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1 Weakly Bound States in 1D

(Landau and Lifshitz) Consider a particle with mass m in one spatial dimension.
The particle is subject to an attractive potential which is non-vanishing in a
region of length l and has strength U < 0. Assume that the strength is weak
such that |U | � ~2/ml2.

1) Assume that the energy is |E| � |U |. Use the Schrödinger equation for the
wave function of a weakly bound state, ψ, to show that[

dψ

dx

]x0

−x0

=
2m

~2

∫ ∞
−∞

U(x)dx, (1)

where l� x0 � κ−1 and κ =
√

2m|E|/~2. Hint: You will need to assume that
ψ is constant inside the range of the potential.

Solution: Consider first ψ as a constant and note that it solves the Schrödinger
equation when we neglect the potential and set E = 0, so the constant wave
function is the lowest order perturbative solution. Insert this as a lowest order
guess in the potential term, neglect the energy term compared to the potential
term and integrate once the kinetic term. Then you should arrive at the result.
Since the integral over the potential is convergent (it is zero outside the range
l) you can take the limits of that integral to infinity.

2) Use the fact that at large distance a bound state wave function has the form
ψ ∝ e±κx to deduce that

|E| = m

2~2

[∫ ∞
−∞

U(x)dx

]2
, (2)

i.e. weakly bound states will depend quadratically on the strength of the binding
potential.

Solution: Evaluate the derivative of the wave function with the large dis-
tance asymptotic form given at some point outside the range of the potential
but before you hit x0 = κ−1. Then you will get a factor of κ from each of the
terms with ±x0 but with opposite signs so the overall effect is −2κ. Now since
you are also assuming that x0 � κ−1 the value of the wave function is still
almost constant with values one, or more precisely ψ = e±κx ∼ 1± κx to linear
order. Throw away the linear term and you have the result.
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2 Weakly Bound States in 2D

(Landau and Lifshitz) Consider the same problem as above but now in two
spatial dimensions. Assume that the integral

∫∞
−∞ ρU(ρ)dρ converges and that

the potential has cylindrical symmetry.

1) Proceed as in the 1D case above and show that this time the Schrödinger
equation gives us the relation[

dψ

dρ

]
ρ=ρ0

=
2m

~2ρ0

∫ ∞
0

ρU(ρ)dρ, (3)

where l� ρ0 � κ−1.

2) The asymptotic solution for a bound state is a Hankel function of the first

kind, φ ∝ H
(1)
0 (iκρ), and the leading term goes like log(κρ). Take the loga-

rithmic derivative, d
dρ log(ψ), from inside and outside the potential and equate

these expression to obtain

1

l log(κl)
=

2m

~2l

∫ ∞
0

ρU(ρ)dρ, (4)

to lowest order. Hint: Use Eq. (3) to get the logarithmic derivative from the
inside (assuming that φ(l) is a constant) and use the leading asymptotic form
log(κρ) to get the one from the outside.

3) Show that to lowest order in the strength of the potential we have

|E| = ~2

ml2
Exp(−m

~2

∣∣∣∣∫ ∞
0

ρU(ρ)dρ

∣∣∣∣−1), (5)

thus in 2D weakly bound states have exponentially small binding energies! For
this reason the 2D case is considered the borderline case and if you could ana-
lytically continue your equations in a parameter representing the dimension of
space d = 2 + ε you would find powerlaw binding for ε < 0 and no binding for
sufficiently small strength for ε > 0.

4) How would you proceed if
∫∞
0
ρU(ρ)dρ = 0? Hint: Have a look at A.G.

Volosniev et al., Phys. Rev. Lett. 106, 250401 (2011).

3 Weakly Bound States in 3D

Finally consider three spatial dimensions.

1) Take the spherically symmetric finite square well with length parameter l and
depth U < 0. Show that there is a critical strength, Uc, such that if U > Uc
then there is no bound states in the well.
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Solution: Reduce the problem to a radial equation for the reduced wave
function u(r) = rψ(r) with boundary condition u(0) = 0. Look for a solution
that is a Sin(kr) inside and e−κr outside where as usual κ =

√
2m|E|/~2. Match

the wave functions and derivatives at l and deduce an equation connection k
and κ. Show that this equation cannot have solutions when |U | → 0.

4 Scattering length and bound states in 3D

Consider a particle scattering on a potential, U(r), in three spatial dimensions.
We will assume that the potential is spherically symmetric (depend only on r)
and that the scattering is only significant for states with zero angular momen-
tum, also called s-wave states. The Schrödinger equation for the reduced wave
function u = rψ(r) has the form

d2u(r)

dr2
+

(
k2 − 2m

~2
U(r)

)
u(r) = 0, (6)

where E = ~2k2/2m.

