for the aγ would imply that a wave function of

the aei would transform by Fourier transform. At least to leading order in the

quantization parameter, this matches. This is compatible with the interpretation

of the holomorphic anomaly [42] as making the topological string an element of a

Hilbert space acted on by operators with the above commutation relation [43].

As shown in [9], the line operators Xγ can be viewed as providing local Darboux

coordinates for the holomorphic symplectic structures on the space M which we

reviewed in §3.4. In this context, what (3.4) means is that M is being quantized in

the twistorial topological string. Roughly speaking, ε1 is a quantization parameter

for the base of the hyperKähler geometry (Coulomb branch) and θ is a quantization

parameter for the torus fiber.

As we have already noted, in the 1
2
Ω-background we get a discretization of the

Coulomb branch: aei = kiε1. We now argue that in the 1
2
Ω-background we also

naturally get a discretization of the θei , so that we have a ‘twistorial triplet’ dis-

cretization6: (
aei , θei , āei

)
= ki

(
ε1, θ, ε̄1

)
.

To argue for the discretization of the electric angles θei , we first recall how in the

R → ∞ limit the arguments of Nekrasov-Shatashvili give the discretization of aei :

we have an effective superpotential which in terms of magnetic variables looks like

W =
1

ε1
W (Σmi , ε1)− kiΣmi ,

so that at the critical points

aie = Σie = ∂Σmi
W (Σmi , ε1) = kiε1.

On the other hand, viewed as a superfield Σmi has a top component Fmi which is the

magnetic flux in the 2d plane, which integrated on the cigar geometry of tt∗ leads

6 More precisely, the discretization is shifted by a half-integer as is seen in the context of large

N dualities. This is also related to the “quadratic refinement” of [9].

– 17 –



to the magnetic holonomy θmi around S1. Therefore the above W implies that the

wave function ψtwist has a θmi dependence given by

exp(ikiθmi)

Given the fact that [θei , θmi ] = −iθ, this wave function gives a quantization θei = kiθ,

as we wished to show.

3.7 Interesting limits

So far we have formulated what we mean generally by the closed twistorial topological

string partition function: it is a D-brane amplitude in the tt∗ geometry associated

to a 4-dimensional field theory in 1
2
Ω-background. In general, though, this D-brane

amplitude would be very complicated to compute. In order to get some handle on it,

in this section we point out some simplifying limits that we shall consider later in this

paper. The twistorial topological amplitude depends on the parameters (ε1, ε̃2, θ, ζ).

The interesting limits to consider will involve taking various of these parameters

to 0 or ∞, while holding other parameters or combinations of parameters fixed.

Fig. 2 shows the various limit we take starting with the twistorial topological string

amplitude ψtwist. The limits on the left correspond to refined topological string

partition function and its NS limit and the right column corresponds to the various

twistorial limits. We discuss these limits next.

3.7.1 The asymmetric limit

The asymmetric limit is the limit in which we take ζ → 0, ε̃2 →∞ keeping ε2 = ε̃2ζ

finite, and also set θ = 0. In this limit, as we have described above, we expect to

obtain the closed refined topological string amplitudes:

lim
ζ→0

ψtwist(ε1, ε̃2 = ε2/ζ, θ = 0, ζ) = Ztop(ε1, ε2).

Here, more precisely, to make the right side well defined we should specify in which

polarization we write Ztop: we mean the real polarization determined by an electric-

magnetic splitting, the same splitting which we have discussed above. Also, as al-

ready noted, ψtwist is strictly speaking defined on a discrete subset of the Coulomb

branch, ~a = ε1~k for an integer vector ~k. Still, in the perturbative expansion in ε1
around 0, the ai would appear continuous. This matches the usual situation for Ztop.

This limit is a simplifying limit for ψtwist in several senses. First, since Ztop is

holomorphic in the ai, in this limit we expect ψtwist to become holomorphic. We also

expect the emergence of a Z2 symmetry ε1 ↔ ε2, which is also not there in the full

ψtwist (our definition makes clear that ε1, ε̃2 are not on the same footing.)

We could of course take a further limit, sending either ε1 → 0 or ε2 → 0, leading

to the NS limit of the topological string:

Ztop(ε1 → 0, ε2)→ exp
[
WNS(ai, ε2)/ε1

]
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ψtwist

ϵ1,R ,θ

ζ

Z ref
top

ψθ

ϵ1,ϵ2 R ,θ

ζ

θ→0, ζ→0
R→ζ/ϵ2

ϵ1→0

ζ→0
R→ζ/ϵ2,θ→ϵ1 /ϵ2

ϵ1→0 θ→0

Z NS

ϵ2 R

ζ

ζ→0
R→ζ/ϵ2

ψC

Figure 2: The diagram of various limits. The quantities in the boxes denote the

parameters the object depends on. ψtwist is the twistorial partition function which

depends on all three coupling constants (ε1, R, θ), where R = 1
ε̃2

, and the twistor

parameter ζ. The left column denotes the limits leading to refined and NS limits of

topological strings. The right column denotes the θ-limit, and the C-limit. Various

reductions are shown by arrows and the limits we need to take are indicated next to

the arrows.

Ztop(ε1, ε2 → 0)→ exp
[
WNS(ai, ε1)/ε2

]
whereWNS is the Nekrasov-Shatashvili superpotential for the theory in 1

2
Ω-background.

3.7.2 An NS-like limit

A second limit we could consider is ε̃2 → 0. This corresponds to taking the radius of

the circle on which we are compactifying our 2d theory to be R →∞. In this limit

the vacua of this theory become decoupled, so that the tt∗ geometry is dominated

by classical contributions. In this limit, we expect the brane wave function attached

to a given vacuum (twistorial topological string amplitude) to be dominated by the
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value of the Nekrasov-Shatashvili effective superpotential WNS at the corresponding

critical point. More precisely, we expect (in the unitary gauge) to get contributions

both from WNS and W
NS

,

ψtwist(ε1, ε̃2, θ, ζ)
ε̃2→0−−−→ exp

[
WNS(a, ε1)

ζε̃2
+ ζ

W
NS

(a, ε1)

ε̃2

]
(3.8)

3.7.3 The θ-limit

Next we consider the limit ε1 → 0, while keeping all the other parameters fixed; we

call this the θ-limit.

This is a somewhat subtle limit: it corresponds to making the coupling q(ζ),

given in eqn.(3.5) above, effectively ζ-independent except in small neighborhoods of

ζ = 0 and ζ =∞.

As we will discuss in the explicit examples below, in this limit we find singular

behavior of the form

ψtwist
ε1→0−−−→ ψθ(ε̃2, θ, ζ) = exp

[
WNS(a, θε̃2ζ)

ζε̃2
+ ζ

W
NS

(a, θε̃2/ζ)

ε̃2
+ · · ·

]
(3.9)

where ... represents terms which are nonsingular in the limit ε1 → 0 and moreover

vanish as ε̃2 → 0. It is crucial here that we have not taken the limit θ → 0.

Note that in this limit we are turning off the 1
2
Ω-background. Thus our setup

is approaching the original 4d N = 2 theory on a circle of radius R = 1/ε̃2, and

the vacua at ~a = ~kε1 become continuous. The values of ~a which we can reach still

lie on a real subspace of the Coulomb branch, determined by the phase of ε1; we

expect that ψθ admits a further analytic continuation from this real locus to the full

space. Moreover, recall that the components θei of ~θe are all periodic variables, fixed

in terms of ai by the relation ~θe = ~kθ, ~a = ~kε1. Remarkably, in the limit ε1 → 0, the

locus of points (~a, ~θe) which we can access fills up the whole parameter-space, i.e. ~θe
becomes continuous and arbitrary in this limit. (Said more precisely, for any desired

target point (~a, ~θe), there is a way of tuning the vectors ~k as ε1 → 0 in such a way

that in the limit we hit the target point.)

Thus altogether we expect that the θ-limit of the partition function will be a

function of the form

ψθ(~a, ~θe, R, θ, ζ)

where we have replaced ε̃2 by R = 1/ε̃2, to emphasize its role as the radius of the

circle on which we compactify the 4d theory.

In the next section, motivated by examples, we propose that ψθ should be con-

sidered as the solution to a “quantum” Riemann-Hilbert problem, with the quantum

parameter

q = exp(iθ).
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Moreover, in the ‘classical limit’ θ → 0, we argue that this quantum Riemann-

Hilbert problem becomes equivalent to the Riemann-Hilbert problem studied in [9]

incorporating the Kontsevich-Soibelman wall crossing [44] in finding the expectation

values of line operators of the 2d theory, wrapped on the circle. The θ 6= 0 limit

extends this to the refined wall crossing [12, 41, 45, 46]. In these cases the line

operators become actual operators acting on a Hilbert space satisfying commutation

relations

XγXγ′ = q〈γ,γ
′〉Xγ′Xγ

where γ, γ′ are charges in the central charge lattice and 〈, 〉 denotes the corresponding

symplectic product. In this context ψθ should be viewed as a wave function in this

Hilbert space. Moreover as we change the phase of ζ and cross the phases of BPS

central charges, we have the action of quantum dilogarithm operators on ψθ. In the

same sense the line operators get conjugated by quantum dilogarithm operators. In

this context the monodromy of the quantum dilogarithm operators representing wall

crossing that was studied in [12] represent the 2d tt∗ monodromy.

3.7.4 The θ-limit → C-limit

A further “classical” limit, which we call the C-limit, is obtained by starting with

the θ-limit and then taking θ → 0.

In this limit, we will see in explicit examples below that ψθ ∼ exp[f/θ]. Thus

we define the C-limit amplitude by

ψC(~a, ~θ, R, ζ) = lim
θ→0

[
ψθ(~a, ~θ, θ, R, ζ)

]θ/2π
.

As we will see in §8 below, ψC will turn out to be identified with a key geometric

quantity which entered into the work [10]. The aim of that work was to construct a

certain hyperholomorphic connection over the hyperKähler moduli spaceM reviewed

in §3.4. Thus, in the C-limit we are recovering information about the classical

hyperKähler geometry of M.

3.7.5 The θ-limit → Top-limit

In §3.7.1 we have described one way of recovering the usual refined topological string

partition function from ψtwist, by setting θ = 0 and taking the asymmetric limit

ζ → 0 with R/ζ = 1/ε2 fixed.

Here is another way. We can begin with the θ-limit ε1 = 0, then take the

asymmetric limit ζ → 0 and R → 0 keeping R/ζ = 1/ε2 finite, and then rename

θ → ε1/ε2, thus reintroducing the parameter ε1. We also set the angles ~θe = 0.

In this limit we expect to get back the topological string again (because the

dependence on topological string coupling constants is in the form q(ζ)):

ψθ → Ztop

(
ai, ε1 = θε2,

1

ε2
=
R

ζ

)
.
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3.7.6 The (C-limit or Ztop) → NS- limit

Finally, we can go to the NS limit of the refined topological string in either of two

ways. Either we can start from the full twistorial topological string, take its C-limit,

and then take the asymmetric limit (where we take ζ → 0, R→ 0 holding R/ζ = 1/ε2
fixed), or we can simply begin with Ztop, then take the ε1 → 0 limit of (Ztop)ε1 . In

either way, we recover the usual NS limit of the refined topological string.

4 The θ–limit and the quantum Riemann–Hilbert problem

As we have noted, the twistorial topological string gets simplified in the θ-limit where

ε1 → 0. In addition, starting from this limit we can get, by further reductions, the

classical wall-crossing as well as aspects of the hyperKähler geometry studied in [9].

Moreover in a different limit we can obtain the refined topological string amplitudes.

So the θ-limit is quite rich. In this section we propose a computational scheme for

the θ–limit of the twistorial topological string based on a plausible physical picture

of the twistorial brane amplitudes using BPS structure of the 4d, N = 2 theory. Our

conclusions will be checked in the next two sections by comparing with the exact

twistorial amplitudes of the Abelian geometries in the same limit. Further evidence

is provided by the fact that the proposed formalism reproduces the TBA equations

of [9] in the appropriate limit.

4.1 General picture from dual matrix LG models

To orient our ideas, we start with some heuristic considerations on the twistorial

topological string as defined by the large–N limit of the tt∗ brane amplitudes of the

matrix LG models in eqn.(2.4). (These models will be analyzed more precisely in

section 5). For definiteness we focus on the cubic LG model

W =
N∑
i=1

(X3
i /3− tXi) + ε1

∑
1≤i<j≤N

log(Xi −Xj)
2, (4.1)

where we identify field configurations up to permutations of the Xi. At ε1 = 0 the

model reduces to the symmetric tensor product of N copies of the mass–perturbed

A2 minimal model, each copy having two susy vacua at Xi = ±
√
t. The point

vacua of (4.1) at ε1 = 0 then are labeled by (N+, N−) and the corresponding D-

branes by |N+, N−〉 where N+ (resp. N− ≡ N − N+) is the number of eigenvalues

Xi

∣∣
vac.

equal to +
√
t (resp. −

√
t). In total we have N + 1 vacua. The one–field

LG model W (X) = X3/3 − tX has a tt∗ Lax connection Aζ which takes values in

SL(2,C) and the brane amplitude is a flat section of the vector bundle corresponding

to the fundamental representation 2. At ε1 = 0 the brane amplitudes of the matrix

LG model (4.1) are flat sections of the SL(2,C) connection Aζ in the spin N/2

representation. The Stokes matrices of the associated Riemann–Hilbert problem are
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elements of SL(2,C), and (at ε1 = 0) the two Stokes matrices S± of the matrix

model (4.1), acting on the N + 1 dimensional space of D-branes, are just these group

elements written as matrices in the N + 1 representation, i.e.

S± = exp(J±)
∣∣∣
N+1 irrepr.

. (4.2)

When ε1 6= 0 the vacuum structure becomes subtler: although the closed holo-

morphic one–form dW is still well defined, it is no longer exact due to the non–trivial

fundamental group π1 of the field space (CN \diagonal)/SN , isomorphic to the braid

group BN . As a result each of the N + 1 vacua gets promoted to a θ–vacuum and

in particular the vacuum amplitudes for the D-branes gets realized as 〈θ|N+, N−〉.
q = eiθ acts as a character of BN : switching on a non–zero θ is equivalent to the

insertion in the amplitude of the corresponding chiral primary

O(θ) = C(θ)
∏
i<j

(Xi −Xj)
θ/π, (4.3)

where C(θ) is some normalization factor. From eqn.(4.3) it is obvious that braiding

the two consecutive fields Xi and Xi+1 introduces an extra factor of q, and that the

power of q counts the number of such elementary braiding operations.

The three parameters (ε1, θ, ε̄1) become three coordinates in the periodic tt∗

geometry of the LG model (see [2] and next section) which get unified in a single

twistorial object

q(ζ) = exp
(
− 2πε1/(ε̃2ζ) + iθ − 2πε̄1 ζ/ε̃2

)
. (4.4)

The θ–limit is taking ε1 → 0 while keeping θ fixed, so that q(ζ) becomes a

constant independent of ζ, while the amplitudes are still ‘quantum’ in the sense

that q 6= 1. One also sends N to infinity, keeping the Coulomb branch parameters

a± ≡ N±ε1 finite. In a sense we are making the Coulomb branch parameters commu-

tative in this limit (i.e. classical) but keeping the fiber parameters non-commutative

(quantum). In this qualitative discussion, we takeN large but finite, and |ε1|≪ |
√
t|,

while θ and Nε1 are taken to be of order one.
√
t is assumed to be somehow larger

than Nε1. In this regime the low energy configurations consist of N+ fields fluctuat-

ing around the +
√
t classical vacuum and N− = N − N+ fields fluctuating around

the −
√
t one. As ε1 → 0, the only communication between these two sectors is

through the BPS solitons connecting the separated classical vacua; these solitons

have masses ≥ 4|
√
t| and their effects are exponentially suppressed for large

√
t. For

ε1 ≪ 1 these solitons are small deformations of the BPS solitons of the one–field

model W (X) = X3/3 − tX. Note, in particular, that processes in which several

eigenvalues Xi change sign, ±
√
t ←→ ∓

√
t, are suppressed by large powers of the

exponentially small number e−4|
√
t|/ε̃2 ; hence these solitonic transitions may change

the large integers N± only by O(1) corrections, that is, they may change the Coulomb
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branch parameters a± only at the O(ε1) level. In the θ–limit, ε1 → 0, the values of

a± get completely frozen. This is why the θ–limit was introduced in the first place:

one wants to simplify the problem by reducing to a classical (i.e. non–fluctuating)

Coulomb branch, while keeping the angles to be quantum (the angles are the coor-

dinates on the fiber of the hyperKähler geometry, which is endowed with a natural

symplectic structure, and hence a canonical quantization). Moreover, the BPS phase

of the N±–changing solitons is equal to ± arg
√
t up to O(ε1/

√
t); then in the θ–limit

their BPS rays ±`m have sharp positions7. This can be understood in another way:

Taking Ni →∞ while keeping Niε1 fixed, is the same as the large N limit of matrix

models. We know that in that limit a spectral curve emerges which for this class

of models was studied in [22]. The corresponding spectral curve has a 1-form ydx,

where y can be viewed as the derivative of the effective superpotential

f(x, y) = y2 −W ′(x)2 + ... = 0

and the effective BPS central charges of the 2d theory get related to
∮
ydx around

the cycles of f(x, y) = 0 curve. These can in turn be interpreted as the central

charges of the 4d theory on the SW curve f(x, y) = 0. In this context the phase of

the twistorial parameter ζ controls the jumps associated with either the 4d or the 2d

BPS states, depending on one’s perspective. The main point is that in the θ-limit

these jumps have become sharp. In the cubic super potential example above we get

the SW curve

f(x, y) = y2 − (x2 − t)2 + ax+ b,

where a, b are determined in terms of N+ and N−. This shows that the jumps of

the D-brane wave function in the θ-limit is sharp. However, it remains to compute

it. Here we motivate what this is, based on the following observations. The jumps

should be a universal property of the geometry, and given the symplectic symmetry

of the problem it should be the same for the jumps associated with the A-cycles,

or the B-cycles of the theory. In the limit that t≫ 0, the system reduces to two

decoupled A-cycles where the associated ti = ε1N+, ε1N−. As we shall show in the

next two sections, a crucial property of the tt∗ solutions for the decoupled A–cycles

is that, in the θ–limit, the Stokes jumps of their brane amplitudes at the BPS rays

in the ζ–plane (the positive and negative imaginary axis for ε1 real) are given by

multiplication by the quantum dilogs8

∞∏
k=0

(
1− e−a±/ζ+iθ±−ā±ζei(k+1/2)θ

)−1 ≡ Ψ(X±(ζ); q) (4.5)

7 The main difficulty in formulating the RH problem without taking the θ–limit, is that one

has to work with Stokes rays whose position is subject to quantum fluctuations. Then, even if the

general RH problem exists, it is not too convenient for concrete computations.
8 For convergence reasons, one assumes θ to have a small positive imaginary part. We set

2π/ε̃2 = 1 to simplify the notation. We write f and e for the flavor and electric charges, respectively.
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where X±(ζ) are the GMN line operators associated to the charges f ± e of the BPS

states of the effective theories Weff
±

X±(ζ) ≡ e−a±/ζ+iθ±−ā±ζ , q ≡ eiθ (4.6)

with a± = af ± ae, θ± = θf ± θe, (4.7)

and the expression (4.5) becomes exact as N± →∞ with a± ≡ N±ε1 fixed. We note

that eqn.(4.5) is the formula expected in 4d from the refined version [41, 45, 46] of the

Kontsevich–Soibelman (KS) wall crossing formula [44]. Indeed, the quantum Stokes

jump at the ray `γ of a BPS hypermultiplet of charge γ is given by the (adjoint)

action of the quantum dilog [12, 41, 45, 46]

Ψ(Xγ; q) (4.8)

where Xγ is the quantum torus algebra element associated to the charge γ ∈ Γ, whose

expectation value is identified with the Darboux coordinate Xγ(ζ) of [9]. Eqn.(4.5)

thus states that, in the θ–limit, the brane amplitude Φ(ζ) of (4.1) has jumps at the

rays `γ associated to charges γ of the form ±e±f which have the expected quantum

KS form (4.8).

So far we have explained how the electric line operators appear in the θ-limit. The

4d magnetically charged solitons correspond in the 2d model (4.1) to BPS solitons

connecting vacua with different values of N±. As already discussed, the leading

such solitons connect vacua with N+ → N+ ± 1, and their BPS rays ±`m are sharp

in the θ–limit. Physically, the magnetic line function Xm(ζ) is identified with the

expectation value of the operator Xm which implements the transition of a single

eigenvalue field Xi from −
√
t to +

√
t. In terms of a± and θ±, Xm implements the

shifts

a± → a± ± ε1, θ± → θ± ± θ. (4.9)

Then, acting on a brane wave–function written as a function of (a±, θ±, ā±),

Xm = exp
(
ε1(∂a+ − ∂a−) + ε̄1(∂ā+ − ∂ā−) + θ(∂θ+ − ∂θ−)

)
θ–limit−−−−−→ exp

(
θ(∂θ+ − ∂θ−)

)
.

(4.10)

Although this identification is a bit heuristic, it may be given a more precise meaning

by looking at the exact solution of the low–energy effective models. Defining X± as

the operator which acts on the above wave–functions as multiplication by X±(ζ), we

get the commutation relations

Xm X± = q±1 X± Xm, (4.11)

which yield the correct quantum torus algebra for the 4d model corresponding to

the large N limit of (4.1) which is the A3 Argyres–Douglas (AD) model whose BPS

quiver has the form [12, 47]

• → • → • (4.12)
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Besides, the 2d analysis leads (in the regime considered) to a 4d BPS spectrum which

correctly matches the one in the minimal BPS chamber [12] of the A3 AD theory,

which consist of three hypermultiplets of charges e+ f , e− f , and m.

Then, to reproduce the exact structure expected from the refined version of the

4d KS wall crossing formula, it remains to show that the θ–limit Stokes jumps are

given by the action of the operator (4.8) also at the magnetic BPS rays ±`m. Since

Xm is the operator which makes a single eigenvalue to jump from −
√
t to +

√
t, which

corresponds to the element J+ ∈ gl(2,C), lifting to the covering LG model before

modding out SN , a naive application of formula (4.2) would produce, at θ = ε1 = 0,

the magnetic–ray Stokes matrix

Sm = (1− X(1)
m )−1(1− X(2)

m )−1(1− X(3)
m )−1 · · · (1− X(N)

m )−1, (4.13)

where X
(j)
m acts on the j–th factor LG model. Switching on a non–zero θ and mod-

ding out SN , identifies the several operators X
(j)
m , and in addition introduces in

the expression (4.13) powers of q which keep track of the braiding numbers of the

eigenvalues {Xi(t)} for each BPS soliton connecting the two vacua. This suggests

replacing X
(j)
m → Xm q

j−1 in the previous formula, with the result

Sm
∣∣
q 6=1
≈ (1− Xm)−1(1− Xmq)

−1(1− Xmq
2)−1 · · · (1− Xmq

N−1)−1

large N−−−−−−→ Ψ(Xm; q),
(4.14)

Given the symmetry between electric and magnetic, and in view of the result (4.5)

for the electric/flavor jumps, this formula is very natural.9

4.2 A Quantum Riemann-Hilbert problem

The brane amplitudes of an ordinary (2, 2) model, having a finite number m of

vacua, are the solutions to a Riemann–Hilbert (RH) problem for matrices Ψ(ζ) of

9 Other arguments lead to the same conclusion. Suppose that the jump at the magnetic phase

is given by some unknown function f(q,Xm). The phase–ordered product of the Stokes operators

in the ζ–plane is equal to the 2d quantum monodromy H [19] of the (2, 2) matrix LG model. Then

the 2d monodromy would be

H = f(q−1,X−1
m )−1 Ψ(X−1

+ ; q) Ψ(X−; q)f(q,Xm) Ψ(X+; q) Ψ(X−1
− ; q)

In a unitary theory the spectrum of H should belong to the unit circle [19]. In facts, if the model

flows in the UV to a good SCFT, the 2d monodromy has finite order r, Hr = 1, and the order of

its adjoint action Ad(H) is a divisor of r. Assuming the matrix LG model has a good UV limit, we

may compute the order of the adjoint monodromy in the UV limit, Nε1 → 0, where the effect of the

Vandermonde coupling is totally negligible. We are reduced to the monodromy of the A2 minimal

model, and hence the order of Ad(H) is 3. Using the commutation relations (4.11), the equation

Ad(H)3 = 1 is written as a functional equation for the unknown function f(q,X). Comparing with

the 4d quantum monodromy of the A3 Argyres–Douglas model [12], we see that the functional

equation for f(q;X) is equivalent to the usual pentagonal identity for the quantum dilog Ψ(q;X).
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size m which operate on the vacuum vector space Cm [19, 48]. For finite N , a

matrix LG model of the form (2.4) has θ–vacua [2], and the space of vacua takes

the form Cm ⊗ L2(S1), where m = O(Nn−1). The brane amplitudes are now the

solutions of an infinite–size RH problem for operators acting on the Hilbert space

Cm ⊗ L2(S1). Except for the special case n = 1, as N → ∞, also m → ∞ and the

space Cm gets replaced by a Hilbert space direct factor H, so that the full twistorial

topological string amplitudes may be thought of as the solutions to a Riemann–

Hilbert problem for quantum operators acting on the Hilbert space H⊗L2(S1). The

resulting quantum RH problem is however extremely hard to formulate in concrete

terms, let alone to solve. One looks for a limit in which the quantum RH problem

admits a formulation which is difficult but still reasonable. Formally, the θ–limit

is such a limit, although the limit itself is delicate in the sense that its definition

requires appropriate regularizations and/or analytic continuations.

