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Abstract

Basic concepts of Bayesian inference and relevant applications for GW
observations will be presented, with emphasis on binary systems. The
mini-course will include key conceptual aspects of the numerical tech-
niques used to apply these methods to general problems in Bayesian in-
ference, with specific examples for GW observations and software libraries
used in the actual LIGO/Virgo analysis. The exercise sessions will be a
hands-on session to design a simple stochastic sampler to measure the
masses of binary compact objects and an actual analysis of LIGO/Virgo
data with the standard LIGO library analysis tools to locate a source in
the sky and provide information about the relevant astrophysical param-
eters.

1 Basic concepts

We are so used to the way our brain processes information that we rarely stop
to wonder about its mechanisms. For instance, imagine a situation in which
a policeman sees a gentleman running with a purse in his hand. He decides
immediately that the gentleman is dishonest and starts chasing him. There
could be many perfectly legitimate and reasonable explainations for this man
running with a purse in his hand, maybe his wife forgot it home ans she is
at the train station and he needs to get there in time, however the policeman
implicitly deems any explaination other than “he stole the purse” much less
probable. What is the process that leads the policeman to his inference about
some observation? What are its principles?

Scientific inference is dealing with the same exact proble as the policeman is:
given some data which consist of some physical effect and superimposed noise,
what do we learn about the physical effect of interest? When do we decide that
a given physical effect is real or that a given explanation is “correct”?

1.1 Fundamentals of logic: propositions

A logical proposition is any sentence which can be either true or false. Examples
of logical propositions are
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Table 1: Truth table for the propositions A,B, Ā, B̄, AB,A+B.
A B Ā B̄ AB A+B

0 0 1 1 0 0
1 0 0 1 0 1
0 1 1 0 0 1
1 1 0 1 1 1

• x is greater than 10;

• the sky is cloudy today.

We are going to indicate logical propositions with capital letters A,B,C, . . ..
For instance we might indicate:

A ≡ “the total mass of this binary black hole system is 22M ′′�. (1)

We will indicate the denial of a proposition with Ā ≡ A is false. Any admissible
proposition can only assume two values, true or false.

It is possible to construct more complex propositions by introducing opera-
tions between propositions:

• the conjunction or logical product AB which asserts that both A and B
are true;

• the disjunction or logical sum A+B which asserts that either A or B are
true.

We already introduced the negation of a proposition Ā.
Given two propositions, how do we estabilish if they are equivalent? This

can be done by constructing a truth table. Table 2 gives an example truth table
for the proposition A+ B̄.

Boolean algebra has some very useful properties and identities:

1. Idempotence AA = A, A+A = A

2. Commutativity AB = BA, A+B = B +A

3. Associativity A(BC) = (AB)C, A+ (B + C) = (A+B) + C

4. Distributivity A(B + C) = AB +AC, A+ (BC) = (A+B)(A+ C)

which can be used to prove many useful, and non-trivial, identities.

1.2 Deductive inference

The greek philosopher Aristotle set the rules for deductive reasoning based on
the strong syllogism:

1. major premise: if A is true, then B is true

2



Table 2: Truth table for the propositions A,B,AB,A = AB.
A B AB A = AB
0 0 0 1
1 0 0 0
0 1 0 1
1 1 1 1

• minor premise: A is true

• conclusion: B is true.

2. major premise: if A is true, then B is true

• minor premise: A is false

• conclusion: B is false.

In Boolean terms, the strong syllogism is expressed as:

A = AB (2)

which is known as the implication and indicated as A =⇒ B. An example of
deductive reasoning:

• all black holes in binary systems are spinning

• the event detected is a binary black hole

• therefore both black holes were spinning.

Exercise 2: verify that any false proposition implies all proposition. Solu-
tion: Let’s compute the truth table for the implication: So A =⇒ B is false
only when A is true and B is false. On one hand, when both A and B are true,
A = AB is true, so in logic every true statement implies every true statement.
On the other hand, if A is false then A =⇒ B and A =⇒ B̄ are both true,
regardless of the truth value of B. Therefore, a false proposition implies every
proposition.

1.3 Weak syllogism

In real life application, we very rarely have enough information to reason de-
ductively and apply the strong syllogism and we have to fall back to the weak
syllogism:

1. if A is true, then B is true

• B is true

• A becomes more plausible.

2. if A is true, then B is true
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• A is false

• B becomes less plausible.

An example:

• all black holes in binary systems are spinning

• both stars in the detected event were spinning

• therefore the fact that both stars were black holes becomes more plausible.

1.4 Desiderata of Bayesian probability theory

The foundations of Bayesian probability theory as extended logic can be found
already in the work of James Bernoulli, Rev. Thomas Bayes and Pierre Simon
Laplace. Unfortunately none of them laid out the rules and context to found the
theory on solid bases. Consequently, Bayesian thoery was largely replaced by
the so-called “frequentist” approach. Notably, Bayesian theory was kept alive
by the work of Sir Harold Jeffreys. During the 20th century, the work of G.
Polya, R.T. Cox and E.T.Jaynes laid down the solid foundations that the theory
required. Their efforts culminated in a set of “desiderata” for a consistent theory
of extended logic which lay directly to the product and sum rules that we will
find later. They are called desiderata rather than axiom because they do not
assert that anything is true per se, but list a set of desirable goals for the theory.
The desiderata are:

1. Degrees of plausibility are represented by real numbers

2. Plausibility must be in qualitative agreement with rationality and common
sense. This means that when new information supporting the truth of a
proposition is available, the degree of plausibility should increase in a
continous and monotonic way up to the limit of deductive logic.

3. Consistency:

• if a conclusion can be reached in more than one way, every possible
way must lead to the same result;

• the theory must account for all relevant information available

• equivalent states of knowledge must lead to the same degree of plau-
sibility assignment.

In literature, plausibilities are usually indicated as (A|B) which reads “the
plausibility of A given B”. The probability is then introduced as a map between
plausibilities and the set of real numbers between [0, 1].

Since Bayesian probability deals with logical propositions as information, it
follows that in this theory of probability, there is no absolute probability, all
probabilities are conditional on the information at hand. Therefore, even in the
same settings different information lead to different probability assignments.
For instance, two gamblers are betting on the outcome of a coin toss. They are
given two different background informations:
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1. I1: the coin is perfectly fair;

2. I2: the coin is biased, with the “head” side more probable than the tail.

Before placing their bets, the two gamblers assign probabilities to the two out-
comes. Gambler 1 believes the coin is perfectly fair, therefore he assigns equal
probabilities to either outcomes by maximising its uncertainty. Gambler 2, on
the other hand, knows that “head” is more probable, therefore he will decide to
assign some higher probability to the head outcome.

1.5 Probability theory as extended logic

One can show [1, 2] that the above desiderata lead to a unique formulation of
probability theory in which the basic rules are the product and the sum rules.
These two rules are all that is needed to manipulate logic propositions and
perform calculations with them.