1) Assume that the potential U(r) vanishes for r > R. Show that a solution
of the Schrödinger equation for r > R is u(r) = A sin(kr + δ(k)), where A is a
constant. The quantity δ(k) is called the scattering phase shift. Explain why
this name makes sense.

2) Consider the limit of very low-energy scattering, i.e. k → 0. Argue that
u(r) = B(r− a) is a solution of the scattering problem outside the range of the
potential. Here B is some other constant. Comparing this particular solution
to the general solution, show that

u′(r)

u(r)
= k cot

[
k

(
r +

δ(k)

k

)]
→ 1

r − a
, for k → 0. (7)

3) Assume that R � |a| and set r = 0 in the formula from 2) to obtain the
low-energy relation between a and the scattering phase shift in the form

k cot δ(k) = −1

a
. (8)

4) To gain some intuition for the meaning of a, consider an attractive box
potential with some finite range. Draw the potential and sketch how you would
match the inside and outside solutions for the cases where a < 0 and for a > 0.
Hint: Use the solution r − a for the outside region and match it to something
reasonable from the inside keeping in mind that u(0) = 0.

5) Argue that in the limit k → 0, the solution inside the box is essentially the
same irrespective of whether k → 0+ (scattering) or k → 0− (bound state). A
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bound state wave function has the form ψ(r) ∝ e−κr. Equate the logarithmic
derivatives of the k → 0 solutions on the bound and the scattering side of k = 0
and show that for R� a we find

κ =
1

a
, (9)

and that we may thus relate the bound state energy and the scattering length
by

EB = − ~2

2ma2
. (10)

6) Argue that when a < 0 there is no low-energy bound state.

7) Show that the expectation value of the squared radius in the bound state is
〈r2〉 = a2/2.

5 Three-Body States in BO limit

Consider two heavy particles of mass M in 3D that are localized a distance R.
The two heavy particles interact with a light particle of mass m. We assume
m�M . This is the Born-Oppenheimer limit that applies to molecules and/or
ions like for instance H−2 with M the proton and m the electron mass.

We assume that the heavy and light particles interact via a zero-range in-
teraction. To model this we take the following potential as seen by the light
particle

V (r) = V0 [δ(r −R/2) + δ(r + R/2)] , (11)

where we assume that the two heave particles are located at ±R/2. This poten-
tial needs to be regularized since as it stands it leads to an ultraviolet divergence.
We return to this point below. Now we consider the Schrödinger equation for
the particle of mass m in this potential

Hφ = ELφ, (12)

where EL is the energy and φ the wave function. Since V (r) contains delta-
functions, it is convenient to work in momentum-space. For the sake of clarity,
we use the following convention for the 3D Fourier transforms

φ(r) = 1
(2π)3

∫
d3ke−ik·rφ(k), (13)

φ(k) =
∫
d3reik·rφ(r). (14)

1) Show that the Schrödinger equation in momentum-space can then be written

εkφ(k) +
1

(2π)3

∫
d3k′φ(k′)V (k − k′) = ELφ(k). (15)

4



with εk = ~2k2/2m and V (q) =
∫
d3rV (r)eiq·r.

2) Show that for the case at hand we have

V (q) = 2V0 cos

(
q · R

2

)
, (16)

and therefore we get

(εk − EL)φ(k) =
−2V0
(2π)3

∫
d3k′ cos

(
(k − k′) ·R

2

)
φ(k′). (17)

3) Now show that

φ(k) =
−2V0
(2π)3

1

εk − EL

∫
d3k′

[
cos(

k ·R
2

) cos(
k′ ·R

2
) + sin(

k ·R
2

) sin(
k′ ·R

2
)

]
φ(k′).

(18)

4) Since we are looking for the ground state we may assume that φ(k) = φ(−k).
Multiply by cos(k·R

2 ), integrate over k, and use this to show that

1 = − 2V0
(2π)3

∫
d3k

cos2
(
k·R
2

)
εk − EL

. (19)

Show that this can be rewritten into

1 = − V0
(2π)3

∫
d3k

1

εk − EL
− V0

(2π)3

∫
d3k

cos (k ·R)

εk − EL
. (20)

The time has now come to relate V0 and the scattering length of the interac-
tion between the heavy and the light particle, a. From the Lippmann-Schwinger
equation for the heavy-light scattering we have

1

V0
=

µ

2πa~2
− 1

(2π)3

∫
d3k

1

εµk
, (21)

where µ = mM/(m+M) and εµk = ~2k2/2µ are reduced mass and energy. Since
we assume m�M , we can safely use εµk = εk and µ = m.