The idea is as follows. We first formulate a quantum-Riemann Hilbert problem

which characterizes the operators Xγ(ζ) and then use that to define a state in the

Hilbert space, which we identify as the θ-limit of the twistorial topological string

amplitude ψθ.

4.2.1 The operators X̂γ(ζ)

At the full quantum level, the holomorphic Darboux coordinates Xγ(ζ) (with γ ∈ Γ),

get replaced by quantum operators X̂γ(ζ). Most of the time, we will suppress from

the notation the dependence of these operators on the other variables (Coulomb

branch parameters and couplings) and write only the dependence on the twistor

variable ζ which is taken to be valued in C×, that is, ζ takes values in the twistor

sphere minus the North and South poles.

It is convenient to think of the phase of ζ as time. So we also write X̂γ(ρ e
it)

with ρ ∈ R+. In this vein, an useful analogy is to think of the operators log X̂γ(ρe
it)

as two dimensional quantum chiral fields where t plays the role of time and log ρ of

the space coordinate. In fact, the operators X̂(ζ) are required to satisfy the equal

time commutation relations

X̂γ(ρ e
it) X̂γ′(ρ

′eit) = q〈γ,γ
′〉 X̂γ′(ρ

′eit) X̂γ(ρ e
it) (4.15)

where q = exp(2πiτ). Thus log X̂γ(ρ e
it) satisfy ‘canonical’ equal time commutation

relations. We shall refer to equation (4.15) as the equal time quantum torus algebra.

In correspondence with this analogy, we introduce the following time–ordering

operation T

T X̂γ(ρ e
it) X̂γ′(ρ

′eit
′
) =

{
X̂γ(ρ e

it) X̂γ′(ρ
′eit
′
) t > t′

q〈γ,γ
′〉 X̂γ(ρ e

it′) X̂γ′(ρ
′eit) t′ > t.

(4.16)

The quantum operators X̂γ(ζ) are required to satisfy the same piece–wise holo-

morphic conditions as their classical counterparts Xγ(ζ) except for two points:
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1. As R→∞ they are asymptotic to semi–flat operators

X̂sf
γ (ζ) := exp

(
Zγ
ζ

+ iθγ + ζ Z̄γ

)
(4.17)

where the θγ satisfy the equal time CCR[
θγ, θγ′

]
= −2πiτ 〈γ, γ′〉, (4.18)

Here 2πτ = θ, and the Zγ’s, being central, are c–number functions of the

various parameters in the theory.

2. At times equal to the phase of some BPS particle, the X̂γ(ζ)’s jump according

to the quantum WCF given by conjugation with suitable quantum dilogarithms

rather than the classical one.

4.2.2 The quantum TBA integral equation

The above conditions fix the X̂γ(ζ) to be the solution to a q–TBA integral equation

which is a q–deformation of the one written in [9]. Explicitly

X̂γ(ζ) = T

{
exp

[∑
γ′

Ω(γ′)

4πi

∫
`γ′

dζ ′

ζ ′
ζ + ζ ′

ζ − ζ ′
logG〈γ,γ′〉

(
qsγ′ X̂γ′(ζ

′); q
)]
X̂sf
γ (ζ)

}
(4.19)

where Ω(γ′) and `γ are as in [9], sγ′ are the spins of the BPS particles, and Gm(X; q)

are Fock–Goncharov functions (q–deformed versions of (1 +X)m) which are defined

by their basic property [49–51]

Ψ(Xγ′ ; q)
−1 Xγ Ψ(Xγ′ ; q) = G〈γ,γ′〉

(
Xγ′ ; q

)
Xγ. (4.20)

for XγXγ′ = q〈γ,γ
′〉Xγ′Xγ. In particular,

G−m(X; q) = Gm(X; q−1)−1. (4.21)

Eqn.(4.19) is deduced and makes sense under the assumption that the equal

phase BPS states are mutually local.

As q → 1 10, the above equations reduce to the classical TBA equations of [9].

Formally, we may expand them in powers of τ ≡ (log q)/2πi. The zeroth order is

classical TBA corresponding (from that viewpoint) to the energy of the ground state.

Then we get an infinite sequence of integral equations by equating the order τn of the

two sides of eqn.(4.19). Each equation contain the solutions to the previous integral

equations. We discuss solutions of this TBA system for the Argyres-Douglas case in

appendix B.

10 Or, rather, as q1/2 → −1, taking into account the quadratic refinement.
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One borrows from ref.[41] the identification of the phase arg ζ of the twistor

parameter ζ ∈ C∗ with the periodic time of an auxiliary quantum system whose

operator algebra is the quantum torus

Xγ Xγ′ = q〈γ,γ
′〉 Xγ′ Xγ, γ, γ′ ∈ Γ, (4.22)

defined by the Dirac electromagnetic pairing of charges 〈·, ·〉 : Γ× Γ→ Z. In partic-

ular, one interprets the ordering in BPS phase of the Kontsevich–Soibelman product

of symplectomorphisms [44] as the usual time–ordering of (time–dependent) evolu-

tion operators in quantum physics [41]. We have argued in the previous subsection

that the θ–limit produces effective operators Xγ which generate the algebra (4.22) of

the auxiliary QM system.

In order to complete the problem we need to find ψtheta, i.e. the state in the

Hilbert space which corresponds in the electric basis, ψθ:

ψθ(ae, θe, R, θ, ζ) = 〈θe|ψ(ζ)〉

The state |ψ(ζ)〉 is characterized by the jumps as we cross the phases of ζ for which

there is a BPS state. This implies that |ψ(ζ)〉 satisfies the following Riemann-Hilbert

equation:

|ψ(ζ)〉 =
1

2πi

∑
(γ,s)∈BPS

∫
lγ

dζ ′

ζ ′ − ζ

(
[Ψ(qsX̂γ(ζ

′), q)](−1)2s − 1
)
|ψ(ζ ′)〉

Moreover, the boundary condition we have for |ψ(ζ)〉 is given by (3.9):

〈θi|ψ(ζ)〉 ζ→0,∞−−−−→ exp

[
F (a)

θζ2ε̃22
+
F (a)ζ2

θε̃22

]
This fixes the state |ψ(ζ)〉, completing the formulation of our quantum Riemann-

Hilbert problem.

5 LG Matrix Models and Twistorial Matrix Models

We have seen how in the θ-limit a quantum Riemann-Hilbert problem can be used to

formally solve for the partition function of the twistorial topological string, assuming

one knows the spectrum of the BPS state (including their spin data). To solve for the

full twistorial topological string partition function without taking any limits is much

harder. In the case when we have a dual description of the 2d model, as in the LG

matrix model, we may be in a better shape. This is why, in this section we study in

some detail the tt∗ geometry of the 2d (2, 2) matrix Landau–Ginzburg models of the

class discussed in section 2.2; a more general class is considered in appendix C. After

some generality (§. 5.1), in §§.5.2, 5.3 we describe their chiral rings R in terms of the
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associated Schroedinger equation [24, 52]. In §.5.4 we solve exactly the tt∗ geometry

for the basic example, the Gaussian model, and describe in detail the properties of its

various tt∗ quantities. In §.5.5 we introduce a more general class of models whose tt∗

geometry may be explicitly computed, and describe the corresponding tt∗ geometries

in detail. In the last two subsections we present two additional explicit examples of

exactly solved tt∗ geometries, namely the generalized and double LG Penner models.

5.1 The models

We consider the LG models with superpotential W of the form

W(e1, e2, . . . , eN) =
N∑
i=1

W (Xi) + β
∑

1≤i<j≤N

log(Xi −Xj)
2, (5.1)

where W (z) is a polynomial of degree (n+ 1)

W (z) =
zn+1

n+ 1
+

n∑
k=2

tk z
n+1−k. (5.2)

Here β = ε1 (in case W is homogeneous, as in the Gaussian matrix model, it is

convenient to absorb a factor of 1/ε̃2 into the fields and in this case we can view

β = ε1/ε̃2, up to a constant shift of W ). We stress that in eqn.(5.1) the independent

chiral fields are not the matrix eigenvalues Xi but rather their elementary symmetric

functions ek
ek =

∑
1≤j1<j2<···<jk≤N

Xj1Xj2 · · ·Xjk . (5.3)

The change of fundamental degrees of freedom from Xi to ek automatically projects

the model into its SN–invariant sector (and introduces a Jacobian factor in the

topological measure [1, 19]).

In view of the application to other physical problems [29, 53], as well as to

connect with existing mathematical literature, we find convenient to enlarge the

class of models to LG theories with superpotentials of the form (5.1) with W (z) a

possibly multi–valued function such that its differential dW = W ′(z) dz is a rational11

one–form on P1 normalized so that z =∞ is a pole of maximal order. The number

n of susy vacua of the one–field (i.e. N = 1) model is the number of zeros of the

rational one–form dW , equal to its total pole order minus 2. The Witten index of

the N–field model is then expected to be

m =

(
N + n− 1

N

)
≈ Nn−1

(n− 1)!
for large N. (5.4)

We shall make more precise statements on the number of susy vacua momentarily.

11 The class of models may be further generalized by replacing the Riemann sphere P1 by a higher

genus Riemann surface.
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The generic degree n+ 2 rational differential has only simple poles at the n+ 2

distinct points {w1, w2, . . . , wn+1,∞}

W ′(z) dz =
n+1∑
`=1

µ`
z − w`

dz, (5.5)

where we may take w1 = 0 and w2 = 1 by a field redefinition. In ref.[29] it was shown

that the matrix LG model (5.1) with one–field superpotential (5.5) corresponds to

the (n+2)–point function of the Liouville theory on P1. The models whose one–form

have higher order poles may be obtained from (5.5) by taking limits in which many

ordinary singularities coalesce into higher order ones. In particular the polynomial

superpotential (5.2) is obtained by making the n+2 ordinary singularities to coalesce

into a single order n+2 pole at infinity. By considering these various confluent limits,

we get from (5.5) p(n+ 2) distinct models all with a number of vacua equal to (5.4)

(here p(k) is the number of partitions of the integer k). This observation allows to

study all rational models with a given n in a unified way.

The one–field superpotential W (z) is, in general, a multi–valued function of z

which is well–defined only up to the periods of the one–form W ′ dz, that is, for the

generic case (5.5) up to

∆W = 2πi
n+1∑
`=1

n` µ`, n` ∈ Z. (5.6)

Comparing with the general analysis in ref.[2], we conclude that in such a rational

model with N > 1 chiral fields we have to introduce p + 1 vacuum angles θs, where

p is the number of independent residues of the one–form dW (i.e. the number of its

simple poles in C ≡ P1 \ {∞}).
A configuration of the chiral fields ek is most conveniently encoded in a degree

N monic polynomial in an indeterminate z as

P (z) =
N∑
k=0

(−1)k ek z
N−k =

N∏
i=1

(z −Xi) ≡ det(z −X), (5.7)

where e0 = 1.

5.2 Chiral ring and vacuum configurations

To describe the tt∗ geometry of the (2, 2) models (5.1), we first have to find their

chiral ring R [1]. For generic W (z) all classical vacua are non–degenerate (that

is, massive); in this case, as complex algebras, R ' Cm, m being the number of

supersymmetric vacua. The isomorphism is given by sending the class of a general

chiral superfield, represented by a holomorphic function h(e1, . . . , eN), into the m–

tuple of its values at the classical vacuum configurations. In the case of the models
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(5.1) there is a special class of chiral operators, the single–trace operators, of the

form

ĥ(e1, . . . , eN) :=
N∑
k=1

h(Xi), (5.8)

where h(z) is a holomorphic (polynomial) function. It is easy to show that all

elements of R have a single–trace representative. Then the isomorphism R ' Cd

reduces to

R 3 ĥ(e1, . . . , eN) 7−→

(∮
C

h(z)
P ′(1)(z)

P(1)(z)
dz, · · · ,

∮
C

h(z)
P ′(m)(z)

P(m)(z)
dz

)
∈ Cm, (5.9)

where P(a)(z) is the polynomial specifying the a–th vacuum configuration, and C is

a large circle. Finding R is then equivalent to computing the m polynomials P(a)(z)

describing the classical susy vacua.

The classical vacua are the solutions {ek} to the system of equations

∂W(ej)

∂ek
= 0, k = 1, 2, . . . , N, (5.10)

which are obviously equivalent to

W ′(Xi) +
2β∏

j 6=i(Xi −Xj)

∑
j 6=i

∏
k 6=i,j

(Xi −Xk) = 0, (5.11)

from which it is obvious that
∏

i<j(Xi −Xj)
2 6= 0, that is, on the vacuum configu-

rations the Xi’s are all distinct and the discriminant of the associated polynomials

P (z) is non zero. From the definition

P (z) =
∏
i

(z −Xi) ≡ zn +
n∑
k=1

(−1)k ek z
n−k, (5.12)

one gets

P ′(Xi) =
∏
j 6=i

(Xi −Xj) (5.13)

P ′′(Xi) = 2
∑
j 6=i

∏
k 6=i,j

(Xi −Xk). (5.14)

Using these identities, we may rewrite the equations (5.11) in terms of the polynomial

P (z) describing the vacuum configuration {Xi}SN as

W ′(Xi)P
′(Xi) + β P ′′(Xi) = 0. (5.15)

For the generic case, eqn.(5.5), this equation says that the degree N+n−1 polynomial(
W ′(z)P ′(z) + β P ′′(z)

) n+1∏
`=1

(z − w`) = 0 (5.16)
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has the N distinct roots Xi, and hence it should be a multiple of P (z), the quotient

being some polynomial f
(a)
n−1(z) of degree n− 1

β P ′′(z) +W ′(z)P ′(z) =
f

(a)
n−1(z)∏
`(z − w`)

P (z). (5.17)

All monic degree N polynomials P (z) which solve this linear second–order equation,

for some choice of the polynomial f
(a)
n−1, correspond to a classical vacuum. The

polynomial f
(a)
n−1(z) depends on the classical vacuum configuration, and the index a

takes the values a = 1, 2, . . . ,m where m is the number of classical vacua which, in

the present case, coincides with the Witten index m, eqn.(5.4). There is a one–to–one

correspondence between susy vacua and distinct polynomials f
(a)
n−1(z). Writing

ψ(z) = eW (z)/2β P (z), (5.18)

we recast eqn.(5.17) in the Schroedinger form (identifying ~ ≡ β)(
−β2 ∂2

∂z2
+

1

4
(W ′(z))2 +

β

2
W ′′(z) + β

f
(a)
n−1(z)∏
`(z − w`)

)
ψ(z) = 0, (5.19)

which coincides with the Schroedinger equation discussed in a related context in

refs.[24, 52]. For instance, in the Gaussian case, W (z) = −z2/2, eqn.(5.19) reduces

to the Schroedinger equation for the harmonic oscillator, with energy eigenvalue

−(f0 + 1
2
) and coordinate x = z/

√
2β. In this case, for each N there is a unique susy

vacuum given by

P (z) = (β/2)N/2HN(z/
√

2β) (5.20)

where HN(x) is the N–th Hermite polynomial.

5.3 Heine–Stieltjes and van Vleck polynomials

To determine the chiral ring R we are reduced to the following problem: Given the

two polynomials

A(z) =
n+1∏
`=1

(z − w`), B(z) =
1

2β
A(z)W ′(z), (5.21)

respectively of degree n + 1 and n, determine all degree n − 1 polynomials fn−1(z)

such that the differential equation

A(z)
d2P

dz2
+ 2B(z)

dP

dz
− fn−1(z)P = 0 (5.22)

has a solution P (z) which is a polynomial of degree N . This is precisely the classical

Heine–Stieltjes problem, see e.g. §.6.8 of the book by Szegö [54]. The degree N

polynomials P (z) describing a vacuum configuration are known as Heine–Stieltjes
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polynomials, while the degree (n−1) polynomials −fn−1(z) as van Vleck polynomials.

In 1878 Heine stated [55] that there are at most

m =

(
N + n− 1

N

)
, (5.23)

polynomials fn−1(z), of degree n−1, counted with appropriate multiplicity, such that

the generalized Lamé ODE (5.22) has a polynomial solution P (z) of degree exactly

N . In fact, he proved that for generic12 A(z), B(z) the number of solutions is exactly

m. This result is consistent with the Witten index computation in §.5.1, since for

particular values of the couplings a few susy vacua may escape to infinity. Since 1878

many authors gave necessary conditions for the number of solutions to be precisely

m. Finally in 2008 Shapiro proved13 [56, 57] that there exists an N0 such that for all

N > N0 we have exactly m solutions (counted with multiplicity).

Physically we interpret the result (5.23) as the statement that each vacuum

corresponds to one of the possible ways of distributing the N eigenvalues of the

matrix X between the n critical points of the one–field superpotential W (z). Giving a

precise meaning to this statement has been an active field of research in mathematics

for more than a century, see e.g. [55–78].

A lot of properties of the Heine–Stieltjes and Van Vleck polynomials are discussed

in the mathematical literature [55–78]. The best known cases are n = 1, 2. For n = 1

the ODE (5.22) becomes the hypergeometric equation whose polynomial solutions

are the the Jacobi polynomials. Colliding two (resp. three) singularities we get the

confluent hypergeometric equation (resp. the parabolic–cylinder equation) whose

polynomial solutions are the Laguerre (resp. Hermite) polynomials. The next case,

n = 2, leads to Heun polynomials [79, 80] and their various multi–confluent limits.

5.4 The Gaussian matrix LG model

The simplest and most basic twistorial matrix theory is the Gaussian model, that is,

the (2, 2) Landau–Ginzburg model with superpotential

W(ek) = −1

2

N∑
i=1

X2
i + β

∑
1≤i<j≤N

log(Xi −Xj)
2, (5.24)

where the independent chiral superfields ek (k = 1, . . . , N) are the elementary sym-

metric functions of the matrix eigenvalue superfields Xi, eqn.(5.3). The large N

duality maps this model to the B-model closed topological string for the conifold, or

equivalently to the 4d SQED.

12 The precise meaning of ‘generic’ is that the two polynomials A(z) and B(z) should be alge-

braically independent.
13 Shapiro theorem refers to the non–degenerate case, that is, at infinity the differential dW has

at most a single pole. However, if dW has a higher order pole at ∞, a fortiori susy vacua cannot

escape since the scalar potential is bounded away from zero in a neighborhood of ∞.
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5.4.1 tt∗ geometry

From eqn.(5.20) the Gaussian model has a single vacuum {ek|vac} such that

N∑
k=0

(−1)k zN−k ek
∣∣
vac

= (β/2)N/2HN(z/
√

2β), (5.25)

where HN(w) = (2w)N + · · · is the N–th Hermite polynomial. In particular,

e1

∣∣
vac

= 0, e2

∣∣
vacuum

= −β
(
N

2

)
, (5.26)

∏
1≤i<j≤N

(Xi −Xj)
2
∣∣∣
vacuum

= Discr
(

(β/2)N/2HN(z/
√

2β)
)

=

= βN(N−1)/2

N∏
k=1

kk ≡ βN(N−1)/2H(N),

(5.27)

where we used the Szegö formula [54] for the discriminant of the Hermite polynomials,

and H(z) is the hyperfactorial function, related to the Barnes G–function G(z) as

H(z) = exp
[
z log Γ(z + 1)

]/
G(z + 1), (5.28)

so that

logH(z) = −1

2
z log 2π +

1

2
(z + 1)z +

∫ z

0

log Γ(t+ 1) dt. (5.29)

The element of the chiral ring

∂βW =
∑
i<j

log(Xi −Xj)
2 (5.30)

takes on the vacuum the values

N(N − 1)

2
log β + logH(N) + 2πik, k ∈ Z, (5.31)

where the term 2πik takes into account the multiple determinations of the logarithm.

We extend the theory to a cover of field space in which the superpotential is univalued.

The integer k then labels the distinct susy vacua of the extended theory which cover

the unique vacuum of the original model. Following [2, 12], we introduce the θ–vacua,

the angle θ being the Fourier dual to the integer k. Setting x = θ/2π, we represent

the chiral operator ∂βW acting on the θ–vacua as the differential operator [1, 2, 12]

Cβ =
N(N − 1)

2
log β + logH(N) +

∂

∂x
≡ ∂

∂x
+ C(N, β). (5.32)

The tt∗ equations for the metric GN(β, x) then read [1, 2, 12]

∂2

∂β̄∂β
logGN +

∂2

∂x2
logGN = 0, (5.33)
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so that the function hN(β, x) ≡ logGN(β, x) is harmonic in R3 (with coordinates

(2 Re β, 2 Im β, x)), and periodic of period 1 in x. hN(β, x) depends on β only trough

|β|, and vanishes exponentially as |β| → ∞ by the tt∗ IR asymptotics [1, 16, 19].

Moreover, the reality structure of tt∗ requires hN(β, x) to be an odd function14 of x.

Hence the tt∗ metric may be written as a series of Bessel functions

hN(β, x) ≡ logGN(β, x) =
∑
m≥1

Am(N) sin(2πmx)K0(4πm|β|), (5.34)

for some coefficients Am(N) to be determined using the appropriate boundary con-

dition to be discussed momentarily. The harmonic function

VN =
1

2

∂hN
∂x

(5.35)

is the solution to the classical electrostatic problem with a charge distribution

%N(yi, x) = π δ(y1) δ(y2)
∑
m≥1

mAm(N) cos(2πmx). (5.36)

For instance, from the well–known identity [81, 82]

log
z2 + y2

4
− 4

∞∑
k=1

cos(2πkx) K0(2πk
√
z2 + y2) =

= − 1√
z2 + y2 + x2

−
∑
k∈Z
k 6=0

(
1√

z2 + y2 + (x− k)2
− 1

|k|

)
− 2γ,

(5.37)

we see that

Am =
2

π

1

m
(5.38)

corresponds to a linear periodic array of charge one monopoles superimposed to a

linear screening constant charge distribution. Indeed,

2
∑
m≥1

cos(2πmx) = δZ(x)− 1, where δZ(x) ≡
∑
k∈Z

δ(x− k). (5.39)

Comparing with [2, 12], we see that (minus) the charge distribution (5.39) gives the

Gaussian model with N = 2. We define the magnetic charge function to be

FN(z) =
π

2

∑
m≥1

Am(N) e−2πmz, (5.40)

which is related to the linear charge distribution by

ρN(x) =
1

2πi
∂x

(
FN(−ix)− FN(ix)

)
. (5.41)

14 In the topological un–normalized θ–basis one has

logGN (x) + logGN (−x) = log
∣∣∣Hessian of W

∣∣
vacuum

∣∣∣2
The statement in the text refers to the metric written in the topologically normalized θ–vacua.
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5.4.2 tt∗ Lax equations

The brane amplitudes are flat sections of the the tt∗ Lax equations15(
Dβ + iζ Cβ

)
Ψ =

(
Dβ −

i

ζ
Cβ

)
Ψ = 0. (5.42)

The geometrical meaning of these equations is that the brane amplitudes Ψ(ζ) are

y–independent holomorphic sections in complex structure ζ of a hyperholomorphic

bundle V over a hyperKähler manifold H of coordinates (β, x+ iy), translation in y

being symmetries of H and V [2].