1.6 The basic rules

1.6.1 The product rule

Given three statements A,B and C, the product rule asserts that:

p(AB|C) = p(A|BC)p(B|C) (3)

and the commutativity of boolean conjunction ensures that

p(AB|C) = p(BA|C) = p(B|AC)p(A|C) . (4)

In the case in which the two propositions A and B are independent, e.g. the
truth value of A does not depend on B, Eq. (3) reduces to

p(AB|C) = p(A|C)p(B|C) . (5)

For example, consider the case in which two different facilities observe the same
event, e.g. the two LIGO detectors observe the same gravitational wave signal.
Consider the propositions

• DH :“LIGO Hanford observed a GW signal at a given time t”

• DL:“LIGO Livingstone observed a GW signal at a given time t+ ∆t”

with ∆t equal to the light travel time between Hanford and Livingstone. The
propositions DH and DH are clearly logically independent, the fact that Hanford
observed a GW signal does not influence the observation made in Livingstone.
At the same time DH and DH are not causally independent, our understanding
of the physics implies that the GW signal observed in both detectors must be
the same.
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1.6.2 The sum rule

Given three statements A,B and C, the sum rule asserts that:

p(A+B|C) = p(A|C) + p(B|C)− p(AB|C) . (6)

In the case in which the propositions A and B are logically disjoint or mutually
exclusive, e.g. they cannot be true at the same, it reduces to

p(A+B|C) = p(A|C) + p(B|C) . (7)

Examples of mutually exclusive propositions are

• x ∈ [0, 1] and x ∈ [2, 3]

• “the GW event was a binary neutron star system” and “the GW event
was a binary black hole”.

Furthermore, if B = Ā, then A and Ā are also exhaustive, therefore

p(A|C) + p(Ā|C) = 1 . (8)

1.7 Bayes’ Theorem

We are now in the position of giving a proof to Bayes’ theorem, which is the main
(and only) tool available to process information in our theory of probability.
Consider three propositions A,B and C and the product rule given in Eq. (3).
Thanks to the commutative property, we noted that also Eq. (4), so putting the
two together we get:

p(AB|C) = p(A|BC)p(B|C) (9)

p(AB|C) = p(B|AC)p(A|C) (10)

therefore

p(A|BC) =
p(A|C)p(B|AC)

p(B|C)
. (11)

Eq (11) is known as Bayes’ theorem and it is the rule according to which the
plausibility of propositions change according to new information. In the form
given in Eq (11), this character is not very evident. In the context of scientific
inference Bayes’ theorem is typically written in terms of hypotheses and data.
Let’s define the following propositions:

• I: the prior information available;

• D: a proposition representing some data we are collecting;

• Hi: a proposition assserting the truth of some hypothesis (or model) we
are interested in.
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Let’s write Bayes’ theorem in terms of the propositions defined above:

p(Hi|DI) =
p(Hi|I)p(D|HiI)

p(D|I)
(12)

where each term is given a special name:

• p(Hi|DI) is the posterior probability for Hi;

• p(Hi|I) is the prior probability for Hi;

• p(D|HiI) is the likelihood function for the data D given Hi. Sometimes
this quantity is also referred to as sampling probability for D;

• p(D|I) =
∑
i p(Hi|I)p(D|HiI) is (for the moment) a normalisation factor

to ensure that
∑
i p(Hi|DI) = 1.

We are going to briefly discuss each of the terms on the right hand side of
Eq. (12) later.

1.7.1 Discrete and continuos parameters

Bayes’ theorem assigns probabilities to sets of competing hypotheses. This set of
hypotheses is sometimes defined as the hypothesis space. The hypothesis space
can either be a discrete space or a continuous space, depending on the nature
of the problem. For instance, when analysing data from an interferometer we
are interested in understanding whether the component stars in the observed
binary system where spinning or not. In this case we are interested in a discrete
space made of the following propositions:

1. H1: body 1 is spinning;

2. H2: body 2 is spinning;

and, ultimately, their compound proposition:

H = H1 +H2 . (13)

Exercise 3: it is a very useful procedure the reduction in disjunctive normal
form. Reduce the proposition H in disjunctive normal form and then compute
its posterior. Solution: the disjunctive normal form for H is

H = H1 +H2 = H1H2 +H1H̄2 + H̄1H1 (14)

where all propositions on the right hand side are mutually exclusive. The pos-
terior for H given some data D can then be written as:

p(H|DI) = p(H1H2|DI) + p(H1H̄2|DI) + p(H̄1H2|DI) (15)

Assume that we know (from our prior information I) that both stars are
spinning with spins ~s1, ~s2. In this case H = H1H2. For simplicity assume that
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we are interested only in the magnitude of the spins s1, s2 rather that in their
orientations. The hypothesis space in this case is a continuous space, some
suitably chosen subset of R × R. The posterior for s1, s2 given some data D
is given by p(s1s2|HDI)ds1ds2 which is to be interpreted as “the probability
that s1 ∈ [s1, s1 + ds1 and s2 ∈ [s2, s2 + ds2], given the data D and H and I.”
Furthermore, p(s1s2|HDI) is called the joint probability density distribution
for s1 and s2 given the data D and H and I. The probability distribution for
s1 and s2 is obtained by integration:

p(s1s2|HDI) =

∫ s1

0

ds′1

∫ s2

0

ds′2p(s
′
1s
′
2|HDI) (16)

1.7.2 Marginalisation

Imagine that, somehow, we calculated the joint probability p(s1s2|HDI), but
we are not interested in the value of s2. The posterior for s1 can be obtaining
by marginalising over s2:

p(s1|HDI) =

∫
ds2 p(s1s2|HDI) . (17)

For discrete variables x, y, the integral in Eq. (17) is to be replaced by a sum:

p(x|I) =
∑
i

p(xyi|I) (18)

1.7.3 The prior probability

The prior probability describes the state of knowledge of an observer before
having observed the data D. Note that before here is not to be intended in a
temporal or causal sense, but only in a logical sense: what is known about the
hypothesis Hi in the absence of the data D.

Indifference principle: The simplest way of assigning probabilities dates
back to Laplace and it is sometimes referred to as the indifference principle: “if
among the possible outcomes, there is no reason to prefer any of them over any
other, then all outcomes should be equally probable.” The indifference principle
appeals to common sense, as stated in desideratum 2. Indeed, this is what the
gambler with information I1 at the end of Section 1.4 is appealing to when
assigning equal probability to “head” or “tail” outcomes.

Invariance arguments: Assume that we want to estimate the standard
deviation σ of a Gaussian distribution, ad we know, by definition, that σ > 0.
Which prior correctly represents our knowledge? We are dealing here with what
is called a scale parameter. In this case, we can obtain a functional form for
p(σ|I) by the following argument; we want or probability distribution to be
invariant under a scale transformation:

p(σ|I)dσ = p(σ′|I)dσ′ (19)

8



and σ′ = kσ:

p(σ|I)dσ = kp(kσ|I)dσ (20)

which is a functional equation with solution

p(σ|I) ∝ σ−1 (21)

which is an example of a Jeffreys prior. It is important to note that p(σ|I) ∝ σ−1

implies p(log σ|I) ∝ constant, therefore we are imposing a uniform prior over
the order of magnitude of σ; if no information is available, any size of the error
is equally probable. The arguments briefly presented here are formalised in [1].

