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Exercise1 Linearized Riemann, Ricci and Einstein ten-
sors

Using that the Christoffel symbols at linear level are

Γαµν =
1

2

(
∂µh

α
ν + ∂νh

α
µ − ∂αhµν

)
derive eqs.

Rµνρσ =
1

2
(∂ν∂ρhµσ + ∂µ∂σhνρ − ∂µ∂ρhνσ − ∂ν∂σhµρ) ,

Rµν =
1

2

(
∂ρ∂µh

ρ
ν + ∂ρ∂νh

ρ
µ −�hµν − ∂µ∂νh

)
,

R = ∂µ∂νh
µν −�h ,

Gµν =
1

2

(
∂ρ∂µh

ρ
ν + ∂ρ∂νh

ρ
µ −�hµν − ∂µ∂νh− ηµν∂ν∂νhµν + ηµν�h

)
,

(1)

Exercise2 Retarded Green function I

Show that the two representation of the retarded Green function given by

Gret(t,x) = −δ(t− r) 1

4πr
,

Gadv(t,x) = −δ(t+ r)
1

4πr
,

and
Gret(t, x) = −iθ(t) (∆+(t, x)−∆−(t, x)) ,

Gadv(t, x) = iθ(−t) (∆+(t, x)−∆−(t, x)) ,

where

∆±(t, x) ≡
∫
k

e∓ikt
eikx

2k

are equivalent. Hint: use that∫ ∞
−∞

dk

2π
eikx = δ(x) ,

1



and that

θ(t)

∫ ∞
−∞

dk

2π
eik(t+r) = 0 for r ≥ 0 .

Exercise3 Retarded Green function II

Use the representation of the Gret,adv obtained in the previous exercise to show
that

Gret(t,x) = −
∫
k

dω

2π

e−iωt+ikx

k2 − (ω + iε)2
,

Gadv(t,x) = −
∫
k

dω

2π

e−iωt+ikx

k2 − (ω − iε)2
.

where ε is an arbitrarily small positive quantity. Hint: use that

θ(±t) = ∓ 1

2πi

∫
e−iωt

ω ± iε
.

Show that Gret is real.

Exercise4 Feynman Green function I

Show that the GF defined by

GF (t,x) = −i
∫
k

dω

2π

e−iωt+ikx

k2 − ω2 − iε

is equivalent to

GF (t,x) = θ(t)∆+(t,x) + θ(−t)∆−(t,x) .

Derive the relationship

GF (t,x) =
i

2
(Gadv(t,x) +Gret(t,x)) +

∆+(t,x) + ∆−(t,x)

2
.

Exercise5 Feynman Green function II

By integrating over k the GF in the ∼ 1/(k2 − ω2) representation, show that
GF implements boundary conditions giving rise to field h behaving as

h(t,x) ∼
∫
dωe−iωt+i|ω|r ,

corresponding to out-going (in-going) wave for ω > (<)0.

Exercise6 TT gauge

Show that the projectors defined by

Λij,kl(n̂) =
1

2
[PikPjl + PilPjk − PijPkl] ,

Pij(n̂) = δij − ninj ,

2



satisfies the relationships

PijPjk = Pik
Λij,klΛkl,mn = Λij,mn ,

which characterize projectors operator.

Exercise7 Energy of circular orbits in a Schwarzschild
metric

Consider the Schwarzschild metric

ds2 = −
(

1− 2GNM

r

)
dt2 +

dr2(
1− 2GNM

r

) + r2dΩ2 . (2)

The dynamics of a point particle with mass m moving in such a background can
be described by the action

S = −m
∫
dτ = −m

∫
dλ

√
−gµν

dxµ

dλ

dxν

dλ

for any coordinate λ parametrizing the particle world-line. Using S =
∫
dλL,

we can write

L = −m

[(
1− 2GNM

r

)(
dt

dτ

)2

−
(
dr
dτ

)2(
1− 2GNM

r

) − r2(dφ
dτ

)2
]1/2

.

Verify that L has cyclic variables t and φ and derive the corresponding conserved
momenta.
(Hint: use gµν(dxµ/dτ)(dxν/dτ) = −1. Result: E = m(dt/dτ)(1−2GNM/r) ≡
me and L = mr2(dφ/dτ) ≡ ml).
By expressing dt/dτ and dφ/dτ in terms of e and l, derive the relationship

e2 = (1− 2GNM/r)
(
1 + l2/r2

)
+

(
dr

dτ

)2

.

From the circular orbit conditions ( dedr = 0 = dr/dτ = 0), derive the relationship
between l and r for circular orbits.
(Result: l2 = r2/( r

M − 3)).
Substitute into the energy function e and find the circular orbit energy

e(x) =
1− 2x√
1− 3x

,

where x ≡ (GNMφ̇)2/3 is an observable quantity as it is related to the GW
frequency fGW by x = (GNMπfGW )2/3.
(Hint: Use

φ̇ =
dφ

dτ
τ̇ =

l

r2

[
1− 2M

r
− r2φ̇2

]1/2
3



to find that on circular orbits
(
Mφ̇

)2
= (GNM/r)

3
, an overdot stands for

derivative with respect to t.)
Derive the relationships for the Inner-most stable circular orbit

rISCO = 6GNM = 4.4km

(
M

M�

)
fISCO =

1

63/2
1

GNMπ
' 8.8kHz

(
M

M�

)−1
vISCO =

1√
6
' 0.41

Exercise8 Newtonian force exerced by GWs

Derive the equivalent Newtonian-like force

ξ̈ =
1

2
ḧijξ

j , (3)

from the geodesic deviation equation

D2ξi

dτ2
= −Ri0j0ξj

(
dx0

dτ

)2

.

Exercise9 World-line action

Derive the geodesic equation

ẍµ + Γµρσẋ
ρẋσ = 0

from the world-line action

Swl =

∫
dtd3y

√
−gµν ẏµẏνδ(3)(y − x(t))
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