In the Gaussian case the tt∗ equations for the brane amplitude

ΨN(x) = 〈θ = 2πx | D〉

take the explicit form (cfr. eqn.(5.32))(
∂β̄ − iζ ∂x

)
log ΨN = −iζ ∂xhN − iζ C(N, β) (5.43)(

∂β − iζ−1 ∂x
)

log ΨN = ∂βhN + iζ−1C(N, β), (5.44)

whose compatibility condition is eqn.(5.33). We write

log ΨN =
i

ζ
UN + ΦN − i ζ UN , (5.45)

where

UN =
N(N − 1)

2
β log β + β

(
logH(N)− N(N − 1)

2

)
≡

≡
N∑
k=1

(
(kβ)

(
log(kβ)− 1

)
− β

(
log β − 1

))
,

(5.46)

and ΦN is the solution to (
∂β − iζ ∂x

)
ΦN = −iζ∂xhN (5.47)(

∂β − iζ−1 ∂x
)
ΦN = ∂βhN , (5.48)

satisfying the appropriate boundary conditions. If ΦN , Φ′N are two periodic solutions

of (5.47)(5.48), ∆ΦN ≡ ΦN − Φ′N satisfies the homogeneous equations(
∂β̄ − iζ ∂x

)
∆ΦN =

(
∂β − iζ−1 ∂x

)
∆ΦN = 0, (5.49)

15 We have redefined ζ → i/ζ with respect to the usual 2d conventions in order to adhere to the

standard 4d conventions.
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whose general solution is

∆ΦN = log f
(
β/ζ − ix+ β̄ζ

)
, (5.50)

with f(z) an arbitrary analytic function of z such that f(z + i) = f(z). To get

the general solution of eqns.(5.47)(5.48), it remains to find a particular solution.

Following [2], we use the integral representation

K0(4πm|β|) =
1

2

∫
`

exp
(
− 2πmβ/s− 2πm β̄s

)ds
s
, (5.51)

(here ` ⊂ C is a ray chosen so that the integral converges) to rewrite the harmonic

function hN in the form

hN =
1

4i

∫
`

ds

s

∑
m≥1

Am(N)
(
e−2πm(β/s−ix+β̄s) − e−2πm(β/s+ix+β̄s)

)
. (5.52)

Then we look for a particular solution to eqns.(5.47)(5.48) of the form

ΦN =

∫
`

ds
∑
m≥1

(
φN(s, ζ;m) e−2πm(β/s−ix+β̄s) + φ̃N(s, ζ;m) e−2πm(β/s+ix+β̄s)

)
.

(5.53)

Plugging this expression in (5.47)(5.48) one finds

φN(s, ζ;m) = −Am(N)

4i

1

s

ζ

s− ζ
(5.54)

φ̃N(s, ζ;m) = φN(−s, ζ;m), (5.55)

so that,

ΦN(β, x, ζ) =− 1

2πi

∫
`

ds

s

ζ

s− ζ
FN(β/s− ix+ β̄ s)−

− 1

2πi

∫
`

ds

s

ζ

s+ ζ
FN(β/s+ ix+ β̄ s),

(5.56)

where FN(z) is the magnetic charge function (5.40). The amplitude ΨN(β, x, ζ),

eqn.(5.45), as a function of ζ is subjected to the Stokes phenomenon, which just

means that the function ΦN(ζ) has a discontinuity across the two rays ±` ⊂ C given

by the residues at the poles of the integrals in eqn.(5.56)

disc ΦN

∣∣∣
±ζ∈`

= −FN(±β/ζ ∓ ix± β̄ζ). (5.57)

In particular, ΨN(β, x, ζ) has a non trivial monodromy as ζ → e2πiζ

ΨN(β, x, e2πiζ) = exp
(
FN(β/ζ− ix+ β̄)−FN(−β/ζ+ ix− β̄ζ)

)
ΨN(β, x, ζ). (5.58)
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5.4.3 The asymmetric limit as a boundary condition

Following [2], we wish to identify the above solution ΨN(β, x, ζ) with the amplitude

for the basic brane (Dirichlet or Neumann, depending on the Stokes half–plane [2]).

The brane amplitude is a solution to the tt∗ Lax equations which satisfies specific

boundary conditions. We use these conditions to uniquely define the full tt∗ geometry,

that is, to determine the unknown Fourier coefficients Am(N) or, equivalently, the

magnetic charge function FN(z), eqn.(5.40). FN(z) is uniquely determined [2] by the

condition that ΨN(β, x, ζ) reproduces the correct brane amplitude in the asymmetric

limit β̄ → 0 while keeping fixed β and x. In this limit UN remains the same, UN → 0,

and

ΦN → Φas
N ≡

1

2πi

∫
`

dt

t− ζ−1
FN(βt− ix)− 1

2πi

∫
`

dt

t+ ζ−1
FN(βt+ ix). (5.59)

In particular, at x = 0 and assuming Im(β/ζ) > 0,

log ΨN(x = 0)as =
i UN
ζ

+
1

πi ζ

∫
`

dt

t2 + (i/ζ)2
FN(βt) =

=
i UN
ζ
− 1

π

∫ ∞
0

ds

s2 + 1
FN
(
iβ s/ζ

)
.

(5.60)

To get the coefficients Am(N) we compare this expression with the asymmetric limit

of the amplitude ΨN(x = 0)as computed directly.

5.4.4 The Selberg integral

The asymmetric limit is just the normalized holomorphic period, which may be

computed using the Selberg (Metha) integral [83–85]. After shifting x→ x+ 1/2 (to

compensate for the Jacobian of Xi → ek), we have16

ΨN(x)as ∼ 1

(2π)N/2N !
dN(β)−x (ζ/i)N(N−1)iβ/2ζ

∫
dY e−

∑
i Y

2
i /2

∏
i<j

(Yi − Yj)2(iβ/ζ+x) =

= dN(β)−x (ζ/i)N(N−1)iβ/2ζ

N∏
k=1

Γ
(
k iβ/ζ + k x

)
Γ
(
iβ/ζ + x

) ,

(5.61)

where dN(β) is the value of the Szegö discriminant of the vacuum configuration,

eqn.(5.27), and the factor (ζ/i)N(N−1)iβ/2ζ arises from the field rescaling Xi → Yi ≡√
i/ζ Xi. Using the following variant of Binet formula [86]

log Γ(z) = (z − 1/2) log z − z +
1

2
log 2π − 1

π

∫ ∞
0

ds

s2 + 1
log(1− e−2πzt), (5.62)

16 The fields Yi are related to the Xi by the rescaling Yi =
√
i/ζXi. The bizarre–looking factors

i arise from the replacement ζ → i/ζ with respect to the usual 2d conventions.
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we rewrite

log ΨN(x = 0)as =
N∑
k=1

[
log Γ(kiβ/ζ)−k iβ

ζ
log(i/ζ)− log Γ(iβ/ζ) +

iβ

ζ
log(i/ζ)

]
≡

≡ i

ζ
UN−

1

π

∫ ∞
0

ds

s2 + 1

{
N∑
k=1

log
(
1− e−2πk(iβ/ζ)s

)
−N log

(
1− e−2π(iβ/ζ)s

)}
+const,

(5.63)

where the constant17 depends only on N . Comparing eqns.(5.60) and (5.63) yields

the identification

FN(z) =
N∑
k=1

log
(

1− e−2πk z
)
−N log

(
1− e−2πz

)
=

=

∫
log
(
1− e−2πy z

)
ωN(y) dy,

(5.64)

ωN(y) ≡
N∑
k=1

δ(y − k)−N δ(y − 1), (5.65)

corresponding to a linear charge distribution

ρN(x) = N δZ(x)−
N∑
k=1

δZ(kx) ≡ −
∫
δZ(y x)ωN(y) dy, (5.66)

that is, to a superposition of point Abelian monopoles at the points (0, 0, j/k) ∈ R3

of charge −1/k.

We note that a crucial ingredient in matching the asymmetric limit of the brane

amplitude with the period integral was the identity

UN(β) =

1∫
0

(yβ)
(

log(yβ)− 1
)
ωN(y) dy, (5.67)

which allows to read the function FN(z) directly from the chiral ringR and viceversa.

17 The constant is related to the overall normalization of the amplitude ΨN ; fixing the normal-

izations in the standard way, also this constant matches in the asymmetric limit.
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5.4.5 The brane amplitude

Using (5.64) the full brane amplitude for the Gaussian matrix LG model becomes

log ΨN =
i

ζ
UN − i ζ UN−

− 1

2πi

∫
`

ds

s

ζ

s− ζ

{
N∑
k=1

log
(

1− e−2πk(β/s−ix+β̄s)
)
−N log

(
1− e−2π(β/s−ix+β̄s)

)}
−

− 1

2πi

∫
`

ds

s

ζ

s+ ζ

{
N∑
k=1

log
(

1− e−2πk(β/s+ix+β̄s)
)
−N log

(
1− e−2π(β/s+ix+β̄s)

)}
(5.68)

This expression is reminiscent of the TBA equations of [9]. The precise relation of

the brane amplitude (5.68) with the TBA equations for 4d SQED will be discussed

in section 6 below.

5.4.6 Interlude: The twistorial Gamma function

The brane amplitudes for an interesting class of tt∗ geometries may all be expressed

in terms of a single new transcendent function which we call the twistorial Gamma

function. The twistorial Gamma function, Γ(µ, µ̄, x), is defined as the analytic con-

tinuation to µ, µ̄ independent complex variables of the ζ = i brane amplitude for

the Abelian tt∗ geometry associated to the charge distribution ρ(x) = 1− δZ(x), i.e.

to the periodic linear array of Abelian monopoles, eqn.(5.37). Explicitly (assuming

Reµ > 0 and Re µ̄ > 0)

log

(
Γ(µ, µ̄, x)√

2π

)
= µ(log µ− 1) + µ̄(log µ̄− 1)−

− 1

2π

∞∫
0

dt

t(t− i)
log
(

1− e−2π(µ/t−ix+µ̄t)
)
− 1

2π

∞∫
0

dt

t(t+ i)
log
(

1− e−2π(µ/t+ix+µ̄t)
)

(5.69)

Γ(µ, µ̄, x) is a three–variable extension of the Euler Gamma function. It reduces to

it in various limits; moreover, for each functional equation satisfied by the classical

Gamma function, there is an analogue identity for its twistorial extension. These

identities are most conveniently expressed in term of the related function

Λ(µ, µ̄, x) = exp
[
− (1/2− x) log µ

]
Γ(µ, µ̄, x). (5.70)

To the difference equation Γ(z + 1) = z Γ(z) it corresponds the identity

Λ(µ, µ̄, x+ 1) = µΛ(µ, µ̄, x). (5.71)
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The reflection property Γ(z) Γ(1− z) = π/ sin(πz) generalizes to

Λ(µ, µ̄, x) Λ(−µ,−µ̄, 1− x) =
π

sin
(
π(µ+ x− µ̄)

) . (5.72)

Finally, the Gauss product formula (n is any natural number)

Γ(nz) = (2π)(1−n)/2 nnz−1/2

n−1∏
k=0

Γ(z + k/n) (5.73)

extends to the product formula

Λ(nµ, nµ̄, nx) = (2π)(1−n)/2 nn(µ+x+µ̄)−1/2

n−1∏
k=1

Λ(µ, µ̄, x+ k/n). (5.74)

The relation of Γ(µ, µ̄, x) with the classical Gamma function is manifest in its two

asymmetric limits (we assume 0 < x < 1)

Λ(µ, 0, x) = Γ
(
µ+ x

)
(5.75)

Λ(0, µ̄, x) =
Γ(x)

Γ(1− x)
Γ(1− x+ µ̄). (5.76)

The Weierstrass infinite product representation of the Gamma function

Γ(z)−1 = z eγ z
∞∏
k=1

(
1 +

z

k

)
e−z/k (5.77)

has the twistorial extension (for Reµ > 0, Re µ̄ > 0 and 0 < x < 1)

Γ(µ, µ̄, x) =µ1/2−x 2 Γ(1− x− µ+ µ̄)

x+ 2µ+
√
x2 + 2µµ̄

e−2γ(x+µ) ×

×
∏
k≥1

1− x+2µ
k

+
√(

1− x
k

)2
+ 4 µµ̄

k2

1 + x+2µ
k

+
√(

1 + x
k

)2
+ 4 µµ̄

k2

e2(x+µ)/k

 ,

(5.78)

which may be taken as the definition of the function. The properties listed above

easily follow from this representation.

5.4.7 The brane amplitude in terms of twistorial Gamma functions

Our findings for the tt∗ Lax equations of the Gaussian model may be summarized

in a simple ‘rule of thumb’: to get the exact brane amplitude, take the period inte-

gral expressing the asymmetric limit of the brane amplitude, eqn.(5.61), and simply

replace each Euler Gamma function in the rhs by its twistorial version18

Γ(kiβ/ζ + kx) Γ(kiβ/ζ,−kiζ β̄, kx). (5.79)

We shall see in the remaining part of this section that this ‘rule of thumb’ works for

a larger class of tt∗ geometries.

18 For ζ 6= i the twistorial amplitude with the normalization in eqn.(5.68) differs from the ‘rule of

thumb’ one by the trivial factor exp[iUN (β)/ζ −UN (iβ/ζ)− iUN (β̄)ζ −UN (−iβ̄ζ)], cfr. eqn.(5.63).
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5.5 Abelian tt∗ geometries in (R2 × S1)r

The Gaussian matrix model of section 5.4 is only the first instance in a large class of

multi–matrix (2, 2) models for which the exact tt∗ brane amplitudes may be computed

in closed form. In this and the next sections we give some further examples, defer-

ring to appendix C the discussion of an even larger class of solvable tt∗ geometries

describing twistorial extensions of Toda theories. All these models are characterized

by the condition that they have no magnetic BPS states.

tt∗ geometry [1, 2] states that, for a four–supercharge theory with m susy vacua,

the vacuum Berry connection is an U(m) hyperholomorphic connection on some

hyperKähler manifold, possibly dimensionally reduced along the orbits of an isometry

group. For the present class of LG models, eqn.(5.1), freezing all couplings in W (z),

the tt∗ Berry connection, as a function of the coupling β in front the log of the

Vandermonde determinant and its associated vacuum angle θ [1, 2, 12], is an U(m)

Bogomolnyi monopole in R2 × S1 [2]. Taking into account the dependence on the

couplings in W (z) (and related angles), we extend the Bogomolyi monopole to a

higher dimensional hyperholomorphic U(m) ‘monopole’ [2]. For the models with

m = 1 the tt∗ monopole is Abelian, and the tt∗ equations become linear, hence

explicitly solvable.

In view of this fact, it is interesting to classify all functions W (z) such that

the corresponding model (5.1) has a single susy vacuum for all N ∈ N. Limiting

ourselves to the case of W ′(z) rational, we see from the discussion in §.5.3 that

this requires the unique van Vleck polynomial f(z) to have degree zero, and hence

to be the eigenvalue of a Schroedinger Hamiltonian. Then the requirement that

there is a unique susy vacuum for all N is equivalent to the requirement that the

Schroedinger Hamiltonian has a complete system of polynomial eigenfunctions. By a

theorem of Bochner [87] there are just three such Schoedinger operators, whose Heine

polynomials are respectively the Hermite, the Laguerre, and Jacobi polynomials19.

Although this result is classical, it is instructive to look at it from the viewpoint of

the class S[A1] theories [88]. To each LG model (5.1) with W ′(z) rational we may

associate the S[A1] theory enginereed on the sphere by the quadratic differential

φ2(z) =
(
W ′ 2 + lower order

)
dz2, (5.80)

(see also [89]). The three Abelian tt∗ geometries then correspond to the three free

S[A1] theories. In the language of complete theories [47], and ideal triangulations of

marked surfaces [90], they correspond to20

19 Other classical orthogonal polynomials, such as the Chebyshev, Legendre and Gegenbauer

ones, are special instances of the Jacobi polynomials.
20 Note that all three models may be obtained from T2 by taking suitable limits. Colliding two

of the three regular singularities of T2 we get a degree 4 irregular singularity i.e. the D2 model;

colliding all three regular singularities we get a degree 6 irregular one, i.e. the A1 model. The

Laguerre and Hermite polynomials are obtained from the Jacobi ones in the corresponding limits.
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a) a disk with four marked points on the boundary, whose triangulation quiver is

the A1 Dynkin graph, which corresponds to a free hypermultiplet with flavor

symmetry SU(2);

b) a disk with one regular puncture and two marked points on the boundary, whose

triangulation quiver is the D2 (disconnected) Dynkin graph, corresponding to

a free hypermultiplet doublet with flavor symmetry SU(2)× SU(2);

c) a sphere with three regular punctures (the T2 theory) which corresponds to a

free half –hypermultiplet in the 1
2
(2,2,2) representation of the flavor SU(2)×

SU(2)× SU(2) group.

The tt∗ Abelian geometries associated to the free S[A1] theories are higher–

dimensional hyperholomorphic ‘monopoles’ in the space (R2 × S1)r, where r is the

number of SU(2) factors in their flavor group. The three real coordinates associated

to each SU(2) factor are given by the complex coupling µi in front of the correspond-

ing logarithmic term in W and its associated vacuum angle θi.

To each one of the three Abelian tt∗ geometries there is associated yet another re-

markable mathematical structure, namely a Selberg integral whose evaluation yields

a product of Gamma functions [83–85]. While deep relations between all these struc-

tures are well known in the mathematical literature (see e.g. chapter 8 of [83]), tt∗

geometry makes their mutual connections more transparent and natural.

We summarize the several structures in the table:

model W (z) polyn. r S[A1] Selberg int.

Gaussian −z2/2 Hermite 1 A1 AN−1 Metha

Generalized Penner µ log z − λz Laguerre 2 D2 BCN Metha

Double Penner µ1 log z + µ2 log(z − ρ) Jacobi 3 T2 Morris

5.5.1 Solving Abelian tt∗ equations in (R2 × S1)r

We consider a general Abelian tt∗ geometry in (R2 × S1)r. To fix the ideas we fo-

cus on a LG model defined by a family of rational one–forms λ(µa) in CN , which

are invariant under a discrete group Γ of symmetries of CN , and whose zeros form

a single orbit of Γ. The form λ(µa) are parametrized by the independent periods

2πiµ1, 2πiµ2, . . . , 2πiµr of λ(µa) (cfr. eqn.(5.5)). Then the LG model with superpo-

tential the multi–valued function

W(Xi, µa) =

∫ Xi

λ(µa), (5.81)

restricted to the Γ–invariant sector, defines an Abelian tt∗ geometry on the space

(R2×S1)r coordinatized by the reduced periods µ ≡ (µ1, · · · , µr) and angles θ/2π
def
=
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x ≡ (x1, . . . , xr). The rescaled coordinates 4πi µa are just the central charges of the

BPS solitons wrapping the generators {γa} of the field space homology group

H1

(
(CN \ {polar locus})/Γ,Z

)
.

The tt∗ metric G(µ, µ̄,x) satisfies the equations

∂µa∂xb logG(µ, µ̄,x) = ∂µb∂xa logG(µ, µ̄,x) (5.82)

∂µ̄a∂xb logG(µ, µ̄,x) = ∂µ̄b∂xa logG(µ, µ̄,x) (5.83)(
∂µ̄a∂µb + ∂xa∂xb

)
logG(µ, µ̄,x) = 0, (5.84)

for all a, b = 1, 2, . . . , r. Using periodicity in the xa, invariance under overall U(1)

rotations of the µa, and (generic) decoupling at infinite mass |µa|, we end up with

solutions of the form

logG(µ, µ̄,x) =
∑
m∈Zr
m6=0

A(m) K0

(
4π
√

(m · µ)(m · µ̄)
)

exp
(
2πim · x

)
, (5.85)

for some numerical coefficients A(m) which are further restricted by the tt∗ reality

condition [1]

A(−m) = −A(m), A(m) ≡ i a(m) ∈ iR. (5.86)

Sign–coherence. In all known examples, the coefficients A(m) enjoy a sign–

coherence property: there exists a natural basis of periods, {γa}, such that A(m) = 0

unless the components of the r–vector m are all non–negative integers or all non–

positive integers. As we shall argue in section 6, this property arises from 4d: it

is related to sign–coherence of BPS spectra of 4d N = 2 theories which have a

quiver description [47]. In the sign–coherent case we may summarize the real coef-

ficients a(m) in a magnetic charge function F (z) which generalizes the one defined

in eqn.(5.40) for the Gaussian model, i.e.

F (z) = −π
∑

m∈Zr+

a(m) e−2πm·z. (5.87)

We may repeat word–for–word the analysis for the Gaussian case, with the result

that the exact brane amplitude Ψ(µ, µ̄,x, ζ) (a section of the tt∗ hyperholomorphic
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line bundle L which is holomorphic in complex structure ζ) has the form21

log Ψ(µ, µ̄,x, ζ) =
i

ζ
U(µ)− iζ U(µ̄)− 1

2πi

∫
`

ds

s

ζ

s− ζ
F
(
µ/s− ix+ µ̄ s

)
−

− 1

2πi

∫
`

ds

s

ζ

s+ ζ
F
(
µ/s+ ix+ µ̄ s

)
,

(5.88)

where U(µ) is the value22 of the superpotential W(Xi,µ) at the zero of λ(µ). We

also write the tt∗ metric G(µ, µ̄,x), eqn.(5.85), and the CFIV index Q(µ, µ̄,x) [16]

of a general Abelian tt∗ geometry in terms of the magnetic charge function F (z)

logG(µ, µ̄,x) =
1

2πi

∫
`

ds

s

[
F
(
µ/s− ix+ µ̄ s

)
− F

(
µ/s+ ix+ µ̄ s

)]
(5.89)

Q(µ, µ̄,x) = − 1

2πi

∫
`

ds

s2
µa

[
Fa
(
µ/s− ix+ µ̄ s

)
− Fa

(
µ/s+ ix+ µ̄ s

)]
(5.90)

where Fa(z) = 2π2
∑

m∈Zr+

ma a(m) e−2πm·z (5.91)

These quantities satisfy the two basic tt∗ bilinear relations (cfr. eqn.(4.19) of ref.[19])

which in the present situation reduce to

Ψ(x, ζ) Ψ(−x,−ζ) = 1 (5.92)

Ψ(−x, 1/ζ̄) = G(−x) Ψ(x, ζ). (5.93)

It remains to determine the Fourier coefficients a(m), or equivalently the mag-

netic function F (z). tt∗ theory gives at least four different ways to fix them:

a) from the IR asymptotics of the CFIV index [16]. The real number −π a(m)

gets identified with the (net signed) number of BPS solitons with central charge

4πim ·µ, i.e. solitons wrapping the homological cycle m ·γ. One should count

BPS solitons with collinear central charges with the appropriate weight (see

[11] appendix). In particular, π gcd(m) a(m) should be an integer.

b) from the UV limit of the CFIV index which expresses the UV dimensions

h(x) of the chiral primaries [1, 16]. These dimensions are constrained by the

21 This is correct in a region where the complex numbers µa, µ̄a all belong to the same half–

plane, so that the integral of all terms in the sum defining F (z) converge for the same choice of ray

` ⊂ C. In the general case one needs to choose different rays ` for each term in the sum [2]. The

implied deformation of the contours introduces various Stokes factors from the residues at poles

(cfr. eqn.(5.57)). For simplicity we write expressions valid for Reµa > 0, Re µ̄a > 0, the general

case being obtained by analytic continuation and multiplication by the appropriate Stokes factors.
22 The value is not uniquely defined; varying U(µ) is equivalent to changing the trivialization of

L. However there is a physically natural trivialization, and hence a natural U(µ).

– 46 –



chiral ring R to be piecewise linear functions of the x’s. This implies a(m) =

O(1/|m|) in agreement with the IR predictions. The discontinuities of h(x)

should be integers [19], implying specific integrality properties of the a(m)’s.

c) matching the asymmetric limit of the brane amplitude with the period integral,

as we did for the Gaussian model. For instance, if we have∫
eiW/ζ dNX =

(
elementary

function

) ∏n
k=1 Γ(i`k,aµa/ζ)∏n′

h=1 Γ(i˜̀h,aµa/ζ)
, (5.94)

we immediately conclude that the model has n + n′ primitive BPS solitons of

central charges 4πi `k,aµa and −4πi ˜̀
h,aµa, respectively. In particular, `k,a and

˜̀
h,a should be non–negative integers corresponding to the cycles `k,aγa, −˜̀

h,aγa
wrapped by the primitive BPS solitons. The BPS solitons have the sign–

coherence property discussed around eqn.(5.87), and the magnetic function

may be read directly from the rhs of eqn.(5.94)

F (z) =
n∑
k=1

log(1− e−2π lk·z)−
n′∑
h=1

log(1− e−2π l̃h·z). (5.95)

d) from the holomorphic function U(µ). Indeed, the very fact that our tt∗ geom-

etry is Abelian means that the BPS solitons do not interact, and then U(µ)

should be identified with the effective twisted superpotential of a (2, 2) U(1)r

gauge theory coupled to n + n′ chiral superfields of charges `k,a and −˜̀
h,a,

respectively. This gives

U(µ) =
n∑
k=1

(lk · µ)
(

log(lk · µ)− 1
)
−

n′∑
h=1

(l̃h · µ)
(

log(l̃h · µ)− 1
)
. (5.96)

Thus we may extract the charge vectors lk, −l̃h directly from the critical value

of the (canonical) superpotential U(µ). F (z) is then given by eqn.(5.95). More

generally, as in eqn.(5.64), we may introduce a BPS density ω(y) such that

F (z) =

∫
log
(
1− e−2πy·z)ω(y) dy, (5.97)

U(µ) =

∫
(y · µ)

(
log(y · µ)− 1

)
ω(y) dy. (5.98)

The fact that one gets the same coefficients a(m) by using any one of the above

four methods is a non–trivial check of the correctness of the procedure.