Maximum entropy: A formal principle to assign probabilities is the maxi-
mum entropy principle. Shannon, in his seminal paper about information theory,
introduced the concept of information entropy as the measure of unctertainty
associated to a given probability distribution. [?] and others show that the least
informative distribution that obeys some given constraints is the distribution
that maximises the information entropy. The information entropy is defined as:

H(p) = −
∑
i

pi log(pi/mj) (22)

where the mj are eventual prior probabilities. Note that, if we generalise to the
continuum, the entropy becomes

H(p) = −
∫

dxp(x) log(p(x)/m(x)) (23)

and m(x) would be the Lebesgue measure which ensure invariance of the entropy
under changes of variables.

Exercise: Consider the following probability distributions:

p1 ≡
1

2
,

1

2
(24)

p2 ≡
1

4
,

3

4
(25)

which one is more uncertain? Solution: the entropy for p1 is ∼ 0.69, while the
entropy for p2 is ∼ 0.56. Therefore p1 contains the least information.

We will not dwell in the general details of obtaining maximum entropy dis-
tributions, but we will examine a few useful cases. Full treatment can be found
in [1, 2].

• Uniform distribution: assume that the only constraint the probability
distribution we sought has to obey is

∑M
j=1 pj = 1. We want then to find

the pj that obeys the aforementioned constraint and maximising (23). We
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can do so by using Lagrange multipliers:

d

−∑
j

pj log(pj/mj)− λ(
∑
i

pi − 1)

 = 0 (26)

d

−∑
j

pj log(pj) +
∑
j

pj log(mj)− λ(
∑
i

pi − 1)

 = 0 (27)

∑
j

[
− log(pj)− pj

∂ log(pj)

∂pj
+ log(mj)− λ

∂pj
∂pj

]
dpj = 0 (28)

∑
(− log(pj/mj)− 1− λ)dpj = 0 (29)

Thus we have ∀j:

(− log(pj/mj)− 1− λ = 0 (30)

=⇒ pj = mje
−(λ+1) (31)

The constraint
∑
j pj = 1 requires:

e−(λ+1)
∑
j

mj = 1 = e−(λ+1) =⇒ λ = −1 (32)

thus pj = mj . If we have no prior information, then we can invoke the
indifferent principle and set mj = 1/M and therefore pj is a uniform
distribution.

• Gaussian distribution: assume that the measure mj , the prior for pj has
the following form:

mj =

{
1/(xM − xm) if xm < xj < xM

0, otherwise
. (33)

We impose the following constraints:∑
j

pj = 1 (34)

∑
j

(xj − µ)2pj = σ2 (35)

We are looking for the pj that maximises

H(pj) = −
∑
j

pj log(pj) (36)
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since mj is a constant. We are looking for a solution to

d

−∑
j

pj log pj − λ

∑
j

pj − 1

−ω
∑

j

(xj − µ)2pj − σ2

 = 0

(37)

which leads to∑
j

[
− log pj − 1− λ− ω(xj − µ)2

]
dpj = 0 . (38)

The solution to Eq. (38) is

pj = e−λ0e−ω(xj−µ)2 with λ0 ≡ 1 + λ . (39)

To get the value of the multipliers, we are going to generalise to the con-
tinuum. The solution (39), generalises to

p(x) = e−λ0e−ω(x−µ)2 . (40)

Let’s now impose the normalisation constraint:∫ xM

xm

dx p(x) = 1 = e−λ0

∫ xM

xm

dx e−ω(x−µ)2 (41)

λ0 = log

[ √
π

2
√
ω

]
+ log

[
erf(
√
ω(xM − µ))− erf(

√
ω(µ− xm))

]
(42)

If we take
√
ω(xM − µ) >> 1 and

√
ω(µ− xm) << 1, then

erf(
√
ω(xM − µ))→ 1 (43)

erf(
√
ω(µ− xm))→ −1 , (44)

thus, we get

λ0 = log

√
π

ω
(45)

which we can substitute in the second constraint to get:∫
dx(x− µ)2

√
ω

π
e−ω(x−µ)2 = σ2 (46)√

ω

π

∫
dx(x− µ)2e−ω(x−µ)2 =

√
ω

π

∫
dy y2e−ωy

2

(47)

ω =
1

2σ2
(48)

which we then substitute back in Eq. (45) and finally we obtain

p(x) =
1√
2πσ

e−
(x−µ)2

2σ2 . (49)

The Gaussian distribution is the maximum uncertainty distribution for a
fixed variance.
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1.7.4 The likelihood function

The likelihood function describes the probability of observing the data D assum-
ing that the hypothesis Hi and the prior information I are true. The likelihood
function therefore represents the predictions of the hypothesis H. Models in
general depend on some parameters θ in which case the likelihood function is
written as:

• p(D|θHI) ≡“the probability of the data D, given that model H and in-
formation I are true and the value of the parameters is θ” .

The likelihood function is therefore a function of the model parameters θ. 1 We
will follow Section 4.8 in [2]. Define for convenience the following propositions:

• D = D1 . . . DN : datum di ∈ [di, di + ddi];

• H = X1 . . . XN : datum di is in the range xi and xi + dxi;

• E = E1 . . . EN : the error value on datum di is ei ∈ [ei, ei + dei] .

We can write:

di = xi + ei . (50)

We can write the probability distribution for the Xi as

p(Xi|θHI) = f(xi) (51)

and, similarly for the Ei:

p(Ei|θHI) = g(ei) . (52)

Our purpose is to compute p(Di|θHI). We can do that by considering the joint
distribution of Di, Ei, Xi and then marginalising:

p(Di|θHI) =

∫ ∫
dXidEip(DiXiEi|θHI)

=

∫ ∫
dXidEip(Di|XiEiθHI)p(Xi|θHI)p(Ei|θHI) (53)

where we assumed the propositions Xi and Ei to be independent. Since di =
xi + ei we have:

p(Di|XiEiθHI) = δ(di − xi − ei) (54)

1We remind the reader that every time we write p(x|I), x is to be interpreted as the logical
proposition:

x : x ∈ [x, x+ dx] .

12



thus Eq. (53) becomes:

p(Di|θHI) =

∫
dxif(xi)

∫
deig(ei)δ(di − xi − ei)

=

∫
dxif(xi)g(di − xi) (55)

We are going to evaluate Eq. (55) for the case of deterministic and proba-
bilistic models.

Deterministic models: in the deterministic case, there is no uncertainty
over the predictions of the model H. Given a predicting function m(xi; θ),

f(xi) = δ(xi −m(xi; θ)) (56)

and Eq. (55) reduces to

p(Di|θHI) = g(di −m(xi; θ)) (57)

and if all errors are independent:

p(D|θHI) =

N∏
i=1

g(di −m(xi; θ)) . (58)

For deterministic models, the likelihood of any datum is simply given by the
product of the probabilities of the errors. Thus for any given model, it is the
errors distribution that determines the likelihood.

Probabilistic models: In probabilistic models the predictions are uncer-
tain, either because the model prediction includes some statistical noise com-
ponent or because the independent variable is not known exactly. Since we are
not going to touch on this subject, the interested reader is referred to Section
4.8.2 of [2].