5) Use the Lippmann-Schwinger relation to show that

m

2πa~2
= − 1

(2π)3

∫
d3k

[
1

εk − EL
− 1

εk

]
− 1

(2π)3

∫
d3k

cos (k ·R)

εk − EL
. (22)

6) Show that the first term on the right-hand side is

1

(2π)3

∫
d3k

[
1

εk − EL
− 1

εk

]
= − m

π2~2

∫ ∞
0

dk
α2

k2 + α2
= − mα

2π~2
, (23)
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where α2 = −2mEL/~2 > 0 since we are looking for bound states here. A
perfectly convergent results due to the subtraction via the Lippmann-Schwinger
equation.

7) Show that the second integral becomes

1

(2π)3

∫
d3k

cos (k ·R)

εk − EL
=

m

π2~2R

∫ ∞
0

dk
k sin(kR)

k2 + α2
=

m

2π2~2R
Im

{∫ ∞
−∞

dk
keikR

(k + iα)(k − iα)

}
.

(24)

8) Perform the final integral via contour integration and show that we finally
arrive at

αR =
R

a
+ e−αR, (25)

which determines EL(R).

9) At unitarity, |a| → ∞, we have the simpler equation, αR = e−αR. Use a
non-linear equation solver to show that x0 = e−x0 is solved by x0 ∼ 0.567.

10) Let us do a perturbative expansion around unitarity, i.e. we assume thatR/a
is very small, or put another way, we are considering the potential at distances
much smaller than a. Writing αR = x0 + ε, show that ε = (R/a)/(1 + e−x0).
Use this to show that

EL = − ~2x20
2mR2

[
1 +

1

x20(1 + ex0)

R

a

]
. (26)

11) Another interesting limit, is R� a. Show that in this case we find

EL = − ~2

2ma2
. (27)

Argue that this only works for a > 0. This energy is the usual energy of a
particle of mass m in the delta-function potential of a much heavier particle of
mass M � m (i.e. a fixed potential center). The physical interpretation is that
the small mass particle forms a bound state with one of the heavy particles.

Following the Born-Oppenheimer description, this energy is now an effective
potential for the two heavy particles as function of their distance R. So we have
the heavy-heavy Schrödinger equation[

− ~2

M
∇2

R + EL(R)

]
Φ(R) = EΦ(R), (28)

where the kinetic energy is missing a factor of 2 in the denominator since the
reduced mass in the heavy-heavy system is M/2. Here E is the total energy of
the system of light-heavy-heavy type.
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12) Define u(R) = RΦ(R), κ2 = −ME/~2 > 0 (we are looking for bound states
with E < 0), and z = κR, and show that the heavy-heavy Schrödinger equation
becomes

d2u(z)

dz2
− u(z) +

β(a, z)2

z2
u(z) = 0, (29)

where

β(a, z)2 =
x20
2

M

m

[
1 +

1

x20(1 + ex0)

R

a

]
, (30)

is still a function of z.

If we consider z � κa (R � a) or |a| → ∞, we can drop the second term
and get a constant β. In this case, the solution to Eq. (29) which has the
correct boundary condition at z →∞ (exponentially decreasing, e−z) contains
a modified Bessel of the second kind, Kn(z). However, the order has to be
imaginary, i.e. n→ i(β2 − 1/4), and we arrive at u(z) =

√
zKi(β2−1/4)(z) (not

normalized). In our case, M � m, so β2 � 1, i.e. it is always a positive
imaginary order.

13) Show that the wave function u(z) has the following behavior at small z

u(z) ∝
√
z cos (s0log(z)) , (31)

where s0 =
√
β2 − 1/4. This is the origin of the log-periodic behavior of the

states found by Efimov when |a| → ∞.

14) Show that Eq. (28) has an interesting scaling invariance, i.e. show that
Φ(λR) solves the Schrödinger equation with energy λ2E when |a| → ∞ for λ a
real number.

15) However, Eq. (31) further contrains the choice of λ. Using z = κR, we have

Φ(R) ∝
√
κR cos

(
s0log(

R

R0
)

)
, (32)

where R0 is a necessary short-distance cut-off which comes from the repulsive
cores of atoms at short distance. Show that in order to preserve the λ scaling,
we need to require s0log(λ) = nπ, where n is an integer.

16) Show that this implies that there is an infinitude of three-body bound states
with energies

En = E0e
−2πn/s0 , (33)

which is the famous Efimov effect.

The ground state is related to R0 since E0 ∼ −~2/2MR2
0 (up to constants

of order 1 that we have neglected for simplicity). For M � m, s0 will be large
and will therefore in turn lead to a small scale factor e−2πn/s0 , which means
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that the spectrum of three-body bound states is quite dense, there are many
three-body bound states around!

17) Argue that for finite a, it the above considerations are good up to R ∼ |a|,
and that the number of bound states is approximately N ∼ s0log(|a|/R0)/π
and increases with s0, i.e. with

√
M/m.