– 47 –



The ‘rule of thumb’ of §.5.4.7 gives the exact brane amplitude corresponding to

the boundary condition (5.94) as a product of twistorial Gamma functions23

Ψ(µ, µ̄,x, ζ) =
n∏
k=1

Γ
(
i`k ·µ/ζ,−i`k · µ̄ ζ, `k · x

) n′∏
h=1

Γ
(
i˜̀h ·µ/ζ,−i˜̀h · µ̄ ζ, ˜̀h · x

)−1
,

(5.99)

(modulo, possibly, rational shifts of x, which correspond to insertions of chiral pri-

maries in the period integral).

A priori, extracting the soliton charges lk, −l̃h from the integral (5.94) may be

a bit ambiguous since, using the functional identities for the Euler Gamma function,

we may write the rhs as a product of Gamma functions in many different ways

(allowing also for rational shifts of the arguments). However, since the twistorial

Gamma function satisfies the same identities as the Euler one, the brane amplitude

is well defined, independently of how we write the rhs of (5.94).

5.5.2 Constructing new Abelian tt∗ geometries from old ones

Our explicit computations of twistorial brane amplitudes in the examples of section

6 consist of several steps in which one constructs a sequence of tt∗ geometries one

after another. For instance, to get the brane amplitudes for SQED, we first solve

the tt∗ equations for the Gaussian model at finite N ; for each N we get a one–

dimensional24 Abelian tt∗ geometry, which depends on the coordinates (ε1, θ). This

yields the SQED amplitude at special discrete loci in its parameter space

ae = (N + 1/2)ε1 and θe = (N + 1/2)θ. (5.100)

The next task is to extend this discrete family of one–dimensional tt∗ geometries to

a sound tt∗ geometry in one more quaternionic dimension, depending on continuous

coordinates (ae, θe, ε1, θ), such that its restriction to the locus (5.100) reproduce the

tt∗ geometry of the Gaussian model of size N . Here one needs appropriate techniques

to construct the higher–dimensional tt∗ geometry from the smaller ones. Having done

that, the next task is to consider various physically interesting limits of the result.

These limits should produce full (regular) limiting tt∗ geometries with sound metrics,

indices, and brane amplitudes. Again, we need appropriate techniques.

Constructing new tt∗ geometries out of old ones to serve as physically natu-

ral generalizations/limits is a formidable task. However, if the tt∗ geometries are

Abelian, it can be done explicitly with the help of the magnetic charge function

F (z) introduced in the previous subsection. The magnetic charge function F (z), be-

ing directly related to the charge distribution of the tt∗ higher–dimensional monopole

23 Again, this expression differs from the brane amplitude in the standard normalization,

eqn.(5.88), by the trivial factors discussed in footnote 18.
24 In the quaternionic sense.
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[2], is a gauge–invariant datum of the tt∗ geometry, i.e. a totally unambiguous way of

describing all tt∗ quantities. F (z) is also the datum on which we have the best phys-

ical control: from eqn.(5.88) we see that F (z) is simply the logarithm of the Stokes

jump of the (Abelian) tt∗ amplitude which is given by well understood wall crossing

formulae. The datum F (z) determines the tt∗ metric and CFIV index by eqns.(5.89)

and (5.90). In addition, from eqns.(5.95) and (5.96) we see that from F (z) we may

also reconstruct the ‘semi–flat’ holomorphic function U(µ). Concretely, to give F (z)

is equivalent to specifying the 2d BPS charge distribution ω(y) which describes the

2d Stokes jumps, cfr. eqn.(5.97) which determines the function U(µ)

U(µ) =

∫
dw ω(w)

(
w · µ

)(
log
(
w · µ

)
− 1
)
. (5.101)

Plugging this expression in eqn.(5.88), we write the (Abelian) twistorial brane am-

plitude corresponding to the given datum F (z).

In section 6 we shall use this strategy to get the general SQED tt∗ geometry

away from the special locus (5.100) and to define some of its interesting limits.

5.6 Example: the generalized Penner model

The (2, 2) generalized Penner model is given by the superpotential

W(ek) =
N∑
i=1

(
−Xi + µ1 logXi

)
+ µ2 log

∏
1≤i<j≤N

(Xi −Xj)
2 (5.102)

where the basic chiral fields are the elementary symmetric polynomials ek and µ1 6= 0.

The two complex couplings, µ1 and µ2 are the independent residues of the rational

one–form λ(µ) = dW . From the discussion in §§.5.2, 5.3 and 5.5 we know that λ(µ)

has a unique simple zero (modulo SN) specified by the N–th associated Laguerre

polynomial

PN(z) = (−1)N N !µN2 L
(µ1/µ2−1)
N (z/µ2). (5.103)

The generalized Penner model corresponds to an Abelian tt∗ geometry in (R2×S1)2

to which our results apply. To get the explicit expressions one has only to specify

the magnetic function FN(µ1, µ2) which may be determined by any one of the four

methods of the previous section. Conceptually, the simplest one is from the effective

twisted superpotential U(µ1, µ2) which is defined by the two equations

∂µ1U(µ1, µ2) = log
[
(−1)NPN(0)

]
≡

N−1∑
k=0

log(µ1 + kµ2) (5.104)

∂µ2U(µ1, µ2) = log DiscrPN(z) ≡
N∑
k=1

(
k log(kµ2)− log µ2

)
+

N−1∑
k=1

k log(µ1 + kµ2),

(5.105)
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where we used known properties of the Laguerre polynomials [54]. U(µ1, µ2) has the

expected form, eqn.(5.96), to be interpreted as the effective twisted superpotential

of an Abelian gauge theory

U(µ1, µ2) =
N∑
k=1

{
(kµ2)

(
log(kµ2)− 1

)
− µ2

(
log µ2 − 1

)}
+

+
N−1∑
k=0

(µ1 + kµ2)
(

log(µ1 + kµ2)− 1
)
. (5.106)

Therefore U(µ1, µ2) defines a magnetic function

F (z1, z2) =
N∑
k=1

{
log
(

1− e−2πkz2
)
− log

(
1− e−2πz2

)}
+

N−1∑
k=0

log
(

1− e−2π(z1+kz2)
)
.

(5.107)

Replacing this magnetic function in eqns.(5.88), (5.89), and (5.90), we get the various

tt∗ quantities for the generalized Penner model. Using eqn.(5.99), we may write the

brane amplitude in closed form as a product of twistorial Gamma functions

Ψ =
N∏
k=1

Γ(kµ2, kµ̄2, kx2)

Γ(µ2, µ̄2, x2)

N−1∏
k=0

Γ
(
µ1 + kµ2, µ̄1 + kµ̄2, x1 + kx2

)
. (5.108)

Alternatively, we arrive at the same conclusion using the period integral which in

this case is the BCN Metha integral [84, 85]

1

N !

∫ ∏
i

(
dxi√

2π
e−x

2
i /2
(
2|xi|2

)µ1

)∏
i<j

|x2
i − x2

j |2µ2 =

=
N∏
k=1

Γ(kµ2)

Γ(µ2)

N−1∏
k=1

Γ(1 + 2µ1 + 2kµ2)

Γ(1 + µ1 + kµ2)
,

(5.109)

which corresponds to (5.108) after keeping into account the Jacobian factor (which

shifts x1 by 1/2 and x2 by an integer).

5.7 Example: the Double Penner model

The superpotential for the double Penner (matrix) LG model is

W(Xi,µ) = µ1

N∑
i=1

logXi + µ2

N∑
i=1

log(1−Xi) + µ3

∑
1≤i<j≤N

log(Xi −Xj)
2, (5.110)

where field configurations are identified modulo permutations of the Xi’s. The poly-

nomial P (z) describing the vacuum configuration satisfies the hypergeometric ODE

µ3 P
′′ +

(
µ1

z
+

µ2

z − 1

)
P ′ − N(µ1 + µ2 + (N − 1)µ3)

z(z − 1)
P = 0, (5.111)
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whose solution is the N–th Jacobi polynomial of argument 1 − 2z and parameters

α = µ1/µ3 − 1, β = µ2/µ3 − 1, normalized to be monic, that is, ([83],§.8.5)

P (z) =
(−1)N(µ1/µ3)N

(N + µ1/µ3 + µ2/µ3 − 1)N
P

(µ1/µ3−1, µ2/µ3−1)
N (1− 2z) (5.112)

where (a)N is the Pochhammer symbol

(a)N = a(a+ 1)(a+ 2) · · · (a+N − 1) =
Γ(a+N)

Γ(a)
. (5.113)

By definition one has

U(µ) = µ1 log
[
(−1)NP (0)

]
+ µ2 log

[
P (1)

]
+ µ3 log DiscrP (z). (5.114)

Using the properties of the Jacobi polynomials (cfr.[83], Theorem 8.5.2) we get

U(µ) =
N∑
k=1

{(
µ1 + (k − 1)µ3

)(
log
(
µ1 + (k − 1)µ3

)
− 1
)

+

+
(
µ2 + (k − 1)µ3

)(
log
(
µ2 + (k − 1)µ3

)
− 1
)
−

−
(
µ1 + µ2 + (N + k − 2)µ3

)(
log
(
µ1 + µ2 + (N + k − 2)µ3

)
− 1
)

+

+ (kµ3)
(

log(kµ3)− 1
)
− µ3

(
log µ3 − 1

)}
(5.115)

which again has the proper form to be interpreted as an effective twisted superpo-

tential. The corresponding magnetic function F (z) is

F (z) =
N∑
k=1

{
log
(
1− e−2π(z1+(k−1)z3)

)
+ log

(
1− e−2π(z2+(k−1)z3)

)
+

+ log
(
1− e−2πkz3

)
− log

(
1− e−2π(z1+z2+(N+k−2)z3)

)
− log

(
1− e−2πz3

)}
, (5.116)

from which we compute all tt∗ quantities. In particular, the brane amplitude is

written as a product of twistorial Gamma functions (for brevity we omit to write the

obvious second argument of the various functions)

Ψ =
N∏
k=1

{
Γ
(
i
(
µ1 + (k − 1)µ3

)
/ζ, x1 + (k − 1)x3

)
Γ
(
ikµ3/ζ, kx3

)
×

× Γ
(
i
(
µ2 + (k − 1)µ3

)
/ζ, x2 + (k − 1)x3

)
Γ
(
iµ3/ζ, x3

)−1

×

× Γ
(
i
(
µ1 + µ2 + (N + k − 2)µ3

)
/ζ, x1 + x2 + (N + k − 2)x3

)−1
}
.

(5.117)

Again, the same result could have been obtained by matching the asymmetric limit

of the brane amplitude with the period integral which in this case is the Selberg

integral [83–85].
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6 Twistorial Topological Strings for the N = 2 SQED

(conifold B-model)

In this section we show how the large N behavior of the tt∗ geometries studied in

section 5 produces the twistorial topological string amplitudes of section 3. In par-

ticular, the large N asymptotics of the Gaussian model reproduce the N = 2 SQED

amplitudes with the Coulomb branch parameter a identified with Nε1. The simplest

way to connect the Gaussian tt∗ geometry with N = 2 SQED is to compare the tt∗

metric GN and brane amplitude ΨN computed in section 5 with the hyperKähler

geometry of SQED compactified on a circle studied in [9]. The relation between tt∗

and the TBA–like equations of [9] was already outlined in [2]; we start by making

the dictionary between the two geometries more precise.

6.1 The dictionary between tt∗ and GMN hyperKähler geometries

Both tt∗ Lax equations and the TBA equations of GMN [9] determine a hyperKähler

geometry; moreover they both encode a Riemann–Hilbert (RH) problem. From the

discussion in section 4 we expect the RH problem of [9] to be a certain classical limit

of the tt∗ one for the large N (2, 2) model dual to the given N = 2 theory. Both

RH problems are formulated as integral equations with singular kernels. The TBA

equations are based on the kernel [9]

1

4πi

dζ ′

ζ ′
ζ + ζ ′

ζ − ζ ′
(6.1)

while in tt∗ one uses the simpler kernel

1

2πi

dζ ′

ζ ′ − ζ
which under ζ ′, ζ → 1/ζ ′, 1/ζ becomes

1

2πi

dζ ′

ζ ′
ζ

ζ ′ − ζ
. (6.2)

To reconcile the two kernels, we notice that the basic tt∗ relations, eqns.(5.92)(5.93),

imply the reality condition(
G(x)−1/2 Ψ(x,−1/ζ̄)

)
=
(
G(x)−1/2 Ψ(x, ζ)

)−1
, (6.3)

which has the same form as the GMN one Xγ(−1/ζ̄) = Xγ(ζ)−1. Then the tt∗

amplitudes should be identified with the corresponding GMN objects times G1/2.

More conceptually, the tt∗ amplitude Ψ(ζ) is a section of the hyperholomorphic

vector bundle V →M written in a holomorphic trivialization (in complex structure

I, corresponding to ζ = 0). To get the section in a unitary trivialization we have to

perform a complex gauge transformation by G−1/2. The GMN quantities correspond

to unitary gauge tt∗ quantities, and satisfy the reality condition in the form (6.3). The
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change of kernels from (6.2) to (6.1) just implements the change of gauge. Indeed,

1

2πi

dζ ′

ζ ′ − ζ
=

1

4πi

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
+

1

4πi

dζ ′

ζ ′
(6.4)

1

2πi

dζ ′

ζ ′
ζ

ζ ′ − ζ
=

1

4πi

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
− 1

4πi

dζ ′

ζ ′
(6.5)

Using these identities and eqn.(5.89), the Abelian tt∗ brane amplitude (5.88) may be

rewritten as

log Ψ(ζ)tt
∗

=
i

ζ
U − iζ U − 1

4πi

∫
`

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
F
(
µ/ζ ′ − ix+ µ̄ ζ ′

)
−

+
1

4πi

∫
`

dζ ′

ζ ′
ζ ′ − ζ
ζ ′ + ζ

F
(
µ/s+ ix+ µ̄ s

)
+

1

2
logG,

(6.6)

which shows that

log Ψ(ζ)GMN = log
(
G−1/2 Ψ(ζ)

)tt∗
. (6.7)

In particular, as ζ → 0 (resp. ζ → ∞) the GMN amplitude becomes G−1/2, (resp.

G1/2) in agreement with general tt∗ geometry [19].

6.2 Twistorial Double Gamma Function

The analysis of §. 5.4 gives the brane amplitudes for the Gaussian matrix model in

the form of a product of twistorial Gamma functions (up to elementary normalization

factors)

ΨN(β, β̄, x, ζ) =
N∏
k=1

Γ(ikβ/ζ,−ikβ̄ζ, kx)

Γ(iβ/ζ,−iβ̄ζ, x)
, (6.8)

where β = ε1/ε̃2 and x = θ/2π. To compare with N = 2 SQED or the B-model for

the conifold, it is convenient to introduce the twistorial version of the double Gamma

function, Γ2(µ, µ̄, y | ε, ε̄, x) whose arguments are four complex variables µ, µ̄, ε, ε̄ and

two period real ones y, x. The function Γ2(µ, µ̄, y | ε, ε̄, x) allows us to write in a

closed form the brane amplitude for all Abelian tt∗ geometries.

For Reµ > 0, Re ε > 0 we define the function25

U(µ | ε) = ε ψ(−2)
(
µ/ε
)

+
µ2

2ε
log ε− µ

2
log(2πε), (6.9)

where ψ(−2)(z) is the polygamma function of order −2,

ψ(−2)(z) ≡
∫ z

0

log Γ(s) ds =

=
1

2
z log 2π − 1

2
z(z − 1) + z log Γ(z)− logG(z + 1),

(6.10)

25 All multivalued functions are assumed to have their normal values (i.e. real on the real axis).
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G(z) being the Barnes G–function. From the identity G(z + 1) = Γ(z)G(z) we see

that ψ(−2)(z) satisfies the difference equation

ψ(−2)(z + 1)− ψ(−2)(z) = z(log z − 1) +
1

2
log 2π. (6.11)

The function U(µ | ε) may be defined as the unique solution to the difference equation

U(µ+ ε | ε) = U(µ | ε) + µ
(

log µ− 1
)
, (6.12)

normalized as U(0 | ε) = 0 and satisfying

d3

ds3

U(s ε | ε)
ε

> 0, for all s ∈ R+. (6.13)

For Reµ > 0, Re ε > 0, the twistorial double Gamma function Γ2(µ, µ̄, y | ε, ε̄, x)

is defined as

log Γ2(µ, µ̄, y | ε, ε̄, x) = U(µ+ ε/2 | ε) + U(µ̄+ ε̄/2 | ε̄)−

− 1

2π

∞∫
0

ds

s(s− i)
log Ψ

(
X(s); q(s)

)
+

1

2π

−∞∫
0

ds

s(s− i)
log Ψ

(
X(s)−1; q(s)−1

)
(6.14)

where

X(ζ) = e−2π(µ/ζ−iy+µ̄ζ), q(ζ) = e−2π(ε/ζ−ix+ε̄ζ), (6.15)

and Ψ(x; q) is the quantum dilogarithm [91] defined for |q| < 1 (i.e. for Re ε > 0) as

Ψ(x; q) = (xq1/2; q)−1
∞ =

∞∏
k=0

(1− x qk+1/2)−1. (6.16)

Ψ(x; q) satisfies the recursion relation

Ψ(xq; q) = (1− xq1/2) Ψ(x; q). (6.17)

Eqns.(6.12), (6.17) and (5.69) imply that Γ2(µ, µ̄, y | ε, ε̄, x) satisfies the difference

equation

log Γ2(µ+ ε, µ̄+ε̄, y + x | ε, ε̄, x)− log Γ2(µ, µ̄, y | ε, ε̄, x) =

= log
[
Γ(µ+ ε/2, µ̄+ ε̄/2, y + x/2)

/√
2π
]
.

(6.18)

Then the Gaussian brane amplitude, eqn.(6.8), may be written in the compact

form (absorbing ζ in β, β̄, an neglecting the trivial factors in footnote 18)

ΨN(β, β̄, x, ζ = i) =
Γ2

(
(N + 1

2
)β, (N + 1

2
)β̄, (N + 1

2
)x | β, β̄, x

)
Γ2(β/2, β̄/2, x/2, |β, β̄, x) Γ(β, β̄, x)N

(6.19)
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From eqn.(6.18) it is clear that in the asymmetric limit µ̄→ 0, ε̄→ 0

Γ2(µ, µ̄, y | ε, ε̄, x)asym = Γ2

(
µ+ y − 1

2
ε− 1

2
x
∣∣ ε+ 1

2
x
)

(6.20)

where Γ2(z |ω) is the (ordinary) double Gamma function defined by the recursion

relation

Γ2(z + ω |ω) = Γ1(z) Γ2(z |ω), (6.21)

where Γ1(z) ≡ Γ(z)/
√

2π.

6.3 Relation with SQED amplitudes in 1
2

Ω–background

In the rhs of eqn.(6.19) we may neglect the denominator which has trivial depen-

dence of N (and may argued to arise from the normalization of the measure in the LG

model). Then, keeping into account the factor G
−1/2
N as required by the dictionary

of §.6.1 (and restoring all elementary factors) we may rewrite (6.19) in the form

log(G
−1/2
N ΨN) = i

U
(
ae + ε1/2)

∣∣ ε1)
ε̃2 ζ

− i
U
(
āe + ε̄1/2)ζ

∣∣ ε̄1)
ε̃2

ζ−

− 1

4πi

∫
`

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log Ψ

(
Xe(ζ

′); q(ζ)
)

+
1

4πi

∫
−`

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log Ψ

(
Xe(ζ

′)−1; q(ζ)−1
)

(6.22)

where

Xe(ζ) = e−2πRae/ζ+iθe−2πR āeζ (6.23)

is the (exact) GMN electric line for SQED, and

q(ζ) = e−2π(ε1/ε̃2ζ−ix+ε̄1ζ/ε̃2). (6.24)

Eqn.(6.22) coincides with the original Gaussian model brane amplitude, eqn.(6.19),

provided the Coulomb branch parameter ae is equal to

Rae =
(
N + 1

2

)ε1
ε̃2
≡
(
N + 1

2

)
β, (6.25)

as predicted by the large N duality, §. 3.1. As anticipated in §.3.6, in the present

set–up this relation is enhanced to a fully twistorial relation between the Coulomb

branch and 1
2

Ω–background parametersRaeθe
R āe

 =
(
N + 1

2

)ε1/ε̃22π x

ε̄1/ ε̃2

 . (6.26)

Note that, apart from the first two ‘elementary’ terms26 in the rhs of (6.22), which

we shall discuss momentarily, the amplitude depends on ae, θe and āe only through

the electric line Xe(ζ).

26 In the language of [9] these terms are the ‘semi–flat’ part of the amplitude.
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The exact GMN magnetic line for SQED, Xm(ζ), may also be recovered from

the Gaussian matrix model; indeed

G
−1/2
N ΨN(ζ)

G
−1/2
N−1 ΨN−1(ζ)

= Xm(ζ)
∣∣∣
θm=0

. (6.27)

This result is consistent with the physical idea that the magnetic line is the cost in

energy for carrying a matrix eigenvalue from infinity to the vacuum configuration.

This result agrees with the physical picture of §. 4.1, where we think of the one–

vacuum Gaussian model as a n = 2 model in the limit of infinite separation between

the vacua. In the rhs we have set the magnetic angle θm to zero. In SQED the

dependence on θm is trivial, and hence θm is just part of the overall normalization of

the Gaussian amplitude.

6.4 The higher–dimensional tt∗ geometry

As discussed in §.5.5.2, we promote the LG model amplitudes (6.22) to the brane

amplitudes for a higher–dimensional Abelian tt∗ geometry on (R2×S1)2. We simply

do this by declaring (ae, θe, ε, θ ≡ 2πx) to be independent coordinates of (R2 × S1)2.