1.8 Model selection

A vast branch of scientific inference deals with the following question:
given some data D, some prior information I and two (or more) competing

models H1 and H2, which one is better explaining the data?
Bayesian inference naturally answers the above question: let’s write the

posterior probability for both models:

p(H1|DI) = p(H1|I)
p(D|H1I)

p(D|I)
(59)

p(H2|DI) = p(H2|I)
p(D|H2I)

p(D|I)
(60)

with p(D|I) =
∑
j p(Hj |I)p(D|HjI). Unless the set of models considered is

exhaustive p(H1|I) + p(H2|I) = 1 we are unable to compute the normalisation
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constant p(D|I) and therefore unable to compute the two posterior probabilities.
However, we can circumvent this problem by taking the ratio between the two
posterior probabilities:

O1,2 ≡
p(H1|I)

p(H2|I)

p(D|H1I)

p(D|H2I)
. (61)

The quantity O1,2 is called the odds ratio which is given by the product ot
the prior odds p(H1|I)/p(H2|I) and the ratio of the marginal likelihoods, or
evidences, p(D|H1I)/p(D|H2I). This last quantity is sometimes referred to as
Bayes’ factor. If models H1 and H2 depend on some parameters θ and λ, the
marginal likelihoods are given by:

p(D|H1I) =

∫
dθp(θ|H1I)p(D|θH1I) (62)

p(D|H2I) =

∫
dλp(λ|H2I)p(D|λH2I) . (63)

1.9 Exercises

Exercise 1: we are going to apply Bayes’ theorem to simple real world case.
Define the following propositions:

• H: I have a disease;

• D: I take some empirical test and it scored positive;

• I: I am equally likely to have the disease or not, p(H|I) = p(H̄|I) = 1/2;

• the probability that the test is accurate p(D|HI) = x, thus p(D|H̄I) =
1− x.

Calculate the probability that I have the disease. Solution: we write Bayes’
theorem:

p(H|DI) =
p(H|I)p(D|HI)

p(H|I)p(D|HI) + p(H̄|I)p(D|H̄I)
(64)

and substituting:

p(H|DI) =
x/2

x/2 + (1− x)/2
= x . (65)

Imagine that after some research, I discover that the disease has an incidence
on the general population of f . In other words, my new information is:

• I ′: the incidence of the disease is f thus p(H|I) = f and p(H̄|I) = 1− f .

The posterior for H now becomes:

p(H|DI ′) =
fx

fx+ (1− f)(1− x)
. (66)
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Table 3: Data for the fit.
xi yi
0.0 1.57129490689

0.125 0.914016426729
0.25 2.1243353749
0.375 2.10805830428
0.5 1.66384432878

0.625 1.95268182775
0.75 2.43112267387
0.875 2.40144721746
1.0 3.40462164356

We can generalise the posterior above to N independent tests:

p(H|D1 . . . DNI
′) =

fxN

fxN + (1− f)(1− x)N
. (67)

If x = 0.9 and f = 10−5, how many tests do I need to take to be sure at 99.5%
to have the disease? We are going to solve this using python:

import numpy as np
import matp lo t l i b . pyplot as p l t

def p( f , x , n ) :
num = f ∗x∗∗n
den = f ∗x∗∗n+(1.0− f )∗(1.0−x )∗∗n
return num/den

number o f t e s t s = range (1 , 11 )
ps = np . array ( [ p ( 0 . 0 0 0 0 1 , 0 . 9 , n ) for n in number o f t e s t s ] )
c l o s e s t i n d e x = np . abs ( ps −0 .995) . argmin ( )
print ”number o f t e s t s needed i s ” , number o f t e s t s [ c l o s e s t i n d e x ]
p l t . p l o t ( number o f te s t s , ps )
p l t . x l a b e l ( ”number o f t e s t s ” )
p l t . y l a b e l ( ” p r o b a b i l i t y o f having the d i s e a s e ” )
p l t . show ( )

For our parameters, the answer is 8.
Exercise 2: we are given a set of data plus error bars, Table 3. We try to

explain the observed data both using a linear and a quadratic laws. Which one
is favored by the data?

Solution: define the following propositions:

• H1: the datum yi = axi + b;

• H2: the datum yi = ax2
i + bxi + c;
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• I: the models H1 and H2 are equally probable and the distribution of
uncertainties is Gaussian with standard deviation σ;

• D: the data d1, . . . , dn.

As usual, we write our data as

di = yi + ei (68)

and the distribution of ei is known to be a Gaussian.
Linear law : the parameters in our model are a and b, the slope and intercept

of the “fitting” line. As usual, we write Bayes’ theorem:

p(ab|DH1I) = p(ab|H1I)
p(D|abH1I)∫

dadbp(ab|H1I)p(D|abH1I)
. (69)

We have seen that in deterministic models, the likelihood is defined by the
uncertainty probability distribution, therefore:

p(D|abH1I) =
1√
2πσ

exp

[
−1

2

∑
i

(di − axi − b)2

σ2

]
. (70)

We need to specify prior distributions for a and b. We are going to chose
independent priors so that p(ab|H1I) = p(a|H1I)p(b|H1I) and set them to be
uniform between some amin, amax and bmin, bmax:

p(a|H1I) =
1

amax − amin
(71)

p(b|H1I) =
1

bmax − bmin
(72)

(73)

from which we get the joint posteriors as:

p(ab|DH1I) ∝ 1√
2πσ

exp

[
−1

2

∑
i

(di − axi − b)2

σ2

]
. (74)

We are, however, interested in the evidence for model H1

p(D|H1I) =

∫ amax

amin

da

∫ bmax

bmin

db exp

[
−1

2

∑
i

(di − axi − b)2

σ2

]
. (75)

The integral in Eq. (75) can be computed analytically by completing the square
and assuming that the limits of integration are so large to be approximately
±∞. However, we are going to compute it numerically using python, see later
section.
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Quadratic law : the parameters in our model are a, b and c. Let’s write Bayes’
theorem:

p(abc|DH1I) = p(abc|H1I)
p(D|abcH1I)∫

dadbdcp(abc|H1I)p(D|abcH1I)
. (76)

As before, the likelihood is defined by the uncertainty probability distribution:

p(D|abcH1I) =
1√
2πσ

exp

[
−1

2

∑
i

(di − ax2
i − bxi − c)2

σ2

]
. (77)

Choosing uniform prior distributions for a, b and c, we obtain the posterior:

p(abc|DH1I) ∝ 1√
2πσ

exp

[
−1

2

∑
i

(di − ax2
i − bxi − c)2

σ2

]
. (78)

We are, however, interested in the evidence for model H1

p(D|H1I) =

∫ amax

amin

da

∫ bmax

bmin

db

∫ cmax

cmin

dc exp

[
−1

2

∑
i

(di − ax2
i − bxi − c)2

σ2

]
.