6 Efimov Physics in a Many-body Background

The Efimov states we observe in Nature are most often embedded in some larger
systems so that one could suspect that many-body effects will influence these
few-body bound states in certain regimes of for instance higher density.

1) Consider the Born-Oppenheimer solution of the previous problem. How
would you modify the equations if the light particle is a fermion that has a
Fermi sea background? Assume for simplicity that the Fermi sea is inert, i.e.
there are no particle-hole pairs in the Fermi sea. (This has been considered
recently by MacNeill and Zhou, Phys. Rev. Lett. 106 (2011) 145301.)

2) Consider now the case where the light particle is part of a condensate. How
would you now modify the Born-Oppenheimer equations for the three-body
bound states? (This has been considered recently by Zinner, see Europhysics
Letters 101 60009 (2013) and Eur. Phys. J. D 68, 261 (2014).)

7 Two fermions in a 1D harmonic oscillator with
strong interparticle interactions

Consider the following Hamiltonian in one dimension for two particles in a
harmonic oscillator potential

H =
p21
2m

+
p22
2m

+
1

2
mω2x21 +

1

2
mω2x22 + gδ(x1 − x2) = H1 +H2 + gδ(x1 − x2),

(34)

where x1 and x2 are the coordinates of the particles, p1 and p2 the momenta, m
is the mass, and ω is the angular frequency of the oscillator trap. The interaction
between the particles is given by a zero-range Dirac delta-function with strength
g.

1) First consider the non-interacting case, g = 0. Sketch the potential and the
eigenenergies for a single particle on the same plot. What are the wave functions
for a single particle in the ground state and in the first excited state?

2) What is the ground-state energy if you have two identical bosons? What is
the ground state energy for two identical fermions? What is the ground state
for fermions with two opposite spin states (spin up and spin down)?
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3) What does the g = 0 wave function look like for two identical fermions?
Make a sketch of it using relative coodinates x = x1 − x2. What changes when
we have g 6= 0?

4) Consider instead two fermions with different spin states, i.e. an up and a
down spin pair. Write down the wave function for g = 0. Change to relative
coordinates, x = x1 − x2 and X = (x1 + x2)/2, throw away the center-of-mass
X coordinate (we have to worry about that for interactions), and sketch the
wave function as a function of relative coordinate, x.

5) Now consider repulsive interactions, g > 0, and the case of two fermions
with opposite spins. What happens to the energy of the state consider in 4)?
Make a sketch of the energy.

6) Argue that for a Dirac delta function interaction gδ(x1 − x2), the wave
function is continuous but the derivative is not.

7) What is the energy of a state with one spin up in the ground state and one
spin down in the first excited state? Compare this energy to the energy of two
identical fermions from 2).

8) Combining your knowledge from 3), 5) and 6), make a sketch of the energy
of two identical fermions and of two fermions with opposite spins as the strength
of the interaction goes from g = 0 to g = +∞.

You now know what people mean when they say fermionization of two fermions
with opposite spin states. This has been explored experimentally in G. Zürn
et al., Phys. Rev. Lett. 108, 075303 (2012). What remains is to figure out
what the wave function looks like at g = +∞ for the two fermions with different
spins.

9) The Hamiltonian conserves parity and we can thus classify state as even or
odd under parity. What is the parity of the wave function in 3)? What is the
parity of the wave function in 4)?

10) The wave function must be a solution of the non-interacting (g = 0) Hamil-
tonian expect when x = x1−x2 = 0 where the delta function contributes. Argue
that for g = +∞, the wave function at x = 0 has to vanish.

11) Use conservation of parity to argue that the ground state wave function for
two fermions with opposite spins at g =∞ must have even parity.

12) Combine non-interacting wave functions for x < 0 and x > 0 for two
fermions with different spins into an even parity solution that vanishes at x = 0.
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8 Exact Two-Body Solutions in a Harmonic Trap

For two equal mass particles in a harmonic trap interacting via a zero-range
interaction, it turns out that one can solve the problem exactly. For simplicity
we will consider the 1D case in this problem. The Hamiltonian for the system
is

H =
p21
2m

+
p22
2m

+
1

2
mω2x21 +

1

2
mω2x22 + gδ(x1 − x2), (35)

where x1, x2 are the coordinates while p1, p2 are the momenta of the two parti-
cles. The strength of the interaction is g.

1) Show that the Hamiltonian is seperable in relative, x = (x1 − x2)/
√

2, and
center-of-mass coordinates X = (x1 + x2)/

√
2 and that we may thus forget

about the center-of-mass part when looking for the solution of the interacting
problem.

2) HARD! Find an equation that relates the energy eigenvalues to g for general
g. Hint: Expand a general solution of the problem in the well-known basis of
harmonic oscillator energy eigenstates. Find relations for the coefficients of such
an expansion. From there one needs to use different mathematical properties of
the solutions of the oscillator to advance.
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