The resulting geometry is best described in the general framework of section 5.5; it

is the Abelian tt∗ geometry defined by the magnetic function

F (z1, z2) = −
∞∑
k=0

log
(
1− e−2π[z1+(k+1/2)z2]

)
(6.28)

which yields the holomorphic function

U(a2, ε1) = −
∞∑
k=0

(
ae + (k + 1

2
)ε1
)(

log
(
ae + (k + 1

2
)ε1
)
− 1
)

(6.29)

where we used the standard notation for the two periods of the tt∗ geometry µ1 = ae
and µ2 = ε1. The function (6.29) satisfies the recursion relation

U(ae + ε1, ε1) = U(ae, ε2) +
(
ae + 1

2
ε1
)(

log
(
ae + 1

2
ε1
)
− 1
)
, (6.30)

as well as the analogue of eqn.(6.13), and hence

U(ae, ε1) ≡ U(ae + 1
2
ε1 | ε1) + irrelevant constant, (6.31)

so that the brane amplitudes of the higher dimensional tt∗ geometry, restricted to the

R2 × S1 loci (6.26), reproduce the LG amplitudes (6.22). In §.6.5 we show that the

holomorphic function U(ae + 1
2
ε1 | ε1) is equal to the Nekrasov–Shatashvili effective

twisted superpotential for N = 2 SQCD in 1
2
Ω background.

The above procedure gives the tt∗ geometry for SQED in half–Omega background

without any restriction on the parameters nor problems with the absolute normal-

ization of the functional measure. The corresponding brane amplitude in unitary
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gauge is given by eqn.(6.22), where now ae, āe, θe, ε1, ε̄1, x ≡ θ/2π are arbitrary

parameters. In the holomorphic gauge (in complex structure I) it is the twistorial

double Gamma function itself (setting, for simplicity, ζ = i, ε̃2 = 1)

Ψ(ae, āe, θe | ε1, ε̄1, x)hol = Γ2(ae, āe, θe/2π | ε1, ε̄1, x). (6.32)

From eqn.(6.18) we see that under the shift(
ae, āe, θe

)
7−→

(
ae + ε1, āe + ε̄1, θe + 2πx

)
, (6.33)

the amplitude gets multiplied by the twistorial Gamma function of arguments ae +

ε1/2, θe/2π + x/2, i.e. by the GMN magnetic line at θm = 0 evaluated at the mid

point in the Coulomb branch

Ψ(ae + ε1, āe + ε̄1, θe + 2πx | ε1, ε̄1, x)hol =

= Xm(ae + ε1/2, āe + ε̄1/2, θe + πx, θm = 0) Ψ(ae, āe, θe | ε1, ε̄1, x)hol.
(6.34)

The tt∗ metric and CFIV index may be obtained by plugging in the magnetic

function (6.28) in the general expressions (5.89) and (5.90). The tt∗ metric is

G(ae, āe, θe | ε1, ε̄1, x) = exp

 1

π
Im

∞∫
0

ds

s
log Ψ

(
Xe(s); q(s)

) . (6.35)

6.5 SQED twistorial amplitudes and the 1
2
Ω–background W̃eff(ae, ε1)

To properly identify the brane amplitude (6.22) with the partition function of N = 2

SQED in 1
2

Ω–background, it remains to consider the holomorphic term

U
(
ae + 1

2
ε1
∣∣ ε1) (6.36)

and its antiholomorphic counterpart.

In the discussion around eqn.(5.96) we saw that, in an Abelian tt∗ geometry, the

holomorphic function U(µ) is identified with the effective twisted superpotential of

the corresponding (2, 2) model. In the case of the large–N Gaussian amplitude the

corresponding (2, 2) model is expected to be N = 2 SQED in 1
2
Ω–background, so

consistency requires the holomorphic function U to be identical to the Nekrasov–

Shatashvili effective twisted superpotential W̃eff(ae, ε1) [5]. In general, the effective

superpotential consists of a perturbative part plus an instanton part. In theories like

SQED only the perturbative part is present. The perturbative part may be formally

written in terms of a Schwinger proper–time integral which requires ζ–regularization;

then

W̃eff(ae, ε1) = ε1 lim
s→0

d

ds

{
(Λ/ε1)s

Γ(s)

∫ ∞
0

ts dt

t2
e−t ae/ε1

2 sinh(t/2)

}
(6.37)
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The integral may be written in terms of the Hurwitz zeta–function ζ(s, z). In par-

ticular,

−∂aeW̃eff(ae, ε1) = lim
s→0

d

ds

{
(Λ/ε1)s ζ(s, ae/ε1 + 1

2
)
}
≡

≡ −ae
ε1

log(Λ/ε1) + log Γ
(

1
2

+ ae/ε1
)
− 1

2
log 2π.

(6.38)

Now, from eqn.(6.9)

∂aeU
(
ae + 1

2
ε1
∣∣ ε1) = log Γ

(
1
2

+ ae/ε1
)

+
ae
ε1

log ε1 −
1

2
log 2π, (6.39)

so (we have set Λ ≡ ε̃2 to 1) the two twisted superpotentials27

− W̃eff(ae, ε1) and U(ae + 1
2
ε1 | ε1) (6.40)

are equal (up to an irrelevant additive constant). This completes the proof that the

Gaussian matrix LG model brane amplitudes correspond to SQED in 1
2
Ω–background

under the identification (6.26).

6.6 The θ–limit tt∗ geometry

Consider the metric of the higher–dimensional SQED tt∗ geometry, eqn.(6.35). The

second argument of the quantum dilogarithm

q(ζ) = e−2πε1/ε̃2ζ+iθ−2πε̄1ζ/ε̃2 , (6.41)

is a non–trivial function of the twistor parameter ζ instead of a fixed elliptic nome q.

This corresponds to the fact that (ε1, θ, ε̄1) are not fixed parameters of the geometry,

but rather coordinates of the higher–dimensional tt∗ manifold (R2 × S1)2.

To make contact with more standard (and limited) approaches, one would like to

reduce the tt∗ geometry to a simpler hyperKähler manifold of quaternionic dimension

1 of coordinates ae, θe, āe (and θm) with fixed q. This would correspond to a family

of Abelian tt∗ geometries on R2 × S1 depending on the parameter q. In view of

eqn.(6.41), this is roughly equivalent to taking ε1 → 0 while keeping fixed q = eiθ.

This direct limit is however not well–defined, and the geometric construction gives a

precise meaning to the θ–limit.

The family of reduced tt∗ geometries is specified, according to section 5.5, by a

magnetic function F (z; q). One takes

F (z; q) = log Ψ(e−2πz; q) ≡ −
∑
m≥1

1

m

e−2πmz

qm/2 − q−m/2
, (6.42)

27 The overall sign just reflects a different convention on the sign of the twistor parameter ζ.
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with the proviso that q is morally a phase, eiθ, and hence we must state the additional

rule that under complex conjugation28 q ↔ q−1 so that

F (z; q) =
∑
m≥1

1

m

e−2πmz̄

qm/2 − q−m/2
= − log Ψ(z̄; q), (6.43)

with a sign flip. Hence in the θ–limit the SQED tt∗ metric (6.35) becomes

logGθ =
1

2πi

∫
`

ds

s
log Ψ(Xe(s); q) +

1

2πi

∫
`

ds

s
log Ψ(Xe(s); q). (6.44)

To the function

F (z; q) ≡ −
∑
k≥0

log
(
1− e−2π[z+(k+1/2) log q]

)
(6.45)

there corresponds the holomorphic function (cfr. eqn.(6.29))

U(µ) = −
∑
k≥0

(
µ+(k+1/2) log q

)(
log
(
µ+(k+1/2) log q

)
−1
)
≡ U(µ, log q). (6.46)

Hence, reintroducing all factors, the θ–limit brane amplitude for SQED is

logψθ = − i

ε̃2 ζ
WNS

(
ae,−i

ζε̃2 log q

2π

)
+
iζ

ε̃2
WNS

(
āe,−i

ε̃2 log q

2π ζ

)
−

− 1

4πi

∫
`

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log Ψ(Xe(ζ

′); q)− 1

4πi

∫
−`

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log Ψ(Xe(ζ

′)−1; q).

(6.47)

6.7 θ–limit vs. the quantum KS wall crossing formula

The Stokes jumps of the brane amplitude are intrinsically defined, independently of

a choice of trivialization. From eqn.(6.47) we see that, in the θ–limit, the SQED

brane amplitude Ψ(ζ)θ jumps at the BPS rays in ζ–plane as

Ψ(e+i0ζ)θ = Ψ
(
Xγ(ζ)±1; q

)
Ψ(e−i0ζ)θ. (6.48)

While the explicit computation above holds for Abelian tt∗ geometries, we argued

in section 4, that this should be true for all (reduced) tt∗ geometries defined by the

θ–limit of a 4d N = 2 theory on 1
2
Ω background.

Composing all jumps at the several BPS phases one would get an ordered product

Ψ(e2πiζ)θ =

 x∏
BPS

phases

Ψ
(
Xγ(ζ); q

)Ψ(ζ)θ, (6.49)

28 Note that this is exactly the action of ‘complex conjugation’ on the quantum torus algebra in

the related subject of quantum cluster algebras [49–51].
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which looks like the 4d N = 2 quantum monodromy M(q) [12, 41] whose invariance

(up to conjugacy) under arbitrary changes of parameters is equivalent to the refined

version [41, 45, 46] of the Kontsevich–Soibelman wall crossing formula [44]. However,

for this identification to work we also need that in the θ–limit line operators Xγ(ζ)

satisfy the quantum torus algebra [49–51]

Xγ(ζ)Xγ′(ζ) = q〈γ,γ
′〉Xγ′(ζ)Xγ(ζ), (6.50)

where 〈·, ·〉 : Γ× Γ→ Z is the Dirac electro–magnetic pairing. If this relation holds,

then the adjoint action of the operators Ψ
(
Xγ(ζ); q

)
on the quantum torus algebra

generate a quantum cluster algebra action [49–51] which produces the correct action

of the quantum monodromy [12, 92].

Thus, to conclude that the twistorial brane amplitudes in the θ–limit correspond

to the refined version of the GMN quantities, it remains to show that the quantum

torus algebra commutation relations (6.50) are satisfied in this limit. In particular,

in SQED case the θ–limit quantum torus algebra would read

Xm(ζ)Xe(ζ) = q Xe(ζ)Xm(ζ), (6.51)

where Xe(ζ) and Xm(ζ) are the electric and magnetic line operators, respectively.

The validity of (6.51) is equivalent to the θ–limit of the functional equation for the

twistorial double Gamma function Γ2. Indeed, the θ–limit of eqn.(6.34) is

Xm(ζ) Ψ(ae, āe, θe; ζ)θ = Ψ(ae, āe, θe + θ; ζ)θ, (6.52)

which says that, in this limit, Xm(ζ) may be represented by the operator

exp

(
θ
∂

∂θe

)
. (6.53)

Since Xe(ζ) = e−2πae/ζ+iθe−2πāeζ , this implies

Xm(ζ)Xe(ζ) = eiθXe(ζ)Xm(ζ), (6.54)

which is the relation we wanted to check, eqn.(6.51).

7 Twistorial invariant aspects of the tt∗ geometry

We have defined the twistorial topological string as the D-brane wave function for the
1
2
Ω background. In this section we briefly discuss other aspects of tt∗ geometry for

the 1
2
Ω background. In particular we focus on aspects where the twistor parameter

ζ disappears from the computations. We will focus on three aspects: The tt∗ metric,

the Q-function (CFIV index) and the monodromy operator.
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The tt∗ metric does not depend on the twistor parameter because there are no

boundaries involved. We will mainly focus on the metric for the ground state. This

involves roughly speaking
∑

~k |ψ~k|2 by gluing two hemispheres to get a sphere. This

will only depend on the external parameters defining the theory (i.e. the triplet

of masses) as well as the ε1, ε̃2. We will explicitly compute it for the case of the

twistorial version of 2 M5 branes on a sphere with 3-punctures. By the AGT relation

this is related to the three point function of the Liouville theory. Here we will be

able to compute a twistorial version of the DOZZ formula. Its interpretation as an

amplitude of some integrable 2d system remains to be seen.

Another thing we can do is to study the 2d monodromy. This was a powerful

tool in classification of the 2d N = 2 theories [19]. In fact the computations done

in [12] can now be interpreted as computing the trace of the monodromy for the 1
2
Ω

background in the θ-limit. In particular it corresponds to considering the 2d theory

on a torus, where as we go around the temporal circle we do an R-twist.

Another aspect of the tt∗ geometry is the CFIV index [16], which at the conformal

point measures the central charge of the theory. It is natural to ask what is the

interpretation of this in the 4d theory. In this section we argue that the computation

of AMNP [17] can be interpreted as computing the CFIV index of the 1
2
Ω background

in the C-limit. We provide evidence for this by computing the two indices for the

case of SQED. The fact that both CFIV index and the AMNP index do not depend

on ζ and are continuous, and that they agree in various limits (e.g. when SQED

dominates) strongly suggests they are the same in general.

In the rest of this section we discuss the relation between CFIV index and the

AMNP index as well as the tt∗ metric for the 2 M5 brane theory on three times

punctured sphere, as examples of these other aspects of the tt∗ geometry.

7.1 C–limit: the 4d AMNP index vs. the CFIV index

The CFIV index of the 2d (2,2) theory [16] is clearly an interesting quantity to

compute. It encodes the amount of degrees of freedom in the 2d theory (and at 2d

conformal points measures the central charge and the dimension of the chiral primary

operators [1, 16]). When the 2d (2,2) theory arises from the 1
2
Ω background of a 4d

N = 2 theory, its CFIV index computes also a four–dimensional susy–protected

physical quantity. More generally, as discussed in the context of theories with 2d

LG duals §§. 5.5.2, 6.4, and 6.6, the CFIV index is defined for all tt∗ geometries,

including the higher–dimensional analytically–continued one (§.6.4), the θ–limit one

(§.6.6), and its C–limit geometry (to be discussed in detail in section 8). Then, in the

present setup, the CFIV indices of these diverse tt∗ geometries yield an increasingly–

refined sequence of susy–protected quantities for the 4d N = 2 theory

QC , Q(θ)θ, Q(θ, ε1). (7.1)
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In the previous sections we wrote the exact form of all these indices under the as-

sumption that the higher–dimensional tt∗ geometry is Abelian. In particular QC ,

Q(θ)θ and Q(θ, ε1) are explicitly known for N = 2 SQED. All these indices, being

susy–protected, count 4d multi–BPS states with some very special weight so that

the full index is wall crossing invariant and smooth in parameter space.

In this section we focus on the coarser version of the index, the C–limit one QC .

In §.7.1.2 below we show that the exact QC index for N = 2 SQED is equal (up

to overall normalization) to the 4d wall-crossing invariant quantity I, proposed by

AMNP [17]. Thus QC and I are two smooth, wall crossing invariant, susy–protected

quantities, both counting multi–BPS states with weights which happen to agree

for all mutually–local multi–hypermultiplet states. Then the (properly normalized)

indices QC and I are expected to be equal in general.

It would be desirable to have a direct four–dimensional definition of QC (and its

refined cousins Q(θ)θ, Q(θ, ε1)). This in particular allows us to directly compare it

with the index proposed in AMNP. Therefore we start with a direct 4d discussion

of QC based on the target space interpretation of the twistorial topological string

in §.3.2. There are two aspects to the AMNP work: One is the identification of a

wall-crossing invariant constructed out of the classical hyperKähler geometry of the

circle compactification of 4d N = 2 supersymmetric theories. The second aspect is to

identify it with a particular 4d index computation. While we find that computation

of CFIV index agrees with the object introduced in AMNP, the definition of the 4d

index we find is distinct from the 4d index of AMNP, even though there are some

formal similarities.

7.1.1 4d interpretation of QC

We consider our 4d N = 2 theory quantized in the space S1 × IL × R2
(34), where

S1 is a circle of length R viewed as periodic Euclidean time t, IL is a segment of

lenght L (we shall take L → ∞ at the end of the computation), and R2
(34) is the

orthogonal plane on which we switch on the 1
2
Ω background. Having non–zero θ

means that as t → t + R we rotate the 3–4 plane R2
(34) by an angle proportional

to θ and make a compensating SU(2)R rotation to preserve half the supercharges.

One also introduces fugacities θa for the various conserved charges qa. Then the

fully–refined twistorial CFIV index, before taking any limits, is

i Q(θ, ε1) = lim
L→∞

R

L
TrΩ

2

[
(−1)F J eiθ(J−J34)+i

∑
a θaqa e−RH

]
, (7.2)

where J34 is the generator of rotations in the 3–4 plane and J is the Cartan generator

of SU(2)R which, from the 2d viewpoint, is identified with F/2, so that (7.2) coincides

with the standard definition of the 2d CFIV index [16] for the 2d theory on S1× IL,

the insertion of the twisting operator eiθ(J−J34)+i
∑
a θaqa implementing the reduction

from a 8–supercharge theory to a (2, 2) one. The rhs of eqn.(7.2) has an obvious
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representation in terms of path integrals of the 4d N = 2 theory with periodic

boundary conditions in Euclidean time.

The C–limit index is defined by first turning off the 1
2
Ω background (i.e. sending

ε1 → 0) and then θ → 0

QC = lim
θ→0

(
θ

2π
lim
ε1→0

Q(θ, ε1)

)
=

= lim
θ→0
L→∞

(
θR

2πL
Tr
[
(−1)F J eiθ(J−J34)+i

∑
a θaqa e−RH

])
.

(7.3)

We would like to consider the C–limit CFIV index QC to compare with the

AMNP index I. As a check, let us compute the one BPS half–hypermultiplet con-

tribution to the rhs of (7.2) in the C–limit. We first note that the hypermultiplet

fermions are SU(2)R invariant, and hence do not contribute to the trace in (7.2)

because of the insertion of the SU(2)R generator J . The scalars are in the fun-

damental of SU(2)R and hence have J = ±1/2. Then the SU(2)R representation

content produces an overall factor i sin(θ/2) in the one–particle trace. Therefore the

contribution to the rhs of (7.2) from one half–hyper of mass M and charges qa is

i
R sin(θ/2)

L
ei

∑
a θaqa Tr

(1)
Ω
2

[
e−RH−iθJ34

]
=

= i
R sin(θ/2)

L
ei

∑
a θaqa

R

2
√
π

∫ ∞
0

dt

t3/2
e−M

2t−R2/4t Tr
(1)
Ω
2

[
et∆ε1−iθJ34

] (7.4)

where Tr
(1)
Ω
2

stands for the trace over the one–scalar Hilbert space as regularized by 1
2
Ω

background, and −∆ε1 is the Ω–regularized version of the free bosonic ‘Schwinger

time’ Hamiltonian −∆ ≡ p2. From [20, 93] we know that on a free hyper a 1
2
Ω

background has the same effect as a constant background electromagnetic field

F ∝ ε1 dx
3 ∧ dx4, (7.5)

plus a compensating SU(2)R–twist of order O(ε1) to preserve half–supersymmetry.

If we are interested only in the limit ε1 → 0, we may neglect the twist, and work

simply with the magnetic background (which provides an effective IR regulation).

Hence, in this limit, −∆ε1 may be replaced by

−∆ε1 = −∂2
x2 +

(
− i∂x3 − 1

2
ε1 x

4
)2

+
(
− i∂x4 + 1

2
ε1 x

3
)2

≡

≡ p2
2 + 2

{
1

2
p2

3 +
1

2
p2

4 +
1

2

(ε1
2

)2 (
(x3)2 + (x4)2

)
+
ε1
2
J34

} (7.6)

i.e. as a free particle moving in the segment IL times twice the harmonic oscillator
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in the 3-4 directions of frequency ε1/2 shifted by ε1 J34/2. Then

Tr
(1)
Ω
2

[
et∆ε1−iθJ34

]
=

(
1

4πt

)1/2

L
∑
k≥0

e−(k+1/2)ε1 t
sin[(k + 1)(θ − iε1t)]

sin(θ − iε1t)
≡

≡
(

1

4πt

)1/2
Le−ε1t/2

1− 2 e−ε1t cos(θ − iε1t) + e−2ε1t

ε1→ 0−−−−−−−→
(

1

4πt

)1/2
L

4 sin2(θ/2)
,

(7.7)

where we used the explicit form of the generating function for the Chebyshev poly-

nomials of the second kind Uk−1(cos θ) = sin(kθ)/ sin(θ).

Inserting back (7.7) into (7.4), we get the one half–hyper contribution to Q(θ)θ

Q(θ)
(1/2-hy)
θ =

R2

16π

ei
∑
a θaqa

sin(θ/2)

∫ ∞
0

dt

t2
e−M

2t−R2/4t ≡ ei
∑
a θaqa

4π

MR

sin(θ/2)
K1(MR). (7.8)

This 4d result should be compared with the half–hyper contribution to the θ–limit

index as predicted by the large–N 2d dual tt∗ geometry. Since one–particle contribu-

tions to the CFIV index are universal, we may compute it by expanding the SQED

one and keeping only the first term. Using the θ–limit tt∗ metric, eqn.(6.44), we get

for the half–hyper contribution to Q(θ)θ|2d dual
29

Q(θ)
(1/2-hy)
θ

∣∣∣
2d dual

≡ −1

2
R

∂

∂R

(
1

2πi

∫ ∞
0

ds

s

(
log(Xe(s); q)

)(1/2-hy)
)

=

=
1

4πi

eiθe

q1/2 − q−1/2
R
∂

∂R

∫ ∞
0

ds

s
e−MR(s+1/s)/2 =

eiθeMR K1(MR)

4π sin(θ/2)
, (7.9)

in full agreement with (7.8).

From the definition, eqn.(7.3), the one half–hyper contribution to QC then is

Q
(1/2-hy)
C =

R

4π2
ei

∑
a θaqaM K1(MR), (7.10)

which is the standard one particle contribution to the CFIV index [1, 16] as well as

the regularization prescription proposed for AMNP index [17] (up to an extra factor

of 2π, cfr. eqn.(7.14)).

7.1.2 QC for N = 2 SQED

Next, we compute CFIV index for SQED to check its relation with AMNP index.

The C–limit consists in taking q → 1 in the θ–limit. The C–limit of the metric is30

logGC
def
= lim

q→1

(
−i log q

2π
logGθ

)
≡

≡ 1

4π2

∫
`e

ds

s
Li2(Xe(s)) +

1

4π2

∫
−`e

ds

s
Li2(Xe(s)

−1).

(7.11)

29 For simplicity we take the central charge of the hyper to be real positive, hence equal M .
30 Recall that log q is formally purely imaginary.
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The CFIV index Q of a tt∗ geometry is the component of the Berry connection31

in the direction of the RG flow [1, 16]. For the SQED metric this is

Q(ae, āe, θe | ε1, ε̄1, θ; ε̃2) =
1

2
ε̃2

∂

∂ε̃2
logG(ae, āe, θe | ε1, ε̄1, θ; ε̃2). (7.12)

Replacing in this formula the general metric with the θ–limit one, eqn.(6.44), we get

the θ–limit CFIV index. In the same vein, replacing G by the C–limit tt∗ metric GC ,

eqn.(7.11), we get the C–limit CFIV index QC

Q(ae, āe, θe; ε̃2)C =
1

2
ε̃2

∂

∂ε̃2
logGC =

=− 1

4π ε̃2

∫
`e

ds

s

(ae
s

+ āe s
)

log
(
1−Xe(s)

)
−

− 1

4π ε̃2

∫
`−e

ds

s

(a−e
s

+ ā−e s
)

log
(
1−X−e(s)

) (7.13)

(here a−e = −ae, X−e(s) = Xe(s)
−1, and `−e = −`e). This expression should be

compared with the 4d BPS index ISQED forN = 2 SQED introduced in ref.[17] (which

can also be identified with the TBA free energy [17, 94]). Comparing eqn.(7.13)

with eqn.(11) of ref.[17], and taking into account the identifications iZγ = 2aγ and

R = 1/ε̃2, we see that the C–limit 2d index is related to the 4d one as

Q(ae, āe, θe; ε̃2)C = 2π I(ae, āe, θe; ε̃2)SQED. (7.14)

As we have already argued, even if this relation has been shown for SQED, we expect

it to hold for all 4d N = 2 theories.