(79)

The integral in Eq. (79) could also be computed analytically under the same
approximation as for Eq.(75). However, we are going to compute it numerically
using python.

import numpy as np
y = np . array ( [ 0 .62165013 , 1 .02361924 , 1 .51161683 , 0 .78429014 ,
0 .76852557 , 1 .3840013 ,

2 .98271159 , 2 .62484856 , 2 . 51702153 ] )
x = np . l i n s p a c e (0 , 1 , 9 )
from s c ipy . i n t e g r a t e import dblquad , tplquad

s i g = 0 .5

def l i n e a r (x , a , b ) :
return a∗x+b

def quadrat i c (x , a , b , c ) :
return a∗x∗∗2+b∗x+c

def l i k e l i h o o d l i n ( a , b , x , y ) :
num = (y−l i n e a r (x , a , b ))∗∗2
return np . exp (−0.5∗np .sum(num)/ s i g ∗∗2)

def l i k e l i h o o d q u a d ( a , b , c , x , y ) :
num = (y−quadrat i c (x , a , b , c ) )∗∗2
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return np . exp (−0.5∗np .sum(num)/ s i g ∗∗2)

a min = −10.0
a max = 10 .0
b min = −10.0
b max = 10 .0
c min = −10.0
c max = 10 .0
r e s u l t l i n = dblquad ( l i k e l i h o o d l i n ,

b min , b max ,
lambda x : a min ,
lambda x : a max ,
args=(x , y ) )

print ” marginal l i k e l i h o o d l i n e a r model = ” , r e s u l t l i n [ 0 ]
r e su l t quad = tplquad ( l i k e l i hood quad ,

a min , a max ,
lambda y : b min , lambda y : b max ,
lambda x , y : c min ,
lambda x , y : c max ,
args=(x , y ) )

print ” marginal l i k e l i h o o d quadrat i c model = ” , r e su l t quad [ 0 ]
print ”Bayes f a c t o r = ” , r e s u l t l i n [ 0 ] / r e su l t quad [ 0 ]

the odds ratio between H1 and H2 for prior odds equal to 1, as specified by
the information I is:

O1,2 ' 0.14 . (80)

A Bayesian verification of the Central Limit theorem: We are going
to give now a Bayesian demonstration of a fundamental theorem in probability
theory, the Central Limit Theorem (CLT). The CLT states:

• given a set of n independent variables that are identically distributed with
unknown probability distribution having finite mean µ and finite variance
σ2, then the sample average has a distribution with mean µ and variance
σ2/n that tends to a Gaussian distribution for n→∞.

. Incidentally, this might be to origin of the name “Normal” which is also used
to indicate the Gaussian distribution.

Consider this problem:

• I: a widget is made of 2 components

• Y : the widget has a lenght ∈ [y, y + dy]

• X1: the first component has a lenght ∈ [x1, x1 + dx1]

• X2: the widget has a lenght ∈ [x2, x2 + dx2]

18



We know that

p(X1|I) = f1(x1) (81)

p(X2|I) = f2(x2) (82)

and we want to calculate p(Y |I). Consider the joint probability for Y,X1, X2:

p(Y |I) =

∫ ∫
dX1dX2p(Y X1X2|I) =

∫ ∫
dX1dX2p(Y |X1X2I)p(X1|I)p(X2|I)

(83)

from the definition of the problem, we have:

p(Y |X1, X2I) = δ(y − x1 − x2) (84)

so

p(Y |I) =

∫ ∫
dx1dx2f1(x1)f2(x2)δ(y − x1 − x2) =

∫
dx1f1(x1)f2(y − x1)

(85)

which is a convolution integral. We can extend the treatment to the case in
which the widget is made of three components introducing

• Z: the widget has a lenght ∈ [z, z + dz] .

p(Z|I) =

∫ ∫ ∫
dX1dX2dX3p(ZX1X2X3|I) (86)

=

∫ ∫
dY dX3p(X3|I)p(Z|Y X3|I)p(Y |I) (87)

=⇒ p(Z|I) =

∫
dyf(y)f3(z − y) (88)

Exercise : write a small script to reproduce Figure 1. Solution :

import numpy as np
from s c ipy . s i g n a l import f f t c o n v o l v e
import matp lo t l i b . pyplot as p l t

def constant ( x ) :
r e t = np . z e r o s ( len ( x ) )
for i in xrange ( len ( x ) ) :

i f −1<x [ i ]<1:
r e t [ i ]=1.

return r e t

def normal (x ,mu, sigma ) :
return np . exp (−0.5∗((x−mu)/ sigma )∗∗2)/ np . s q r t ( 2 .∗ np . p i ∗ sigma∗ sigma )
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Figure 1: Left: probability distribution obtained from the convolution of n ∈
[2, 10] uniform distributions. In black the Gaussian distributions having same
mean and variances as the resulting distribution from the convolution. Already
after 4 convolutions, the Gaussian is a very good approximation to the actual
distribution. Right: scaling of the variance as a function of n. The variance
follows the expectation of 1/n.

d e l t a = 0 .1
x = np . l i n s p a c e (−5 ,5 ,256)#np . arange (10)∗ d e l t a −3.0
d e l t a = np . d i f f ( x ) [ 0 ]
c = constant ( x )
c/=(c∗ d e l t a ) .sum( )
p l t . p l o t (x , c , l a b e l=”n = 1” )
mu = [ ]
var =[ ]
mu. append ( np .sum( x∗c∗np . d i f f ( x ) [ 0 ] ) )
var . append ( np . s q r t (np .sum( c∗np . d i f f ( x ) [ 0 ] ∗ ( x−mu[ −1 ] )∗∗2) ) )
p l t . p l o t (x , normal (x ,mu[−1] , var [ −1 ] ) ,

c o l o r=’ k ’ , l i n ew id th = 2 . 0 ,
alpha = 0 . 5 )

for j in xrange ( 1 , 1 0 ) :
c = np . convolve ( c , constant ( x ) , ’ f u l l ’ )
xp = np . l i n s p a c e (−5 ,5 , len ( c ) )
c/=(c∗np . d i f f ( xp ) [ 0 ] ) . sum( )
p l t . p l o t (xp , c , l a b e l=”n = %d”%( j +1))
mu. append ( np .sum( xp∗c∗np . d i f f ( xp ) [ 0 ] ) )
var . append ( np . s q r t (np .sum( c∗np . d i f f ( xp ) [ 0 ] ∗ ( xp−mu[ −1 ] )∗∗2) ) )
p l t . p l o t (xp , normal (xp ,mu[−1] , var [ −1 ] ) ,

c o l o r=’ k ’ , l i n ew id th = 2 . 0 , alpha = 0 . 5 )
p l t . l egend ( )
p l t . x l a b e l ( ’ x ’ )
p l t . y l a b e l ( ’p ( x | I ) ’ )
p l t . xl im (−2 ,2)
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p l t . s a v e f i g ( ’ c l t . pdf ’ , bbox inches=’ t i g h t ’ )
p l t . c l f ( )
p l t . p l o t (np . array ( var )∗∗2)
p l t . x l a b e l ( ’n ’ )
p l t . y l a b e l ( r ’ $\ sigma$ ’ )
p l t . s a v e f i g ( ’ c l t s i g m a . pdf ’ , bbox inches=’ t i g h t ’ )

2 Numerical methods

The recent years emergence and success of Bayesian methods has been fueled
also by the advances in computational techniques. The computation of posteri-
ors and evidences requires the evaluation of multi-dimensional integrals which
are untreatable without special care. As we will see in Section 3, the analysis
of gravitational wave signals from the coalescence of compact binary systems
requires integrating functions in 9 to 15 dimensions for general relativity models
that include a minimal amount of physics. The dimensionality in more advanced
models, e.g. including the effect of matter or putative violations of general rel-
ativity, can increase substantially. These problems can be tackled and solved
using Monte Carlo techniques, and in particular Markhov Chain Monte Carlo
(MCMC) methods such as the Metropolis-Hastings algorithm.

