From data to theory and back

Exercises

August 3'4, 2015

Exercisel Linearized Riemann, Ricci and Einstein ten-
sors

Using that the Christoffel symbols at linear level are
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Exercise2 Retarded Green function 1

Show that the two representation of the retarded Green function given by

Gra(tx) = —3(t— r)ﬁ ,
Gaan(t,x) = —=6(t+ r)m ,
and
Gret(t) Z‘) = —i@(f) (A-‘r (tv .13) - A—(t7 JU)) 5
Gadv(t, ) =i0(—t) (AL (t,z) — A_(t,2)) ,
where



and that
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Exercise3 Retarded Green function 11

Use the representation of the Gt 44, Obtained in the previous exercise to show

that ik
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where € is an arbitrarily small positive quantity. Hint: use that
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Show that G,..; is real.

Exercise4 Feynman Green function I
Show that the G defined by
dw efiwt+ikx
LX) =—i [ ———————
Gr(tx) Z/k27rk2—w2—i6
is equivalent to
GF(ta X) = e(t)AJr(ta X) + 9(_t)A*(t7 X) :

Derive the relationship
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Exerciseb Feynman Green function 11

By integrating over k the G in the ~ 1/(k? — w?) representation, show that
G r implements boundary conditions giving rise to field A behaving as

h(t,x) ~ /dwe_“"t“'“’lr,
corresponding to out-going (in-going) wave for w > (<)0.

Exercise6 TT gauge
Show that the projectors defined by

. 1
Aijri(n) = 3 [P;iPji + Py Pjr, — Pij Pl ,
Pij(n) = &5 —mniny,



satisfies the relationships
PijPjk = Pig
Aij,klAkl,mn = Az’j,mn y

which characterize projectors operator.

Exercise7 Energy of circular orbits in a Schwarzschild
metric

Consider the Schwarzschild metric

2GNM dr?
2 N 2 2 102
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The dynamics of a point particle with mass m moving in such a background can
be described by the action
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for any coordinate A parametrizing the particle world-line. Using S = [dAL,
we can write

. | 2GNMY (dt)’ (4z)? » (4]
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Verify that L has cyclic variables ¢t and ¢ and derive the corresponding conserved
momenta.

(Hint: use g, (dx*/dr)(dx” /dT) = —1. Result: E =m(dt/dr)(1-2GNyM/r) =
me and L = mr?(d¢/dr) = ml).

By expressing dt/dr and d¢/dr in terms of e and I, derive the relationship

2
e® = (1—-2GNM/r) (1+1?/r?) + (Z:) .

From the circular orbit conditions (% =0 = dr/dr = 0), derive the relationship

between [ and r for circular orbits.
(Result: 1* =7r2/(; — 3)).
Substitute into the energy function e and find the circular orbit energy
1—-2x
V1I=3z’
where x = (GNM qﬁ)2/ 3 is an observable quantity as it is related to the GW

frequency faw by x = (G M7 faw ).
(Hint: Use
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N2
to find that on circular orbits (M qb) = (GyM/r)?, an overdot stands for

derivative with respect to ¢.)
Derive the relationships for the Inner-most stable circular orbit
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Exercise8 Newtonian force exerced by GWs

Derive the equivalent Newtonian-like force

§= %Bijfja (3)

from the geodesic deviation equation
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Exercise9 World-line action

Derive the geodesic equation
@+ Th, 2’27 =0

from the world-line action

St = / dtd*y /G i 78 (y — x(t))