7.2 Twistorial Liouville amplitudes

The analysis in section 6 of the twistorial brane amplitudes for the Gaussian model

applies, with minor modifications, to any theory whose tt∗ geometry is Abelian, in

particular to the examples in section 5 and those in appendix C which correspond to

ADE Toda amplitudes. Up to an elementary pre–factor, for all models in this class

the brane amplitude is obtained by the following ‘rule of thumb’: one starts from the

matrix period integral
∫
eW/ζ dX written as a product of Euler Gamma functions,

and replaces each product of Γ’s of the form32

N∏
j=0

Γ(α + βj) 
Γ2

(
α + (N + 1

2
)β, ᾱ + (N + 1

2
)β̄, y + (N + 1

2
)x | β, β̄, x

)
Γ2

(
α + 1

2
β, ᾱ + 1

2
β̄, y + 1

2
x | β, β̄, x

) , (7.15)

where Γ2 is the twistorial double Gamma function, 2πy the angle associated to the

coupling α = µ/ε̃2, and 2πx the angle associated to β = ε1/ε̃2. Finally, one has to

31 Written in the normalized ‘point’ holomorphic gauge [19].
32 Here and below we take ζ = i.
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identity the ’t Hooft coupling to be kept fixed while sending N →∞ with the correct

physical quantity, and then analytically continue to arbitrary values of this quantity.

In the particular case of the double Penner model of section 5.7, the large-N

limit of the brane amplitude gives the twistorial version of the Liouville three–point

holomorphic block; indeed, in the asymmetric limit the amplitude reduces to the

period integral which is identified [96] with the ordinary three–point conformal block

of the Liouville.

The correct identification of the physical parameters in may be read from ref.[96]

(N − 1)β = −1

2
(µ1 + µ2 + µ3) mod 1, (7.16)

b ≡
√
−β (7.17)

β = −bQ mod 1. (7.18)

We complete these expressions to twistorial triplets by setting also

(N − 1)β̄ = −1

2
(µ̄1 + µ̄2 + µ̄3) (7.19)

(N − 1)x = −1

2
(y1 + y2 + y3) (7.20)

β̄ = −b̄ Q̄ mod 1. (7.21)

Moreover, we set [96]

µi = −2b αi, µ̄i = −2b̄ ᾱi, i = 1, 2, 3 (7.22)

where the αi are the external Liouville momenta. We define

Γb,b̄,x(α, ᾱ, y) ≡ Γ2(b (α− b/2), b̄ (ᾱ− b̄/2), y + x/2 | − b2,−b̄2, x). (7.23)

With these conventions, the tt∗ brane amplitude in (5.117) may be rewritten as:

Γb,b̄,x
(
α1 + α2 + α3 −Q, ᾱ1 + ᾱ2 + ᾱ3 − Q̄, x− (y1 + y2 + y3)/2

)
Γb,b̄,x(0, 0, 0)

×

×
Γb,b̄,x

(
α2 + α3 − α1, ᾱ2 + ᾱ3 − ᾱ1, (y1 − y2 − y3)/2

)
Γb,b̄,x(Q− 2α1, Q̄− 2ᾱ1, y1 − x)

×

×
Γb,b̄,x

(
α1 + α3 − α2, ᾱ1 + ᾱ3 − ᾱ2, (y2 − y1 − y3)/2

)
Γb,b̄,x(Q− 2α2, Q̄− 2ᾱ2, y2 − x)

×

×
Γb,b̄,x

(
Q+ α3 − α1 − α2, Q̄+ ᾱ3 − ᾱ1 − ᾱ2, (y1 + y2 − y3)/2− x

)
Γb,b̄,x(2α3, 2ᾱ3,−y3)

.

(7.24)

This twistorial amplitude is obtained from the ordinary Liouville 3–point chiral block

Fα1,α2,α3 [96] by replacing each double Gamma factor with the corresponding twisto-

rial double Gamma function according to the dictionary

Γb(ai αi + cQ) Γb,b̄,x(ai αi + cQ, ai ᾱi + c Q̄,−ai yi/2− c x), (7.25)
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where the coefficient ai = 0,±1,±2 and c = 0,±1 are the same as in ref.[96]. In this

expression the twistorial parameter ζ was absorbed in the couplings. By construction,

the above expression reduces to the usual Liouville 3–point chiral block Fα1,α2,α3 in

the asymmetric limit. To restore the ζ dependence one replaces each factor of (7.24)

with the rule

Γb,b̄,x(ξ, ξ̄, y) (elementary factor) Γ√
i/ζ b,

√
−iζ b̄,x(iξ/ζ,−iζξ̄, y). (7.26)

The extension of this result to certain 3–point blocks for ADE Toda theories is

described in appendix C.

7.2.1 The tt∗ metric: the twistorial Υ–function

While the brane amplitude of the double Penner model is the twistorial extension

of the three–point chiral block, its tt∗ metric, which has the form Ψ Ψ† (for an

appropriate notion of Hermitian conjugation) should be thought of as the twistorial

extension of the full three–point amplitude.

To write the tt∗ in a nice form, one needs the twistorial extension of the standard

Υ–function

Υb(x) =
1

Γb(x) Γb(Q− x)
(7.27)

where Γb(x) = Γ2(b x | b, b−1) and Q = b+ b−1, (7.28)

which is obviously symmetric under the reflection x↔ Q− x

Υb(Q− x) = Υb(x). (7.29)

In the non–twistorial set up, the arguments of the various Υb–functions entering in

the Liouville amplitude are shifted by integral multiples of Q/2 which may be seen

as a shift by kb/2 followed by a shift by kb−1/2 (the second one being a half–integral

shift for the argument of the double Gamma function).

The twistorial Υ–function is defined as

Υb,b̄,θ(α, ᾱ, φ) = exp

(
1

π
Im

∫ ∞
0

ds

s
log Ψ

(
Z(s); q(s)

))
(7.30)

where

q(s) = exp
[
− 2πb2/s+ iθ − 2πb̄2 s

]
(7.31)

Z(s) = exp

[
−2π

s
b

(
α− b

2

)
+ iφ− 2πs b̄

(
ᾱ− b̄

2

)]
. (7.32)

The shift by kQ/2 of the argument of the classical Υ–function is enhanced to the

multiple argument shift

(α, ᾱ, φ) 7−→ (α + kb/2, ᾱ + kb̄/2, φ+ kπ) k ∈ Z. (7.33)
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Note that in the asymmetric limit the chiral block (7.24) becomes a function of

αasym ≡ α + φ/(2πb) only, so that the twistorial shift (7.33) reproduces the usual

shift αasym → αasym + kQ/2 in this limit. The twistor version of reflection symmetry

(7.29) is33

Υb,b̄,θ(b− α, b̄− ᾱ, 2π − φ)←→ Υb,b̄,θ(α, ᾱ, φ), (7.34)

which is again the (twistor version of) sign flip followed by a shift by Q.

From section 5.7, the tt∗ metric of the double Penner model may be written as

(we neglect an elementary factor which may be absorbed in the normalization, and

omit writing the barred variables)

G =
Υb,b̄,θ(0, 0)

Υb,b̄,θ(
∑

j αj − b,
∑

j φj − 2π)

3∏
i=1

Υb,b̄,θ(2αi, 2φi)

Υb,b̄,θ(
∑

j αj − 2αi,
∑

j φj − 2φi)
(7.35)

where the various parameters are related to the LG model couplings as in eqns.(7.16)–

(7.22). This result has the same form as the DOZZ expression [95] for the Liouville

3–point function with the ordinary Υb–functions replaced by their twistorial coun-

terparts using the dictionary (here ni, k are arbitrary integral coefficients)

Υb

(
niαi + kQ/2

)
→ Υb,b̄,θ

(
niαi + kb/2, niᾱi + kb̄/2, niφi + kπ

)
. (7.36)

As in the case of the twistorial Γ–function, §.5.4.6, the above ‘twistorial extension

map’ preserves the functional identities.

The twistorial Υ–function may be written as a product of two twistorial double

Gamma functions, generalizing eqn.(7.27) to the twistorial set up. Of course, the

metric of all Abelian tt∗ geometries may be written in terms of twistorial Υ–functions.

Again the extension to Toda 3–point function is straightforward in view of ap-

pendix C.

8 The C-limit

In this section we consider the C-limit which we first defined in §3.7.4 above, by

first taking the θ-limit ε1 → 0 and then taking the further limit θ → 0. We provide

evidence that in this limit the partition function becomes computable in terms of

a pure classical geometric object developed in [10], which in turn was based on the

hyperKähler geometry studied in [9]. We also give evidence that, if we take the

asymmetric limit of the C-limit, then we recover the NS limit of the topological

string partition function, as claimed in §3.7.6 above.

33 The two sides of (7.34) differ by a factor which cancels in the ratios of twistorial Υ–functions

which express the metric of any Abelian tt∗ geometry.
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8.1 The C–limit amplitude in SQED

Consider again the SQED brane amplitude in the θ–limit, which is given by

logψθ =
WNS(a, θε̃2ζ)

ζε̃2
+
ζW

NS
(a, θε̃2/ζ)

ε̃2
+

1

2πi

∫
`e

dζ ′

ζ ′
ζ ′ + ζ

ζ − ζ ′
log Ψ

(
Xe(ζ

′); q
)
+· · ·

(8.1)

and define the C–limit amplitude as

logψC = lim
θ→0

(
θ

2π
logψθ

)
=

=
R2F(ae)

ζ2
+R2F(ae) ζ

2 +
1

8π2

∫
`e

dζ ′

ζ ′
ζ ′ + ζ

ζ − ζ ′
Li2
(
Xe(ζ

′)
)

+ · · ·
(8.2)

Here F(ae) is the prepotential of the N = 2 theory in the electric basis.

On the hyperKähler manifold M describing SQED compactified on a circle, let

us consider the one–form

η(ζ) :=
1

4π2
logXm(ζ)

dXe(ζ)

Xe(ζ)
− d logψC(ζ), (8.3)

which is a primitive for the canonical hyperKähler symplectic form

Ω(ζ) ≡ 1

4π2

dXm(ζ)

Xm(ζ)
∧ dXe(ζ)

Xe(ζ)
= dη(ζ). (8.4)

Since Ω(ζ) is invariant under all symplectomorphisms, under a KS symplectomor-

phism associated to a BPS state η(ζ) may change only by a closed form. In fact, we

claim that η(ζ) is smooth across the BPS rays. Indeed at the BPS ray `e

logXm(ζ) −→ logXm(ζ)− log
(
1−Xe(ζ)

)
(8.5)

d logψC(ζ) −→ d logψC(ζ)− 1

4π2
log
(
1−Xe(ζ)

) dXe(ζ)

Xe(ζ)
. (8.6)

The property that η(ζ) is globally holomorphic as a function of ζ determines logψC(ζ)

up to a globally defined function on C× which is easily fixed using the behavior at

the North and South poles. Therefore, this property, together with the prescribed

behavior for ζ → 0,∞, may be taken to be the definition of the brane amplitude

in the C-limit. Then, if we are interested only in the C–limit, we may dispense

ourselves of all the intricacies of the twistorial tt∗ geometry and focus on the simpler

hyperholomorphic geometry ofM. This reinterpretation of the C-limit brane ampli-

tude in terms of hyperKähler geometry allows us go beyond the simple N = 2 model

which have an Abelian tt∗ geometry, and study the amplitudes of more interesting

4d theories directly in the C-limit.
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The study of the C-limit of brane amplitudes for general 4dN = 2 from the view-

point of hyperKähler geometry is the main goal of the rest of this section. We close

this introductory section with an elementary comment. The amplitude logψC(ζ)

is fixed by the requirement that its discontinuities across the BPS rays are the

Hamilton–Jacobi generating function for the corresponding Kontsevich–Soibelman

symplectomorphism. As it is well–known, the Hamilton–Jacobi function depends on

the choice of the contact form. In SQED there are only electrically charged BPS

particles, and it is natural to choose a one–form η(ζ) proportional to dXe(ζ) (up

to exact terms). In the general case, it is more natural to make a choice which is

symmetric between electric and magnetic

$(ζ)sym =
1

8π2

(
logXm(ζ)

dXe(ζ)

Xe(ζ)
− logXe(ζ)

dXm(ζ)

Xm(ζ)

)
− d logψC(ζ)sym (8.7)

which is also a primitive of the hyperKähler symplectic form Ω(ζ) = d$(ζ)sym.

Clearly, the symmetric amplitude ψC(ζ)sym is related to the original one by a trivial

transformation

logψC(ζ)sym = logψC(ζ)− 1

8π2
logXe(ζ) logXm(ζ). (8.8)

Across the BPS line `e then

d logψC(ζ)sym −→

→ d logψC(ζ)sym − 1

4π2
log
(
1−Xe(ζ)

) dXe(ζ)

Xe(ζ)
+

1

8π2
d
(

logXe(ζ) log(1−Xe(ζ))
)

=

= d logψC(ζ)sym +
1

4π2
dL(Xe(ζ)),

(8.9)

where L(z) = Li2(z)+ 1
2

log z log(1−z) is the Roger dilogarithm. Hence the symmetric

version of the brane amplitude has the form as the rhs of eqn.(8.2) with the Euler

dilogarithms Li2(Xe) replaced by the Rogers ones L(Xe).

8.2 Review on the Xγ

Let us now briefly review the relevant facts about the hyperKähler geometry of M;

some of them have been used earlier in this paper, and in the previous section in

the special case of SQED, but now we want to formulate things in a way that goes

beyond the SQED example.

Being hyperKähler, M carries in particular a family of holomorphic symplectic

structures $ζ , labeled by the twistor parameter ζ ∈ C×. Around any generic point of

M, for any generic ζ ∈ C×,M also carries canonical local holomorphic coordinates.

These coordinates, denoted Xγ(ζ), are labeled by γ in the IR charge lattice Γ. Phys-

ically, these coordinates can be thought of as the vevs of IR line defects wrapped on
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S1. Their analytic properties as functions of ζ are somewhat subtle. Asymptotically

as ζ → 0 or ζ →∞ they behave as

Xγ ∼ cγ exp
(
πRζ−1Zγ + iθγ + πRζZ̄γ

)
(8.10)

where cγ is real and independent of ζ. Despite the fact that these asymptotics are

continuous, the actual functions Xγ(ζ) are not: rather, they are piecewise continuous.

Their discontinuities occur at the “BPS rays,” defined as the loci where there exists

a BPS state of charge γ, and Zγ/ζ is a negative real number. When ζ crosses such

a locus in the clockwise direction, the functions Xγ jump by the transformation

X ′µ = Xµ(1−Xγ)
Ω(γ)〈µ,γ〉 (8.11)

where Ω(γ) is the BPS index counting states of charge γ (second helicity supertrace).

The asymptotics (8.10) and jumps (8.11) are actually sufficient to characterize Xγ,

and even give a useful scheme for computing Xγ in practice. Namely, Xγ(ζ) can be

written in the form

Xγ(ζ) = Xsf
γ (ζ)X inst

γ (ζ) (8.12)

where Xsf
γ is given by an explicit formula

Xsf
γ (ζ) = exp

[
πR

ζ
Zγ + iθγ + πRζZ̄γ

]
(8.13)

and the “instanton corrections” X inst
γ are determined by the TBA-like integral equa-

tion

X inst
γ (ζ) = exp

[
− 1

4πi

∑
γ′

Ω(γ′)〈γ, γ′〉
∫
`γ′

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log(1−Xγ′(ζ

′))

]
, (8.14)

where the Ω(γ′) are the BPS degeneracies.

The usefulness of the Xγ comes partly from the fact that they are Darboux

coordinates. Indeed, suppose we introduce the (multivalued) logarithms

xγ =
1

2πi
logXγ. (8.15)

Then the holomorphic symplectic form on M takes the simple shape

Ωζ = − 1

2R
〈dx, dx〉 (8.16)

or more concretely, choosing a basis {γi} for Γ and setting εij = 〈γi, γj〉, xi = xγi ,

Ωζ = − 1

2R

∑
i,j

εijdxi ∧ dxj. (8.17)
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8.3 Prequantization and Ψ

Now let us restrict attention to theories which in the IR do not have any continuous

flavor symmetries (so e.g. pure N = 2 super Yang-Mills would qualify, but not

N = 2 super Yang-Mills coupled to matter.) The inclusion of flavor symmetries

would require a more elaborate formalism.

Under this restriction, the hyperKähler moduli space M of the theory carries a

distinguished line bundle V , which is closely related to our interpretation of Ψ. We

will not review the full explicit construction of V here; for that see [10]. For our

purposes in this section, we want to emphasize a feature which was not discussed

explicitly there, namely, V is a kind of “prequantum line bundle” for the holomorphic

symplectic structures Ωζ . Indeed, V carries a family of holomorphic connections

∇(ζ), such that the curvature of ∇(ζ) is

F∇(ζ) = −2πiRΩζ = πi〈dx, dx〉. (8.18)

Moreover, like the holomorphic symplectic structures, the connections ∇(ζ) can also

be put into a simple canonical form: indeed there exist canonical local sections Ψ of

V such that ∇(ζ) is represented by the 1-form

A(ζ) = πi〈x, dx〉 = πi
∑
i,j

εijxidxj. (8.19)

Said otherwise, we have

∇(ζ)Ψ = πi〈x, dx〉Ψ. (8.20)

Equivalently, ∇(ζ) is represented as

∇(ζ) = d + η(ζ), (8.21)

where

η(ζ) = πi〈x(ζ), dx(ζ)〉 − d log Ψ(ζ). (8.22)

Let us now describe Ψ more concretely. For this we must first explain how

V is defined. A function on M can be represented as f(ui, θj) where ui are local

coordinates on the Coulomb branch, θj are linear coordinates on the torus fibers of

M (with respect to some fixed basis γj of Γ), and f is periodic under shifts of the

θj by multiples of 2π. Similarly, a section of V over M may be represented as a

function s(ui, θj) which obeys34

s(ui, θj + 2π) = eiεijθi/2s(ui, θj). (8.23)

In other words, we consider s to be an honest periodic section of V if it is represented

by a function with this twisted periodicity. (In particular, it follows that V is a

34 We are suppressing a “twisting” discussed in [10], which introduces some extra minus signs

into the story, but will play no important role here.

– 72 –



topologically nontrivial bundle: it admits no global nonvanishing section, even on a

single torus fiber of M.)

Now Ψ is given by a formula

Ψ = ΨsfΨinst,1Ψinst,2 (8.24)

where

Ψsf = exp

[
iπR2

4

(
ζ−2U + ζ2Ū

)
− R

4

(
ζ−1C + ζC̄

)]
, (8.25)

with

U =

∫
〈Z, dZ〉, (8.26)

C = 〈Z, θ〉, (8.27)

and

Ψinst,1 = exp

[
−
∑
γ

Ω(γ)

16π2

∫
`γ

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
[2Li2(Xγ(ζ

′)) + logXγ(ζ
′) log(1−Xγ(ζ

′))]

]
,

(8.28)

Ψinst,2 = exp

[
−
∑
γ

Ω(γ)

16π2

∫
`γ

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
[
(logXsf

γ (ζ ′)− logXsf
γ (ζ)) log(1−Xγ(ζ

′))
]]
.

(8.29)

As written, Ψ is only a local section of V , because it does not obey the periodicity

(8.23). Nevertheless we can use it to define a local gauge for V , and relative to this

local gauge, ∇(ζ) is given by (8.19).

In this construction it is important that, as ζ crosses a BPS ray, Ψ(ζ) transforms

by

Ψ′ = Ψ exp

(
1

2πi
(Li2(Xγ) +

1

2
log(Xγ) log(1−Xγ))

)
(8.30)

Indeed, this transformation law, combined with (8.11) above, guarantees that the

connection form η(ζ) is continuous — the jumps of X and Ψ cancel one another.

A second important property of the construction is that the connections ∇(ζ)

are well behaved in the limit ζ → 0,∞; this gives a further constraint on the form

of Ψ(ζ). What “well behaved” means precisely is that the (0, 1)ζ part of ∇(ζ) has

a finite limit as ζ → 0 or ζ → ∞. This property was used in [10] to build a

hyperholomorphic structure on V , i.e. a single unitary connection D in V such that

the curvature FD is of type (1, 1)ζ for all ζ ∈ CP1. Indeed, for every ζ, the (0, 1)ζ
part of the connection ∇(ζ) agrees with the (0, 1)ζ part of D; this is one way of

characterizing D.

Much as with our previous discussion of Xγ, these two properties of Ψ — its

asymptotics and its jumps at the BPS rays — are sufficient to determine Ψ com-

pletely. They were what motivated the complicated explicit formula (8.24) above.
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8.4 Comparing Ψ with ψC

Now, in the special case of SQED, we would like to connect Ψ with the object ψC

which we obtained as the C-limit of the twistorial topological string. Roughly the

relation is that Ψ is the “symmetric” version (ΨC)sym which we introduced at the

end of §8.1.

Now let us say this more precisely. Given an electric-magnetic splitting, we can

define an unsymmetrized object by

Ψ̃ = Ψ exp

(
− iπR2

2

(
ζ−2U + ζ2Ū

)
− πi〈xe, xm〉

)
(8.31)

If there are no magnetically charged states, then a short computation shows that Ψ̃

can be given more directly as

Ψ̃ = Ψ̃sfΨ̃inst,1Ψ̃inst,2 (8.32)

where

Ψ̃sf = exp

[
iπR2

2

(
ζ−2F + ζ2F̄

)
− R

4

(
ζ−1W̃ + ζ ¯̃W

)]
, (8.33)

with

W̃ = 2〈Ze, θm〉, (8.34)

and

Ψ̃inst,1 = exp

[
−
∑
γ

Ω(γ)

4π2

∫
`γ

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
Li2(Xγ(ζ

′))

]
, (8.35)

Ψ̃inst,2 = exp

[
−
∑
γ

Ω(γ)

8π2

∫
`γ

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
[
(logXsf

γ (ζ ′)− logXsf
γ (ζ)) log(1−Xγ(ζ

′))
]]
.

(8.36)

In particular, the Rogers dilogarithm which appeared in Ψinst,1 has been replaced by

the ordinary Li2 in Ψ̃inst,1.

Now, in the special case of SQED, we would like to compare this unsymmetrized

Ψ̃ with the C-limit amplitude ψC given in (8.2). Naively the two cannot match since

Ψ̃ is a function depending on (a, ā, θe, θm) while ψC does not involve θm. Nevertheless

the two are very similar. Indeed, the part of Ψ̃sf involving F and F̄ , and the instanton

terms Ψ̃inst,1, match with corresponding terms in ψC . The remaining terms in Ψ̃ can

be rewritten in the form

exp

[
−R

2

(
ζ−1〈Ze, θ̂m+ 〉+ ζ〈Z̄e, θ̂m− 〉

)]
, (8.37)
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where θ̂m± is the quantum-corrected version of θm (called Υ0/∞ in [9]),

θ̂m± = θm ±
∑
γ

Ω(γ)

8π2

∫
`γ

dζ ′

ζ ′
log(1−Xγ(ζ

′)). (8.38)

Thus, if we formally set these to zero, θ̂m± = 0, then we get agreement

Ψ̃ = ψC . (8.39)

Since the C-limit of the twistorial topological string arises from the θ-limit and

the associate quantum Riemann-Hilbert problem fixing it is symmetric between elec-

tric and magentic degrees of freedom, makes us believe that it should possible also to

recover the magnetic angles in the classical limit making the above equality more gen-

eral. Moreover we expect this to extend to arbitrary theories, and not just SQED.

Again this is natural because the classical limit of the quantum Riemann Hilbert

problem and what chracterizes the topological string wave function seem to formally

reduce to the above partition function in the C-limit.

8.5 Ψ as a generating function

In [10] the object Ψ played a sort of auxiliary role; it was key for the construction

of D, but it was not given a direct physical interpretation. Now we want to explain

one place where Ψ appears more directly.

We consider the asymmetric limit

R→ 0, ζ → 0, ε = ζ/R fixed. (8.40)

and specialize to the subset L ⊂M given by

θγ = 0. (8.41)

Before taking the limit (8.40), the locus (8.41) is not geometrically distinguished

as a subset of the complex manifold M(R, ζ): in particular it is not a complex

submanifold. However, after taking this limit, it was proposed in [89] that L becomes

a complex Lagrangian submanifold of the limiting manifold M(ε). In this section

we will explain that, in the limit (8.40), log Ψ has an interpretation as generating

function for this Lagrangian submanifold, in the coordinates xγ. (To be precise, we

will show this only in some special theories such as Argyres-Douglas theories and

U(1) SQED, where we have sufficiently good understanding of how the Xγ behave

in the asymmetric limit; but we believe it should hold more generally.)