2.1 Metropolis-Hastings algorithm

Assume we can write the joint posterior density for a set of parameters x,
p(x|DI) and we are interested in computing the expectation value of some func-
tion f(x) over p(x|DI). The expectation value is defined as

E[f(x)] =< f(x) >=

∫
V

dxf(x)p(x|DI) ≡
∫
V

dxg(x) (89)

where V is the volume of the parameter space defined by x. For instance, in
the one dimensional case

• mean: µ =
∫

dxxp(x|DI);

• variance: σ2 =
∫

dx(x− µ)2p(x|DI).

When the dimensionality of the parameter space is large, computing the inte-
grals necessary for expectation values is an extremely challenging task. This is
the subject matter of Monte Carlo integration. In its most basic variant, the
procedure is to pick n random points uniformly distributed in the volume V
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estimate ∫
dxg(x) ≈ V× < g(x) > ±V ×

√
< g2(x) > − < g(x) >2

n
(90)

< g(x) > =
1

n

∑
j

g(xj) (91)

< g2(x) > =
1

n

∑
j

g2(xj) . (92)

It is clear that the naive Monte Carlo procedure outlined above is bound to
fail for large dimensional spaces. First of all, the error in the integral decreases
only as 1/n, but most importantly the efficiency of the algorithm decreases
exponentionally with the dimensionality. Thus, the key to the solution of this
problem is to be able to produce samples from the target density p(x|DI) in an
efficient way.

The idea of MCMC algorithms is to replace the uniform sampling in the
volume V with a random walk in V in such a way that the walk moves across V
following p(x|DI). The random walk is achieved via some transition probability
q(y|xt) that governs whether a given move is accepted or not. In a nutshell the
Metropolis-Hastings algorithm is:

• initialise x0 randomly in V ;

• while t < N :

– generate y from q(y|xt);
– compute the acceptance probability a(xt, y)

a(xt, y) = min

(
1,
p(x|DI)

p(x|DI)

q(xt|y)

q(y|xt)

)
; (93)

– sample u from a uniform distribution ∈ [0, 1];

– if u ≤ a(xt, y) then xt+1 = y;

– else xt+1 = xt and t = t+ 1

Exercise 3: write a Metropolis-Hastings algorithm in python to generate
samples from standard Gaussian distribution.

Solution:

import numpy as np
import matp lo t l i b . pyplot as p l t

def standard normal ( z ) :
return np . exp(−z∗z / 2 . ) / np . s q r t (2∗np . p i )

n = 10000
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alpha = 1
x = np . random . uniform (−1 ,1)
samples = [ ]
samples . append ( x )
# genera te n random updates choos ing a uniform t r a n s i t i o n p r o b a b i l i t y
# between −a lpha and a lpha
updates = np . random . uniform(−alpha , alpha , s i z e=n)
for i in xrange (1 , n ) :

y = x + updates [ i ]
#acceptance p r o b a b i l i t y , the t r a n s i t i o n p r o b a b i l i t y s i m p l i f i e s
aprob = min ( [ 1 . , standard normal ( y )/ standard normal ( x ) ] )
u = np . random . uniform (0 , 1 )
i f u < aprob :

x = y
samples . append ( x )

#p l o t t i n g the r e s u l t s :
#t h e o r e t i c a l curve
x = np . l i n s p a c e (−3 ,3 ,100)
y = standard normal ( x )
myfig = p l t . f i g u r e (1 )
ax = myfig . add subplot (211)
ax . s e t t i t l e ( ’ Metropol i s−Hast ings ’ )
ax . p l o t ( samples )
ax = myfig . add subplot (212)

ax . h i s t ( samples , b ins =30,normed=1)
ax . p l o t (x , y , ’ r ’ )
ax . s e t y l a b e l ( ’ Frequency ’ )
ax . s e t x l a b e l ( ’ x ’ )
ax . l egend ( ( ’PDF ’ , ’ Samples ’ ) )
p l t . show ( )

3 Gravitational waves data analysis

The problem of measuring the parameters of a gravitational wave signal from the
coalescence of a compact binary system can be summerised as follows. Under
the hypothesis that there is a signal embedded in the noise, the detector data
stream d(t) is

d(t) = n(t) + h(t; θ) (94)

where n(t) is the noise time series and h(t, θ) is the gravitational wave signal
which depends on a set of parameters θ, properly coupled to the detector tensor
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Figure 2: Top: Markhov chain. Bottom: 5000 samples from the target distri-
bution, in red the true posterior.
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in the frame of the detector:

h(t, θ) = F+h+(t, θ) + F×h×(t, θ) (95)

and the functions F+ and F× are the antenna pattern functions. Our purpose
is to compute the joint posterior distribution for θ under the assumptions made
by model H. As usual, we write Bayes’ theorem:

p(θ|DHI) = p(θ|HI)
p(D|θHI)∫

dθp(θ|HI)p(D|θHI)
. (96)

The usual assumption is that the waveform predicted by model H is known
exactly, therefore we are under the conditions described in Section 1.7.4 and the
likelihood for the data D is uniquely set by the distribution of the noise.

3.1 The noise model

The output of a complex system as a ground based laser interferometer is a very
complex function of all its components. At any given instant, what the sensors
register is a superposition of many independent sources of noise: for instance
thermal noise from the mirror, seismic noise, thermal noise from the suspensions
of the mirror, laser frequency noise, laser shot noise, etc. However, we are
not interested in the details of how each process is contributing to the output,
all we care about is understanding the statistical properties of this incoherent
superposition and understand the average output as well as the fluctuations
around it. In this way, one is able to flag some extreme output, such as the
presence of a coherent gravitational wave, as an extremely unlikely noise event.
Thus, we are looking for a probability distribution p(n|I) which maximises our
uncertainty. We have already noted in Section ?? that given some contraints,
the distribution that maximise our state of uncertainty must have maximal
entropy. Therefore, what constaints can we put on p(n|I)?

The following treatment follows closely [3]. Consider now a time series n(t)
and its samples n1, . . . , nk taken at equally spaced times ti, ti = i∆t. The time
series ni can be equivalently expressed in Fourier series:

ni =
1√
k∆t

k/2∑
j=0

aj cos(2πfjti) + bj sin(2πfjti) with fj =
j

N∆t
= j∆f (97)

where, by definition b0 = bk/2 = 0 and we assumed k to be even. The number
of non-zero elements in the nis and in the aj and bjs is the same, and the
coefficients are obtained by a discrete Fourier transform:

aj =
2

k∆t

∑
i

ni cos(2πfjti) (98)

bj =
2

k∆t

∑
i

ni sin(2πfjti) . (99)
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The trigonometric functions in Eq. (97) are an orthonormal basis in the sam-
ple space. Moreover, the expression in (97) could be written in terms of an
amplitude and a phase rather than in terms of the two amplitudes aj and bj :

ni =
1√
k∆t

k/2∑
j=0

λj sin(2πfjti + φj) (100)

and:

λj =
√
a2
j + b2j (101)

φj =

{
arctan(bj/aj) if aj > 0

arctan(bj/aj)± π if aj < 0
(102)