Let us say more precisely what we mean by “generating function.” We must

first choose an electric-magnetic splitting. Using this splitting we can define the

unsymmetrized Ψ̃ which appeared in the last section. Our generating function will

be a slightly modified version of log Ψ̃. Indeed, in the asymmetric limit log Ψ̃ diverges;
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fortunately this divergence can be removed by subtracting a function of R alone; call

the result log Ψ̃reg. We will define

W = − 1

2πi

(
log Ψ̃reg +G

)
(8.42)

where G is an ε-independent function of the Coulomb branch parameters, reflecting

a kind of “1-loop holomorphic anomaly” for log Ψ̃reg. Then what we will show is that

W is a generating function for L, i.e. along L we may write the xmi as holomorphic

functions of the xei , and those functions are given by

xmi =
∂W
∂xei

. (8.43)

The formula (8.43) gives evidence that W can be identified with the Nekrasov-

Shatashvili limit WNS of the instanton partition function of the N = 2 theory.

Indeed, it was proposed in [89] that, in theories of class S, in the R → 0 limit

L can be identified with the locus of opers in M(ε). On the other hand, it was

proposed in [97] (and verified in some examples) that, in theories of class S[A1], the

generating function of the locus of opers should be WNS.35 Thus, in theories of class

S[A1], we conclude thatW = WNS up to a constant shift, since they are both giving

generating functions for the same locus L inM(ε). This is in accord with our general

expectations about twistorial topological strings as we explained in §3.7.6 above.

It is natural to conjecture that the same identification holds for a general theory,

not only for class S[A1]. It would be very interesting to verify this identification

more directly.

8.6 Deriving the generating function

In this section, we explain how the key relation (8.43) is obtained. The main player

will be the connection 1-form η(ζ) we reviewed above,

η(ζ) = πi〈x(ζ), dx(ζ)〉 − d log Ψ(ζ). (8.44)

We begin by noting that η(ζ) depends holomorphically on ζ ∈ C×. As ζ → 0 or

ζ →∞ we can study it explicitly, just because we know the asymptotic behavior of

xγ and Ψ. Indeed, we have already written the asymptotics of xγ above in (8.10),

35The coordinate system used in [97] was not identified there with the coordinate system (xei , xmi
)

which we are using here. Rather, it was described in geometric language, in which it appeared as

a complexification of a Fenchel-Nielsen-type coordinate system on a moduli space of flat SL(2)-

connections. However, recently in [98] it has been shown that such complexified Fenchel-Nielsen-

type coordinates do arise as (xei , xmi
) in theories of class S[A1]! (More precisely, if we evaluate

(xei , xmi) on the distinguished “real” locus of the Coulomb branch, where the periods ai/ζ are real

and negative, then on this locus they agree with complexified Fenchel-Nielsen-type coordinates.)
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and as for Ψ, expanding Ψinst,1 and Ψinst,2 around ζ = 0 reveals that they do not

contribute at leading order: we just get the asymptotics of Ψsf , which gives

Ψ = exp

[
iπR2

4ζ2
U + · · ·

]
. (8.45)

Combining (8.10) and (8.45) we get directly

η = − iπR2

2
〈Z, dZ〉+ · · · (8.46)

and similarly expanding around ζ =∞ we can complete this expansion to

η = − iπR2

2ζ2
〈Z, dZ〉+ · · · − iπR2ζ2

2
〈Z̄, dZ̄〉, (8.47)

where · · · represents terms of order 1/ζ, 1, and ζ. These terms can be written out

as well, but they are considerably more complicated, involving the BPS degeneracies

Ω(γ) and integrals over the BPS rays `γ.

When we restrict to L, η(ζ) simplifies: we obtain an extra symmetry ζ → −ζ
which implies the terms of order 1/ζ and ζ drop out, so that we have

η = − iπR2

2ζ2
〈Z, dZ〉+ η0 −

iπR2ζ2

2
〈Z̄, dZ̄〉, (8.48)

for some 1-form η0. In the limit (8.40), the expansion further simplifies, to

η(ζ) = − iπ

2ε2
〈Z, dZ〉+ lim

R→0
η0 (8.49)

so long as limR→0 η0 exists. We expect that this limit does indeed exist and moreover

it is a closed form, so that locally we can write

lim
R→0

η0 = dG (8.50)

for some function G; in what follows we assume this is true. In Appendix A below

we show that (8.50) does hold at least for Argyres-Douglas theories and for U(1)

SQED, and incidentally that for U(1) SQED we have the explicit formula

G = − 1

48
log(a/ā). (8.51)

Now combining (8.44) and (8.49) we have

d log Ψ(ζ) = πi〈x(ζ), dx(ζ)〉+
πi

2ε2
〈Z, dZ〉 − dG. (8.52)

Using the definition of U and rearranging, this becomes

d

(
log Ψ(ζ)− πi

2ε2
U +G

)
= πi〈x(ζ), dx(ζ)〉 (8.53)
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This is essentially the result we want. To put it in precisely the shape (8.43) we

need to make a further slight adjustment. The right side of (8.53) can be written

explicitly in coordinates as

πi(xeidxmi − xmidxei) (8.54)

Thus adding −πid(xeixmi) to both sides we obtain

d

(
log Ψ(ζ)− πixeixmi −

πi

2ε2
U +G

)
= −2πixmidxei (8.55)

The right side is just −2πiW according to (8.42), so finally

dW = xmidxei (8.56)

matching the desired (8.43).

9 Concluding Remarks

Studying the vacuum geometry for 4d N = 2 theories on 1
2
Ω background seems to

have unified a number of topics: Topological strings, hyperKähler geometries associ-

ated to them and their quantization, wall-crossing phenomenon and BPS states, etc.

It is clear that this is just the beginning of the exploration of this vast topic, as the

twistorial topological string seems to be a rather rich object. Related to this rich-

ness, is the complication for explicit computations. In this paper we have managed to

solve exactly some theories which admit only electric BPS states. Moreover we have

proposed methods to compute them in the θ-limit using a quantum Riemann-Hilbert

problem.

There are many directions which are naturally suggested by this work. First of

all, there are a few conjectures in this paper that would be nice to prove. These

include a proof from first principles that the θ-limit is indeed a solution to the

quantum Riemann-Hilbert problem. The proof that AMNP index is the same as the

CFIV index. Also a better understanding of how both electric and magnetic angles

arise in the C-limit would be highly desirable. It would also be nice to find which

2d system does the twistorial version of AGT (for which we only have computed the

three point Liouville amplitude) relate to.

On another front, this work suggests that one should perhaps study more general

pair of D-brane geometries for N = 2 theories on T 2 × I, generalizing the twistorial

topological string where the two D-branes were more or less fixed. This is very

natural from the point of view of a 4d tt∗. Also it would be interesting to explore

what would happen if the length of the interval I is kept finite instead of it being

infinite.

Clearly a lot more work remains to be done. We hope to have conveyed the

intrinsic elegance of twistorial topological strings in its ability to unify a number of

different areas.
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A On the R→ 0 limit of the connection

Here we tie up a loose end from Section 8.6: why does limR→0 η0 exist, and why is it

a closed form?

First, η0 can be written explicitly, by beginning from the definition (8.44) of

η and expanding the quantities x(ζ), Ψ(ζ) that appear there around ζ = 0, then

computing the term of order ζ0. This leads to the result

η0 = − iπR2

4

(
〈Z, dZ̄〉+ 〈Z̄, dZ〉

)
− R

8π

[∑
γ

Ω(γ)

∫
`γ

dζ

ζ

(
Zγ
ζ
− Z̄γζ

)
d log(1−Xγ(ζ))

]
.

(A.1)

The first part evidently vanishes as R → 0, but to understand how the second part

behaves, we need to know something about the behavior of the functions Xγ(ζ) in

that limit.

As we have already remarked, these functions are determined by the TBA-like

integral equations (8.14). The limit R→ 0 is the high temperature limit in the TBA

language. We have not studied the R → 0 behavior of the Xγ in a general N = 2

theory; here we will restrict attention to a particular class of simple examples, studied

in [99, 100], which correspond to taking our N = 2 theory to be an Argyres-Douglas

theory. In these theories, as we take R → 0, the functions Xγ restricted to the rays

`γ develop a simple and well-known characteristic profile. We illustrate that profile

in Figure 3.

The plateau visible in the middle of the figure reflects the fact that the Xγ be-

come approximately constant, independent of ζ and also independent of the Coulomb

branch moduli, over a region running from |ζ| ∼ R to |ζ| ∼ 1/R. To either side of

this plateau we see a characteristic “kink” shape: in the limit R → 0, the kink on

the left depends on ζ and R only through the combination ε = ζ/R, while the one

on the right depends only on ε′ = ζR. The left kink Xγ(ε) depends holomorphically

on the Coulomb branch moduli, while the right kink depends antiholomorphically on

them. Thus η0 in (A.1) splits into two parts: the (1, 0) part receives contributions

only from the left kink, while the conjugate (0, 1) part comes from the right kink.
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Figure 3: The instanton corrections X inst
γ1

evaluated along the ray `γ1 , at a point

in the weak coupling region of the Argyres-Douglas (A1, A2) theory, where we took

R = 10−4, Zγ1 = 1− i
3
, Zγ2 = 1+ i

2
, θγ1 = θγ2 = 0. The left figure gives Re logX inst

γ1
(t)

and the right is Im logX inst
γ1

(t), where t = log|ζ|. To obtain these figures we solved

the integral equation by iteration, beginning with X = Xsf , and taking 10 iterations;

previous iterations are shown as light curves on the graph. At t = 0, we get Xγ1 ≈
−0.61805, while the expected plateau value in this example is 1−

√
5

2
≈ −0.61803.

Thus we get

lim
R→0

η0 = − 1

8π
Re

[∑
γ

Ω(γ)

∫
`γ

dε

ε

Zγ
ε

d log(1−Xγ(ε))

]
. (A.2)

The convergence of this integral now follows from the behavior of Xγ(ε) at small and

large ε: at large ε, Xγ(ε) approaches a constant, so that d log(1 − Xγ(ε)) vanishes;

at small ε, we have Xγ(ε) ∼ exp(πZγ/ε), which is exponentially decaying as ε → 0

along `γ, hence so is log(1−Xγ(ε)).

Finally we would like to see that η0 is also closed in this limit. For this we return

to the definition (8.44). Using this definition we can write

η0 =

∮
|ζ|=1

dζ

ζ
(πi〈x(ζ), dx(ζ)〉 − d log Ψ(ζ)) (A.3)

and thus

dη0 = πi

∮
|ζ|=1

dζ

ζ
〈dx(ζ), dx(ζ)〉. (A.4)

We have already recalled that, as R→ 0, the functions Xγ(ζ) become approximately

constant along `γ in a neighborhood of |ζ| = 1. To show that dη0 vanishes as R→ 0

we need to know more: we need to know that this behavior extends away from the ray

`γ. Fortunately, it appears (again by numerical experimentation) that this is indeed

true: as R → 0, the Xγ(ζ) become piecewise constant on a full annulus around

|ζ| = 1 (only “piecewise” because Xγ(ζ) is discontinuous as a function of ζ when ζ

crosses some of the rays `γ′). In particular, since this constant is independent of the

Coulomb branch moduli, dx(ζ) approaches 0 in this limit. It follows that limR→0 η0
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is closed as desired. (This is essentially the statement that as R → 0 the locus L

becomes Lagrangian as a subspace ofM(ε), and our argument here is essentially the

same as one given in [89].)

We now consider one example where the whole story just described becomes

completely explicit: we take our N = 2 theory to be the U(1) gauge theory coupled

to 1 hypermultiplet with charge 1. In this theory the charge lattice is spanned by

generators γe, γm (“electric” and “magnetic” respectively), with 〈γe, γm〉 = 1. The

central charges, as functions of the Coulomb branch modulus a, are

Zγe = a, Zγm =
1

2πi
(a log(a/Λ)− a), (A.5)

and the BPS counts are

Ω(γ) =

{
1 if γ = ±γe,
0 otherwise.

(A.6)

Then (A.1) specializes to

η0 = − iπR2

4

(
〈Z, dZ̄〉+ 〈Z̄, dZ〉

)
+ ηinst

0 (A.7)

where

ηinst
0 = − R

8π

[∫
`γe

dζ

ζ

(
a

ζ
− āζ

)
d log(1 + eπRa/ζ+πRāζ) (A.8)

−
∫
`−γe

dζ

ζ

(
a

ζ
− āζ

)
d log(1 + e−πRa/ζ−πRāζ)

]
, (A.9)

and after taking ζ → −ζ in the second integral this becomes

ηinst
0 = − R

4π

∫
`γe

dζ

ζ

(
a

ζ
− āζ

)
d log(1 + eπRa/ζ+πRāζ) (A.10)

=
R2da

4

∫
`γe

dζ

ζ

(
a

ζ
− āζ

)
1

ζ

∑
n≥1

(−1)neπRn(a/ζ+āζ) − c.c. (A.11)

=
R2da

2

∑
n≥1

(−1)nā(K2(2πRn|a|)−K0(2πRn|a|))− c.c. (A.12)

=
Rāda

2π|a|
∑
n≥1

(−1)n

n
K1(2πRn|a|)− c.c. (A.13)

In the limit R→ 0, using K1(x) ∼ 1/x+O(1), this gives finally

lim
R→0

η0 =
da

4π2a

∑
n≥1

(−1)n

n2
− c.c. (A.14)

= − 1

48

(
da

a
− dā

ā

)
. (A.15)
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In particular, this limit exists and is a closed form, as we expected. The function G

appearing in (8.50) can thus be taken to be

G = − 1

48
log(a/ā). (A.16)

Note that G exists only locally, or said otherwise, it suffers from an ambiguity by

shifts in πi
12
Z.

B Solving the q–TBA equation for Argyres-Douglas models

At the face of it, eqn.(4.19) looks quite formidable. However in some very simple

cases we may guess its solution. The guessing is based on uniqueness: any operator–

valued piecewise holomorphic function with the right asymptotics and discontinuities

should be the solution to the integral equation. In this appendix we argue that, in

some special cases, to get the solution of the quantum TBA equations it suffices to

solve their classical counterpart [9].

For simplicity, we focus on an Argyres–Douglas model of type g ∈ ADE in the

minimal BPS chamber36 whose BPS spectrum consists of just r ≡ rank g hyper-

multiplets [47]. We write Γ =
⊕r

i=1 Zαi for the charge lattice (isomorphic to the

root lattice of g); its simple–root generators {αi}ri=1 are the charge vectors of the

minimal chamber BPS hypermultiplets, and their Dirac pairing Bij ≡ 〈αi, αj〉D is

the exchange matrix of the corresponding ADE Dynkin quiver Qg [47]. The datum

Qg defines a quantum torus algebra TΓ [12]

Xγ Xγ′ = q〈γ,γ
′〉D/2 Xγ+γ′ (B.1)

Xγ Xγ′ = q〈γ,γ
′〉D Xγ′ Xγ, (B.2)

γ, γ′ ∈ Γ, q = eiθ, θ ∈ R, (B.3)

whose generators X±αi may be represented as unitary Weyl operators

X±αi = e±iθ̂i , where
[
θ̂i, θ̂j

]
= −iθ Bij. (B.4)

Eqns.(B.1)(B.4) imply that Xγ is unitary for all γ ∈ Γ,

X†γ = X−1
γ

def
= X−γ, q† = q−1. (B.5)

36 The analysis may extended to more general situations. In particular, the condition of BPS

minimality may be relaxed; the actual spectral condition depends on the orientation of the Dynkin

quiver Qg. It suffices that all subquivers which are supports of stable BPS states are Ar quivers

with the linear orientation. For the region in parameter space covered by the linear An quiver [101],

all BPS chambers satisfy the condition. In particular for the A2 Argyres–Douglas model any BPS

chamber will do. Having solved the quantum TBA problem in one chamber, one may, in principle,

recover the solution in all chambers by the appropriate quantum KS jumps.
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To any function f on the classical torus (S1)r

f ≡
∑
ni∈Zr

f(ni) e
iniθi f(ni) ∈ C, (B.6)

there is an associated quantum torus element f̂ ∈ TΓ namely

f̂ =
∑
ni∈Zr

f(ni)Xniαi , (B.7)

obtained by replacing eiθi → eiθ̂i in its Fourier expansion and taking the operator

normal order (
Xγ1 Xγ2 · · ·Xγs

)
normal
product

≡ Xγ1+γ2+···+γs . (B.8)

Let

Xαi(aj, θj; ζ) =
∑
nj∈Zr

Xαi(aj, nj; ζ) einjθj , (B.9)

Xαi(aj, nj; ζ) ∼ eRai/ζ+Rāi ζ
∏
j

δnj ,δij as R→∞, (B.10)

be the Fourier expansion of the solutions to the classical TBA equations of ref.[9]

with {aj} in some domain of the Coulomb branch which belongs to the above minimal

BPS chamber.

We claim that in this minimal case the solution to the quantum TBA equation

(4.19) is just given by the associated quantum torus elements37

X̂αi(aj; ζ) =
∑
nj∈Zr

Xαi(aj, nj; ζ)Xnjαj . (B.11)

To justify the claim we have to show four facts:

i) X̂αi(aj; ζ) has the correct quantum KS jumps at all BPS rays `±αi ;

ii) the X̂αi(aj; ζ)’s satisfy the equal–ζ canonical commutation relations

X̂αi(a; ζ) X̂αj(a; ζ) = qBij X̂αj(a; ζ) X̂αi(a; ζ); (B.12)

iii) the X̂αi(aj; ζ) satisfy the correct (quantum) reality condition

X̂αi(aj;−1/ζ̄)† = X̂−αi(aj; ζ); (B.13)

iv) X̂αi(aj; ζ) has the correct asymptotics as R→∞.

37 For convenience, we flip the overall sign of the quantum operator X̂αi(ζ) with respect to the

conventions used in section 4.
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Fact iv) holds by construction: we chose the boundary condition of the quantum

TBA problem to reproduce the right behavior as R → ∞. For fact iii), notice that

the reality condition on the classical GMN line operators Xαi(aj, θj; ζ) [9] implies for

their Fourier coefficients

X−αi(aj, nj; ζ) = Xαi(aj,−nj;−1/ζ̄)∗, (B.14)

while from eqns.(B.5)(B.11)

X̂αi(aj;−1/ζ̄)† =
∑
nj∈Zr

Xαi(aj, nj;−1/ζ̄)∗ X−njαj =

=
∑
nj∈Zr

X−αi(aj,−nj; ζ)X−njαj ≡ X̂−αi(aj; ζ).
(B.15)

Note that the normal order prescription is essential for the quantum reality condition.

To argue fact ii), consider the space M of coordinates (aj, āj, θj) endowed with

the (degenerate) Poisson bracket{
θi, θj

}
PB

= −Bij, (B.16){
ai, · · ·

}
PB

=
{
āi, · · ·

}
PB

= 0. (B.17)

The classical GMN lines Xαi(a; ζ) satisfy{
logXαi(a; ζ), logXαj(a; ζ)

}
PB

= Bij. (B.18)

Indeed, this equality is consistent with both the R → ∞ asymptotics and the KS

jumps.

The θ–limit operator algebra C(aj, āj) ⊗ TΓ is just the algebra of functions on

M equipped with the Moyal product ∗ induced by the Poisson bracket (B.16)(B.17)

[102]. Indeed

f̂ · ĝ = ĥ ⇐⇒ h = f ∗ g. (B.19)

In this language, the normal product is just the ordinary product of functions(
f̂ ĝ
)

normal
product

= f̂ g . (B.20)

Then eqn.(B.18) yields [
log X̂αi(a; ζ), log X̂αj(a; ζ)

]
= Bij, (B.21)

which implies fact ii)

X̂αi(a; ζ) X̂αj(a; ζ) = qBij X̂αj(a; ζ) X̂αi(a; ζ), (B.22)

and, more generally, the equal–ζ product rule

X̂γ(a; ζ) X̂γ′(a; ζ) = q〈γ,γ
′〉/2 X̂γ+γ′(a; ζ). (B.23)
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It remains to show fact i), that is, to compare the KS jumps of the classical func-

tions Xαi(ζ) and of the quantum operators X̂αi(ζ). Here is where we use our special

assumptions that Qg is an ADE Dynkin quiver and the BPS spectrum is minimal.

These assumptions entail that the charges of the stable BPS states are ±αj, while

|Bij| ≤ 1 for all i, j. Under these conditions, the classical KS symplectomorphism

[44] at the BPS ray `±αj associated to a hypermultiplet of charge ±αj is

Xαi(a; ζ) −→
(
1 +X±αj(a; ζ)

)±Bij Xαi(a; ζ), (B.24)

while the quantum jump is

X̂αi(a; ζ) −→
(
1 + q±Bij/2 X̂±αj(a; ζ)

)±Bij X̂αi(a; ζ). (B.25)

To complete the argument, we have to show that for the operators X̂αi(a; ζ)

defined in eqn.(B.11), the validity of the classical formula (B.24) implies the validity

of the quantum one (B.25). Since ±Bij = 1, 0,−1, we have to consider two cases

±Bij = +1 and ±Bij = −1. In the +1 case, using eqn.(B.23) the quantum KS

formula (B.25) may be rewritten as

X̂αi(a; ζ) −→ X̂αi(a; ζ) + X̂±αj+αi(a; ζ) (B.26)

which is precisely the quantum torus operator corresponding to the rhs of eqn.(B.24)

under the classical/quantum torus correspondence f 7→ f̂ , eqns.(B.6)(B.7). In the

−1 case

X̂αi(a; ζ) −→
∞∑
k=0

(−1)kq−k X̂±αj(a; ζ)k X̂αi(a; ζ) ≡
∞∑
k=0

(−1)kX̂αi±kαj , (B.27)

which again is the image of the rhs of eqn.(B.24) under the correspondence f 7→ f̂ .

C β–deformed Quiver Matrix LG Models

(exact twistorial ADE Toda amplitudes)

We saw in section 5.5 that the tt∗ equations become linear whenever the vacuum

bundle H over the coupling constant space K has rank one. In this case the tt∗

solution is captured by a pluri–harmonic function logGtt∗ which may be singular

only at loci in K where a new massless sector blows up. This makes possible to

construct the tt∗ geometry explicitly by the techniques illustrated in §.5.5. In view

of this fact, one is lead to ask whether there are other Abelian four–supercharge

models, besides the ones discussed in §.5.5, which are physically natural, in the sense

that their large–N limit is dual to the topological string in some geometry. In this

appendix we consider a class of LG models which may be though of as describing

the twistorial extension of a β–deformed version of the quiver matrix models studied
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in ref.[23]. As discussed in ref.[29], the large N limit of such quiver matrix models

describe the holomorphic blocks of the Toda conformal field theory. Then the results

of the present appendix (besides shedding light on some important mathematical

conjectures [103]) may be seen as the exact twistorial extension of some special three–

point amplitudes of ADE Toda conformal field theories, generalizing the Liouville

case discussed in section 7. As already mentioned in §.5.5, the class S 4d theories

associated to these special models via the AGT correspondence have no non–trivial

magnetic charges.

C.1 The models

The relevant LG models are labelled by a Lie algebra g which, for simplicity, we

take to be simply–laced, g = ADE, of rank r. To the `–th node of the Dynkin

graph Γg of g we associate the following data: i) a positive integer N`, ii) a rational

differential W ′
`(z) dz, and iii) N` chiral superfields denoted as X`,i` , i` = 1, 2, . . . , N`.