Define now the function of the Fourier frequencies of the time series s(fj) as

s(fj) = a2
j + b2j =

∆t

k
|ñ(f)|2 (103)

which is the discrete analog of the one-sided power spectral density. The function
ñ(f) is the discrete Fourier transform of n(t).2 The variables a2

j , b
2
j , as well

as ni ∀i, j, are unknown. They are therefore described by some (unknown)
probability distribution. If we assume that p(ni|I) ∀i is a zero mean distribution,
thanks to Eq. (103), necessarily the a2

j , b
2
j and s(fj) are described by some zero

mean distribution. If we compute the expectation value3 of Eq. (103) over the
unknown distribution p(ni|I), we find that

E[s(fj)] = E[a2
j + b2j ] = E[a2

j ] + E[b2j ] = σ2
aj + σ2

bj ≡ σ
2
j . (107)

The expectation value of the (one sided) power spectral density is equal to the
variance of the Fourier components of the noise. If we assume that σ2

j is known
and that it is the only constraint that our probability distribution needs to obey,
the maximum entropy principle, see Section ??, dictates that the probability

2We use a definition of the discrete Fourier transform (DFT) of a function h(t) as:

h̃(f) =

N−1∑
j=0

h(j∆t) exp−2π〉j∆tf (104)

and of the inverse DFT:

h(t) =
1

N

N−1∑
j=0

h̃(fj) exp 2π〉fjt (105)

3We remind the reader that the expectation value of a function g(x) over some distribution
p(x) is defined as ∫

dxg(x)p(x) ≡ E[g(x)] . (106)

, see Eq. (89)
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distribution for the noise ñj is a Gaussian distribution with variance equal to
σj :

p(nj |I) =
1√

2πσj
exp

[
−1

2

ñ2
j

σ2
j

]
. (108)

If we assume that the Fourier components aj , bj ∀j are statistically inde-
pendent, which is true for stationary processes, we can finally write the joint
probability for all noise samples as:

p(ñ1 . . . ñk|I) =
1

(2π)k/2
∏k
j=1 σj

exp

−1

2

k∑
j=1

ñ2
j

σ2
j

 . (109)

Thanks to the linearity of the Fourier transform, Eq. (94) holds also in the
frequency domain:

d̃(f) = ñ(f) + h̃(f, θ) (110)

We are therefore in the position of writing the likelihood for the data d̃1 . . . d̃k:

p(d̃1 . . . d̃k|θHI) =
1

(2π)k/2
∏k
j=1 σj

exp

−1

2

k∑
j=1

(d̃j − h̃j(θ))2

σ2
j

 (111)

and, as a function or the power spectral density:

p(d̃1 . . . d̃k|θHI) = exp

−2∆f

k∑
j=1

(d̃j − h̃j(θ))2

S(fj)

 (112)

where the normalisation constant, which is irrelevant, has been dropped.

3.2 The signal model

Before we can compute the posterior for θ, we need to specify what our model
for h̃(f ; θ) is and the prior probability on the parameters θ. We are going to
start by considering a frequency domain analytical model for h̃(f ; θ), the inspiral
only non-spinning TaylorF2 model [4]:

h̃(f) = A(f)eiΨ(f) (113)

A(f) ∝ M
5/6f−7/6

DL
(114)

Ψ(f) = 2πftc − φc −
π

4
+

7∑
j=0

[
ψj + ψ

(l)
j ln f

]
f (j−5)/3, (115)
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and the post-Newtonian coefficients ψj are given functions of the chirp massM
and q, which are defined in terms of the component masses m1 and m2 as:

M =
(m1m2)3/5

m1 +m2)1/5
(116)

q =
m2

m1
. (117)

The set of parameters θ that are necessary to fully describe our gravitational
wave signal is:

• extrinsic parameters: sky position coordinates α and δ, luminosity dis-
tance DL, polarisation angle ψ and inclination angle ι, time at coalescence
tc and phase at coalescence φc;

• intrinsic parameters: chirp mass M and mass ratio q .

We have seen that the quantity that enters the detector is not the gravitational
wave signal in (113), but

h̃(f, θ) = F+h̃+(f) + F×h̃×(f) (118)

where the functions F+ and F× are the antenna pattern functions (see the notes
from Sturani).

3.2.1 Priors

Let’s define prior probabilities for the parameters of interest for the TaylorF2

model. The joint prior distribution for all parameters of interest factorises as

p(MηtcφcιαδDLψ|HI) =

= p(tc|HI)p(φc|HI)p(ιψ|HI)p(αδDL|HI)p(Mη|HI) .
(119)

Prior on time and phase at coalescence tc and φc: since there is not
reason to prefer any specific values of tc and φc, p(tc|HI) and p(φc|HI) are set
by the indifference principle:

p(tc|HI) =
1

tmax − tmin
(120)

p(φc|HI) =
1

2π
. (121)

For practical reasons, however, the range of allowed tcs is chosen to be a prede-
termined width around the putative time of detection.

Prior on right ascension α, declination δ and luminosity distance
DL: p(αδDL|HI) is set by the requirement that the number density of sources
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in the Universe is constant4. The total number of sources N within a given
volume is given by: ∫ Vmax

0

n(V )dV = N . (122)

where n(V ) ≡ dN
dV . n(V ) = n0 constant because of homogeneity. Thus, the

probability of finding a source within [V, V + dV ] is proportional only to dV .
Expanding the volume element in spherical coordinates:

dV = D2
L cos(δ)dDLdδdα (123)

finally

p(αδDL|HI) ∝ D2
L cos(δ) . (124)

Prior on inclination ι and polarisation ψ: the angles ι and ψ define the
orientation of the orbital plane of the binary with respect of the line of sight.
We can repeat a similar argument as for the volume element and obtain

p(ιψ|HI) ∝ cos(ι) . (125)

Prior on chirp massM and mass ratio q: p(Mq|HI) is set by requiring
that all masses for the two stars in the binary system are equally likely. In other
words

p(m1m2|HI) ∝ 1 . (126)

We can transform into M and q as follows; we know that all probability distri-
butions are positive definite and add up to one:∫

dm1dm2p(m1m2|HI) =

∫
dMdqp(Mdq|HI) = 1 (127)

therefore, the integrals are monotonic functions of their integrands. This implies
that the integrands themselves must be equal:

dm1dm2p(m1m2|HI) = dMdqp(Mdq|HI) . (128)

The required probability distribution p(Mdq|HI) is then equal to

p(Mq|HI) = p(m1m2|HI)||J(m1,m2;M, q)|| . (129)

where J(m1,m2;M, q) is the Jacobian matrix for the transformation

m1,m2 →M(m1,m2), q(m1,m2) . (130)

4In this section we are going to neglect the fact that our Universe is not Euclidian but
rather described by a Friedmann-Robertson-Walker-LeMaitre metric. For sufficiently small
redshifts this is not a bad approximation.
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In particular, given the definitions in (116), we have

m1(M, q) =M(1 + q)1/5q−3/5 (131)

m2(M, q) =M(1 + q)1/5q2/5 (132)

after taking derivatives and some algebra, we find:

∂m1

∂M
= (1 + q)1/5q−3/5 (133)

∂m1

∂q
=
M
5

[
q−3/5(1 + q)−4/5 − 3(1 + q)1/5q−8/5))

]
. (134)