We consider the superpotential

W(e`,k`) =
r∑
`=1

N∑̀
i`=1

W`(X`,i`) + β
r∑
`=1

∑
1≤i`<j`≤N`

log(X`,i` −X`,j`)
2−

− β
∑
〈` `′〉

N∑̀
i`=1

N`′∑
j`′=1

log(X`,i` −X`′,j`′
),

(C.1)

where
∑
〈` `′〉 means sum over unordered pairs of nodes `, `′ ∈ Γg which are connected

by a link in Γg. The quiver matrix models of [23, 29] correspond to the period integrals∫
eW
∣∣∣∣
β=1

dNX, (C.2)

where N =
∑

`N`. The rhs of (C.1) is invariant under the product of permutation

groups

SN1 ×SN2 × · · · ×SNr ≡ SN , (C.3)

and we identify the field configurations in the same orbit of SN . Then, as in section

5.5, the actual chiral superfields are the elementary symmetric functions {e`,k`},
` = 1, . . . , r, k` = 1, . . . , N`. In particular, for g = A1 we get back the models studied

in section 5.5.

We assume the rational differentials to be generic, that is, W ′
`(z) dz has only

simple poles in P1 (including the point at infinity). The higher pole models may be

obtained from the generic ones by confluence of ordinary singularities. Then

W ′
`(z) dz =

n∑̀
a=1

λ`,a
z − z`,a

dz. (C.4)
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The model further simplifies if we assume the position of the poles to be independent

of `, that is, n` = n and z`,a = za, the residues λ`,a still being general complex

numbers. Notice that in the most relevant case (for our present purposes), i.e. n = 2,

this assumption is not at all a limitation of generality, since by field redefinitions we

may alway make z`,1 = 0 and z`,2 = 1. Moreover, the above simplifying assumption

automatically holds for LG models describing n–point functions of Toda systems.

Granted this assumption, the residues λ`,a of the one–form W ′
`(z) dz are most

naturally seen as n complex weights Λa of the Lie algebra g under the identification

α`(Λa) =
λ`,a
β
, a = 1, 2, . . . , n; ` = 1, 2, . . . , r, (C.5)

where α` is the simple root associated to the `–th node of Γg. To each weight Λa

there is associated an irreducible highest weight representation LΛa of g. Then we

think of the rational differential (C.4) as being specified by the collection of highest

weight representations {LΛ1 , LΛ2 , · · · , LΛn} of g, LΛa being attached to the puncture

za ∈ C for a = 1, 2, . . . , n.

As always, the chiral ring R is defined by a set of relations which coincide with

the classical vacuum equations

dW = 0. (C.6)

Our first task is to solve these equations for W as in (C.1). The second task is to

classify the models in which the solution is unique up to the action of the group

(C.3), which are the ‘Abelian’ models we look for. Then their exact tt∗ geometry is

given by the formulae of section 5.5.

C.2 The Gaudin model, the Mukhin–Varchenko conjectures, and tt∗

To solve the vacuum equations (C.6) one notices that, with the restriction discussed

after eqn.(C.4), they have an alternative interpretation as the Bethe ansatz equations

for an integrable model, the Gaudin model with Lie algebra g [103–109] arising from

the hypergeometric solutions of the Knizhnik–Zamolodchikov equations [110, 111].

The hypergeometric solutions corresponding to the quiver LG model specified by

the dimension vector N = (N1, N2, . . . , Nr) and the highest weight representations

{LΛa}na=1 live in the subspace

Sing
(⊗n

a=1
LΛa ;N

)
⊂ LΛ1 ⊗ LΛ2 ⊗ · · · ⊗ LΛn , (C.7)

of singular vectors (vectors annihilated by the Chevalley generators e`) of weight

n∑
a=1

Λa −
r∑
`=1

N` α`. (C.8)

For g = Ar it is known [112] that the vacuum/Bethe ansatz equations (C.6) may

be recast in the form of a linear ODE of order (r+1) generalizing the Heine–Stieltjes
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second order equation for the A1 case (cfr. §§. 5.2, 5.3). In particular, the model

(C.1) with g = Ar and differentials (C.4) has Witten index38 m not greater than

[112, 113]

dim Sing
(⊗n

a=1
LΛa ;N

)
gen.
= dimU(n−)⊗(n−1)[N ], (C.9)

where n− is the nilpotent Lie subalgebra of slr+1 of lower triangular matrices, U(n−)

its universal enveloping algebra, U(n−)⊗(n−1) its (n− 1)–fold tensor power, which is

endowed with a natural Zr–grading given by the slr+1 weight, (· · · )[N ] stands for

the degree N subspace, and
gen.
= means that the equality holds for generic weights

Λa.

For general g, it is easy to see that n > 2 implies m > 1. Hence for our purposes

(that is, to find interesting m = 1 models) we may limit ourselves to n = 2. In [103]

Mukhin and Varchenko state three deep and surprising conjectures for this case that

we quote verbatim:

Conjecture 2. If the space Sing(LΛ1 ⊗ LΛ2 ;N ) is one–dimensional, then the cor-

responding superpotential W has exactly one critical point modulo SN1 × · · · ×SNr .

Conjecture 1. If the space Sing(LΛ1⊗LΛ2 ;N ) is one–dimensional, then there exist

a N–chain ∆ such that the period integral
∫

∆
eW dNX can be computed explicitly and

it is equal to an alternating product of Euler Γ–functions up to a rational number

independent of Λ1,2 and β.

In particular if dim Sing(LΛ1 ⊗LΛ2 ;N ) = 1 the Bethe equations for the Gaudin

model have a unique solution with Bethe vector X.

Conjecture 3. If dim Sing(LΛ1⊗LΛ2 ;N ) = 1, the length of the unique Bethe vector

X is given by the Hessian of the superpotential at its (unique) critical point.

The conjectures reduce for g = A1 to the standard Selberg integral. They are

proven for g = Ar [84, 116, 117] and in some special cases for other Lie algebras [84].

In their paper [103] Mukhin and Varchenko do not give any motivation for their

conjectures, except for presenting a few explicit examples of their validity. From the

tt∗ viewpoint, however, the reason why they should be true is pretty clear: if

dim Sing(LΛ1 ⊗ LΛ2 ;N )

is (typically) equal to the Witten index of the associated quiver (2, 2) LG model, when

it is equal 1 the corresponding tt∗ geometry is Abelian, hence encoded in a pluri–

harmonic function H = logGtt∗ of the periods λ`,a, λ0 ≡ β and their corresponding

vacuum angles φ`,a, and φ0 ≡ θ(
∂2

∂λI∂λJ
+ 4π2 ∂2

∂φI∂φJ

)
H = 0,

I, J = 0 or (`, a)

` = 1, 2, ..., r, a = 1, 2, ..., n.
(C.10)

38 Vacuum configurations in the same SN1
× · · · ×SNr

orbit are identified.
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As λI →∞ the function H goes to zero in almost all directions. H is singular only

at loci in the coupling space where a 2d BPS soliton becomes massless. Then the

function H is obtained by the techniques of §.5.5

H(λI , φI) =
∑
s

qs h
(
`s,I λI , `s,I λ̄I , `s,I φI

)
, (C.11)

where h(µ, µ̄, θ) is the logarithm of the Abelian tt∗ metric for the basic charge dis-

tribution δZ(x)− 1, that is,

h(µ, µ̄, 2πx) =
1

π
Im

∫ ∞
0

ds

s
log
(
1− e−2π(µ/s−ix+µ̄ s)

)
, Reµ > 0, (C.12)

and `s,I , qs are integers corresponding to the charges and multiplicities of the 2d BPS

particles; the corresponding magnetic function (cfr. §.5.5) is

F (zI) =
∑
s

qs log
(
1− e−2π`s,I zI

)
. (C.13)

The integers `s,I , qs may be computed from W by any one of the four methods

described in §.5.5. By the ‘thumb rule’ of section 5.5, the corresponding twistorial

brane amplitude reads

Ψ(λI , θI , ζ) =
∏
s

Γ
(
i `s,I λI/ζ,−i`s,I λ̄I ζ, `s,I φI , ζ

)qs
, (C.14)

where Γ(µ, µ̄, θ) is the twistorial Gamma function. Taking the asymmetric limit,

the lhs reduces to the period integral
∫

∆
eW dNX (up trivial factors) while the rhs

becomes a product of Γ–functions (again up to trivial factors). This is the statement

of Conjecture 1 which is essentially proven by Abelian tt∗ geometry.

In fact, mathematicians look for a refinement of Conjecture 1 in which both

the chain of integration ∆ and the specific form of the product of Γ–functions (that

is, the integers qs, `s,I) are given. In particular, the chain ∆ is typically rather

involved, see refs.[84, 116, 117], and one is interested in its a priori characterization.

tt∗ geometry yields the required refinement:

Conjecture 1*. If dim Sing(LΛ1 ⊗ LΛ2 ;N ) = 1 one has

κ

∫
∆

eW(λI) dNX =
∏
s

Γ
(
`s,I
(
λI + JI

))qs
(C.15)

where

• the chain ∆ is the support of the unique D–brane (or, in the other Stokes sector

[2], of the unique Neumann brane);

• the integers qs and `s,I may be computed by any one of the four methods de-

scribed in §.5.5.1;
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• the integral shifts JI ’s may be fixed by studying the discontinuities of the brane

amplitude as a function of the vacuum angles θI ;

• the rational number κ is a mere statistical factor.

Conjecture 2 may also be understood physically in terms of the class S[g] 4d

N = 2 which is associated to the given model by the AGT correspondence [14, 15].

As in the g = A1 case discussed in section 5.5, the condition m = 1 is expected to

be equivalent to the statement that the corresponding 4d class S[g] theory is free

(which, in particular, means that there are no non–trivial magnetic charges).

Conjecture 3 also looks quite suggestive from the tt∗ perspective. For the

general case, specified by a Lie algebra g, a dimension vector N , and a collection

of highest weight representations LΛ1 , · · · , LΛn , the solutions of the Gaudin model

Bethe ansatz equations define the chiral ring R. R is a commutative Frobenius C–

algebra with dimension equal to the number m of solutions to the Bethe equation.

Each solution defines a Bethe vector X(α) (α = 1, . . . ,m) and on the space of such

vector we have a natural symmetric bilinear form B(·, ·) induced by the Shapovalov

form [103]. On the other hand, R, being Frobenius, is also equipped with a natural

non–degenerate symmetric bilinear form 〈·, ·〉 (i.e. the TFT 2–point function). B(·, ·)
and 〈·, ·〉 are symmetric bilinear forms on the same space, Cm, and are determined

by the same set of equations, namely the Gaudin model Bethe ansatz ones. It is

natural to guess that they are one and the same. To compare them explicitly we

need to fix basis. For generic couplings, R is semisimple, and a natural basis is given

by a complete system of orthogonal idempotents39 eα (α = 1, 2, . . . ,m)

eα eβ = δαβ eα, (C.16)

(this is called the ‘point basis’ in [1, 19]). Note that there is a natural one–to–one

correspondence between classical vacua, i.e. Bethe vectors Xα and idempotents eα.

Another canonical basis is the dual point basis, {eα} defined by

〈eα, eβ〉 = δαβ. (C.17)

It is well known that

〈eα, eβ〉 = δαβ det(∂∂W)
∣∣∣
α
, (C.18)

where in the rhs we have the Hessian of W evaluated at the α–th critical point.

For m = 1 this gives back Conjecture 3 provided we identify the Shapovalov form

on the Bethe vectors with the TFT 2–point function in the dual point basis. This

suggests the following extension

39 Since we identify configurations in the same orbit of SN ≡
∏
`SN`

, our chiral ring is actually

RSN , where R is the usual chiral ring of the LG model, and the indecomposable idempotents

eα ∈ R are averages over the orbits of SN of the indecomposable idempotents of R.
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Conjecture 3*. In general,

B(X(α), X(β)) = δαβ det(∂∂W)
∣∣∣
α
. (C.19)

In fact, for g = Ar eqn.(C.19) is a proven theorem [107]; in fact, in this case one

also proves the stronger statement (also physically expected) that the (2, 2) chiral

ring R is isomorphic to the Bethe algebra of the associated Gaudin model [114, 115].

C.3 Explicit tt∗ amplitudes for the Ar quiver matrix LG models

For g = Ar the Mukhin–Varchenko conjectures have been proven [84, 116, 117]. The

detailed form of the result may be used to determine explicitly the magnetic function

F (z) of the corresponding Abelian tt∗ geometry, from which we may read the exact

twistorial amplitudes for the SU(r + 1) Toda field theory.

For g = Ar Conjecture 1 becomes the following

Theorem [84, 116, 117]. Consider the quiver LG model with g = Ar and n = 2

with40

βΛ1 = (0, 0, · · · , 0, ξr − 1), βΛ2 = (η1 − 1, η2 − 1, · · · , ηr − 1), (C.20)

ξr, η1, · · · , ηr ∈ C, and 0 ≤ N1 ≤ N2 ≤ · · · ≤ Nr. Then there is a chain ∆ so that

∫
∆

eW(ξr,η`,β) dNX =
r∏
`=1

N∏̀
i=1

Γ
(
ξ` + (i−N`+1 − 1)β

)
Γ(iβ)

Γ(β)
×

×
∏

1≤`≤`′≤r

N`−N`−1∏
i=1

Γ
(
η` + · · ·+ η`′ + (i+ `− `′ − 1)β

)
Γ
(
ξ`′ + η` + · · ·+ η`′ + (i+ `− `′ +N`′ −N`′+1 − 2)β

) (C.21)

where

ξ` =

{
1 ` 6= r

ξr ` = r,
(C.22)

and the various parameters are chosen so that the integral is convergent ( i.e. we are

in the ‘right’ Stokes sector [2]).

The chain ∆ is explicitly known but rather involved, see [84, 116, 117].

In view of eqn.(C.21), the the techniques of §.5.5.1 yield for the twistorial brane

amplitude for these models the expression obtained by replacing in the product in

the rhs of (C.21) each Γ–function factor of the form

Γ
(∑

`
a` ξ` +

∑
`
b` η` + cβ

)
(C.23)

40 The simple roots α` of Ar are numbered in the natural order.
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with a twistorial Gamma function factor of the corresponding arguments41

Γ
(∑

`
a` (ξ` − 1) +

∑
`
b` (η` − 1) + cβ,

∑
`
a` ψ` +

∑
`
b` φ` + c θ

)
, (C.24)

where ψ`, φ` and θ are the angles associated, respectively, to the couplings ξ`, η` and

β. In view of (C.22), one has ψ` ≡ 0 for ` < r.

Then, to get the twistorial Toda amplitudes one performs the products of twisto-

rial Gamma functions corresponding to the rhs of (C.21) in terms of ratios of twisto-

rial double Gamma functions (compare with eqn. (6.8)). The arguments of the

twistorial Gamma functions are the ’t Hooft parameters to be kept fixed as N →∞.

One analytically continues to arbitrary values of those parameters, and writes them

in term of Toda quantities using the AGT correspondence as dictionary. The result-

ing objects are the explicit twistorial extensions of the corresponding Toda 3–point

holomorphic blocks.

References

[1] S. Cecotti and C. Vafa, “Topological antitopological fusion,” Nucl. Phys. B 367, 359

(1991).

S. Cecotti and C. Vafa, “Exact results for supersymmetric sigma models,” Phys.

Rev. Lett. 68, 903 (1992) [hep-th/9111016].

[2] S. Cecotti, D. Gaiotto and C. Vafa, “tt∗ geometry in 3 and 4 dimensions,” JHEP

1405, 055 (2014) [arXiv:1312.1008 [hep-th]].

[3] M. Baggio, V. Niarchos and K. Papadodimas, “tt∗ equations, localization and exact

chiral rings in 4d N=2 SCFTs,” arXiv:1409.4212 [hep-th].

[4] C. Vafa, “tt∗ Geometry and a Twistorial Extension of Topological Strings,”

arXiv:1402.2674 [hep-th].

[5] N. A. Nekrasov and S. L. Shatashvili, “Quantization of Integrable Systems and Four

Dimensional Gauge Theories,” arXiv:0908.4052 [hep-th].

[6] K. Hori, A. Iqbal and C. Vafa, “D-branes and mirror symmetry,” hep-th/0005247.

[7] N. Nekrasov and E. Witten, “The Omega Deformation, Branes, Integrability, and

Liouville Theory,” JHEP 1009, 092 (2010) [arXiv:1002.0888 [hep-th]].

[8] S. Alexandrov, D. Persson and B. Pioline, “Fivebrane instantons, topological wave

functions and hypermultiplet moduli spaces,” JHEP 1103, 111 (2011)

[arXiv:1010.5792 [hep-th]].

[9] D. Gaiotto, G. W. Moore and A. Neitzke, “Four-dimensional wall-crossing via

three-dimensional field theory,” Commun. Math. Phys. 299, 163 (2010)

[arXiv:0807.4723 [hep-th]].

41 For simplicity, we omit writing the barred variables in the argument.

– 92 –



[10] A. Neitzke, “On a hyperholomorphic line bundle over the Coulomb branch,”

arXiv:1110.1619 [hep-th].

[11] S. Cecotti and C. Vafa, “2d Wall-Crossing, R-Twisting, and a Supersymmetric

Index,” arXiv:1002.3638 [hep-th].

[12] S. Cecotti, A. Neitzke and C. Vafa, “R-Twisting and 4d/2d Correspondences,”

arXiv:1006.3435 [hep-th].

[13] V. Pestun, “Localization of gauge theory on a four-sphere and supersymmetric

Wilson loops,” Commun. Math. Phys. 313, 71 (2012) [arXiv:0712.2824 [hep-th]].

[14] L. F. Alday, D. Gaiotto, and Y. Tachikawa, “Liouville Correlation Functions from

Four-dimensional Gauge Theories”, Lett. Math. Phys. 91 (2010)

167–197,arXiv:0906.3219.

[15] N. Wyllard, “AN−1 conformal Toda field theory correlation functions from

conformal N=2 SU(N) quiver gauge theories,” arXiv:0907.2189 [hep-th].

[16] S. Cecotti, P. Fendley, K. A. Intriligator and C. Vafa, “A New supersymmetric

index,” Nucl. Phys. B 386, 405 (1992) [hep-th/9204102].

[17] S. Alexandrov, G. W. Moore, A. Neitzke and B. Pioline, “An R3 index for

four-dimensional N = 2 field theories,” arXiv:1406.2360 [hep-th].

[18] S. Cecotti, C. Cordova and C. Vafa, “Braids, Walls, and Mirrors,” arXiv:1110.2115

[hep-th].

[19] S. Cecotti and C. Vafa, “On classification of N=2 supersymmetric theories,”

Commun. Math. Phys. 158, 569 (1993) [hep-th/9211097].

[20] N. A. Nekrasov, “Seiberg-Witten prepotential from instanton counting,” Adv.

Theor. Math. Phys. 7, 831 (2004) [hep-th/0206161].

[21] M. Aganagic and C. Vafa, “Mirror symmetry, D-branes and counting holomorphic

discs,” hep-th/0012041.

[22] R. Dijkgraaf and C. Vafa, “Matrix models, topological strings, and supersymmetric

gauge theories,” Nucl. Phys. B 644, 3 (2002) [hep-th/0206255].

[23] R. Dijkgraaf and C. Vafa, “On geometry and matrix models,” Nucl. Phys. B 644,

21 (2002) [hep-th/0207106].

[24] M. Aganagic, M. C. N. Cheng, R. Dijkgraaf, D. Krefl and C. Vafa, “Quantum

Geometry of Refined Topological Strings,” JHEP 1211, 019 (2012) [arXiv:1105.0630

[hep-th]].

[25] D. Gaiotto, G. W. Moore and A. Neitzke, “Framed BPS States,” Adv. Theor. Math.

Phys. 17, 241 (2013) [arXiv:1006.0146 [hep-th]].

[26] D. Gaiotto, G. W. Moore and A. Neitzke, “Wall-Crossing in Coupled 2d-4d

Systems,” arXiv:1103.2598 [hep-th].

[27] S. Gukov and E. Witten, “Gauge Theory, Ramification, And The Geometric

– 93 –



Langlands Program,” hep-th/0612073.

[28] R. Gopakumar and C. Vafa, “On the gauge theory / geometry correspondence,”

Adv. Theor. Math. Phys. 3, 1415 (1999) [hep-th/9811131].

[29] R. Dijkgraaf and C. Vafa, “Toda Theories, Matrix Models, Topological Strings, and

N=2 Gauge Systems,” arXiv:0909.2453 [hep-th].

[30] C. Vafa, “Superstrings and topological strings at large N,” J. Math. Phys. 42, 2798

(2001) [hep-th/0008142].

[31] F. Cachazo, K. A. Intriligator and C. Vafa, “A Large N duality via a geometric

transition,” Nucl. Phys. B 603, 3 (2001) [hep-th/0103067].

[32] R. Dijkgraaf and C. Vafa, “A Perturbative window into nonperturbative physics,”

hep-th/0208048.

[33] M. Aganagic, N. Haouzi, C. Kozcaz and S. Shakirov, “Gauge/Liouville Triality,”

arXiv:1309.1687 [hep-th].

[34] M. Aganagic, N. Haouzi and S. Shakirov, “An-Triality,” arXiv:1403.3657 [hep-th].

[35] M. Taki, “Surface Operator, Bubbling Calabi-Yau and AGT Relation,” JHEP 1107,

047 (2011) [arXiv:1007.2524 [hep-th]].

[36] R. Dijkgraaf and C. Vafa, “N=1 supersymmetry, deconstruction, and bosonic gauge

theories,” hep-th/0302011.

[37] R. Y. Donagi, “Seiberg-Witten integrable systems,” alg-geom/9705010.

[38] R. Donagi and E. Witten, “Supersymmetric Yang-Mills theory and integrable

systems,” Nucl. Phys. B 460, 299 (1996) [hep-th/9510101].

[39] E. J. Martinec and N. P. Warner, “Integrable systems and supersymmetric gauge

theory,” Nucl. Phys. B 459, 97 (1996) [hep-th/9509161].

[40] N. Seiberg and E. Witten, “Gauge dynamics and compactification to

three-dimensions,” In Saclay 1996, The mathematical beauty of physics, 333-366

[hep-th/9607163].

[41] S. Cecotti and C. Vafa, “BPS Wall Crossing and Topological Strings,”

arXiv:0910.2615 [hep-th].

[42] M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, “Kodaira-Spencer theory of

gravity and exact results for quantum string amplitudes,” Commun. Math. Phys.

165, 311 (1994) [hep-th/9309140].

M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, “Holomorphic anomalies in

topological field theories,” Nucl. Phys. B 405, 279 (1993) [hep-th/9302103].

[43] E. Witten, “Quantum background independence in string theory,” Salamfest

1993:0257-275 [hep-th/9306122].

[44] M. Kontsevich and Y. Soibelman, “Stability structures, motivic Donaldson-Thomas

invariants and cluster transformations,” arXiv:0811.2435 [math.AG].

– 94 –



[45] T. Dimofte and S. Gukov, “Refined, Motivic, and Quantum,” Lett. Math. Phys. 91,

1 (2010) [arXiv:0904.1420 [hep-th]].

[46] T. Dimofte, S. Gukov and Y. Soibelman, “Quantum Wall Crossing in N=2 Gauge

Theories,” Lett. Math. Phys. 95, 1 (2011) [arXiv:0912.1346 [hep-th]].

[47] S. Cecotti and C. Vafa, “Classification of complete N=2 supersymmetric theories in

4 dimensions,” Surveys in differential geometry, vol 18 (2013) [arXiv:1103.5832

[hep-th]].

[48] B. Dubrovin, “Geometry and integrability of topological - antitopological fusion,”

Commun. Math. Phys. 152, 539 (1993) [hep-th/9206037].

[49] V.V. Fock and A.B. Goncharov, “Cluster ensembles, quantization and the

dilogarithm,” arXiv:math/0311245.

[50] V.V. Fock and A.B. Goncharov, “The quantum dilogarithm and representation of

quantum cluster varieties,” arXiv:math/0702397.

[51] V.V. Fock and A.B. Goncharov, “Cluster ensembles, quantization and the

dilogarithm II: the intertwiner,” arXiv:math/0702398.

[52] B. Eynard and N. Orantin, “Invariants of algebraic curves and topological

expansion,” Commun. Num. Theor. Phys. 1, 347 (2007) [math-ph/0702045].

[53] N. Chair, “Generalized Penner model and the Gaussian beta ensemble,” Nucl. Phys.

B 878, 169 (2014) [arXiv:1401.5618 [hep-th]].
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