The derivatives of m2 are equal to the ones of m1. Finally, the Jacobian, and
therefore our density for M and q is given by

||J || = p(Mq|I) = |∂m1

∂M
∂m2

∂M
− ∂m1

∂q

∂m2

∂q
| (135)

4 Hand on examples

We are now in the position of taking over some examples. Let’s start by gener-
ating a sample waveform using the lalsimulation library:

import l a l s i m u l a t i o n as l a l s i m
import numpy as np
import matp lo t l i b . pyplot as p l t

s r a t e = 4096
T = 32
df = 1 ./ s r a t e
m1 = 5 .0
m2 = 4 .0
f i s c o = 1 . 0 / ( ( 6 . ∗ ∗ 1 . 5 ) ∗np . p i ∗(m1+m2)∗ l a l s i m . l a l . MTSUN SI)
m1 ∗=l a l s i m . l a l . MSUN SI
m2 ∗=l a l s i m . l a l . MSUN SI
d i s t anc e = 130.9717 e6 ∗ l a l s i m . l a l . PC SI
f l o w =40.0
f r e f =100.0
wave f l ag s = None
non GR params = None
spin1x =0.0
spin1y=−0.0
sp in1z =0.0
spin2x =0.0
spin2y =0.0
sp in2z =−0.0
amp order=0
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phase order=7
i o t a=np . p i /3 .
approx = l a l s i m . TaylorF2
phase =2.725808
hp , hc = l a l s i m . SimInspiralChooseFDWaveform ( phase ,

df ,
m1, m2,
spin1x , spin1y , spin1z ,
spin2x , spin2y , spin2z ,
f low , f i s c o , f r e f ,
d i s tance ,
io ta ,
0 . 0 , 0 . 0 ,
wave f lags , non GR params ,
amp order , phase order ,
approx )

h1 = np . t r i m z e r o s (hp . data . data )
f r e q = np . l i n s p a c e ( f low , f i s c o , len ( h1 ) )
p l t . p l o t ( f req , h1 , l a b e l=”TaylorF2” , alpha =0.5)

p l t . x l a b e l ( ” f requency ” )
p l t . y l a b e l ( ”h( f ) ” )
p l t . show ( )

Let’s then look at what a typical noise stream looks like; load the file “chirp-gaussian-noise.txt”
and plot its contents:

import numpy as np
import matp lo t l i b . pyplot as p l t

data = np . l oadtx t ( ’ c h i r p g a u s s i a n n o i s e . txt ’ )
f i g = p l t . f i g u r e ( )
p l t . p l o t ( data [ : , 0 ] , data [ : , 1 ] , l a b e l=” r e a l ” )
p l t . p l o t ( data [ : , 0 ] , data [ : , 2 ] , l a b e l=” imaginary ” )
p l t . x l a b e l ( ” $ f requency$ $ [ Hz ] $” )
p l t . y l a b e l ( ”$\ s q r t {Hzˆ{−1}}$” )
p l t . l egend ( )
p l t . show ( )

4.1 Measuring the physical parameters of a source

We are now going to use built-in lal functions to compute likelihood and esti-
mate the masses of a binary black hole:

from pylab import ∗
import l a l s i m u l a t i o n as l a l s i m
import l a l
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Figure 3: Simulated frequency domain noise stream with a simulated GW signal
giving an SNR ∼ 10 superimposed.
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from l a l . l a l import Stra inUni t
from l a l . l a l import CreateCOMPLEX16FrequencySeries , Dimens ion lessUnit
from l a l . l a l import LIGOTimeGPS
from p y l a l import antenna as ant

def l i k e l i h o o d (m1,m2) :
s r a t e =1024.
s e g l e n =16.0
l ength=s r a t e ∗ s e g l e n
deltaT=1/ s r a t e
deltaF = 1 .0 / ( l ength ∗ deltaT )
f max = s r a t e /2 .
f r e f = 100 .0
REAL8time=900000000
GPStime=LIGOTimeGPS(REAL8time)
M1=m1
M2=m2
D=3e2
m1=M1∗ l a l . MSUN SI
m2=M2∗ l a l . MSUN SI
phiRef =0.0

f min = 40 .0
s1x = 0 .0
s1y = 0 .0
s1z = 0 .0
s2x = 0 .0
s2y = 0 .0
s2z = 0 .0

r=D∗ l a l . PC SI ∗1 .0 e6
i o t a=np . p i /3 .0

lambda1=0
lambda2=0
waveFlags=None
nonGRparams=None

injapproximant=l a l s i m . TaylorF2
amplitudeO=int (0 )
phaseO=4

ra =0.0
dec =0.0
p s i =0.0
s egS ta r t =100000000
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s t ra inF= CreateCOMPLEX16FrequencySeries ( ” s t ra inF ” , segStart ,
0 . 0 ,
deltaF ,
DimensionlessUnit ,
int ( l ength /2 . +1)) ;

[ plus , c r o s s ]= l a l s i m . SimInspiralChooseFDWaveform ( phiRef ,
deltaF ,
m1,
m2,
s1x ,
s1y ,
s1z ,
s2x ,
s2y ,
s2z ,
f min ,
f max ,
f r e f ,
r ,
i o ta ,
lambda1 ,
lambda2 ,
waveFlags ,
nonGRparams ,
amplitudeO ,
phaseO ,
injapproximant )

i f o s =[ ’H1 ’ ]
for i f o in i f o s :

( fp , fc , fa , qv)=ant . r e sponse (REAL8time , ra , dec , io ta , ps i , ’ r ad ians ’ , i f o )

for k in np . arange ( s t ra inF . data . l ength ) :
i f k<plus . data . l ength :

s t ra inF . data . data [ k ]=(( fp ∗ plus . data . data [ k]+ f c ∗ c r o s s . data . data [ k ] ) )
else :

s t ra inF . data . data [ k ]=0.0
# copy in the d i c t i o n a r y
i n j s t r a i n s=np . array ( [ s t ra inF . data . data [ k ] for k in arange ( int ( s t ra inF . data . l ength ) ) ] )
f requency = np . array ( [ s t ra inF . f 0+ k∗ s t ra inF . de ltaF for k in np . arange ( int ( s t ra inF . data . l ength ) ) ] )
N = len ( f requency )
ch i sq = np . z e ro s (N)
for i , f i in enumerate( f requency ) :

i f f i>f min :
ch i sq [ i ] = ( 2 . 0 / ( deltaT ∗N) )∗ ( np . r e a l ( s t ra inF . data . data [ i ] ) ∗

data [ i ,2 ]+
np . imag ( s t ra inF . data . data [ i ] ) ∗
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data [ i , 1 ] )
/ (1 . 35 e−50∗(0.5∗AdvLIGOPSD( f i ) ) )

return np .sum( ch i sq )

def AdvLIGOPSD( f ) :
x = f / 2 1 5 . ;
x2 = x∗x ;
f10=f / 1 0 . 0 ;
f50=f / 5 0 . 0 ;
f100=f / 1 0 0 . 0 ;
f200=f / 2 0 0 . 0 ;
f300=f / 3 0 0 . 0 ;
f1000=f /100 0 . 0 ;
f2000=f /200 0 . 0 ;
x1=f10 ∗∗30 .
x2=f50 ∗ f 50 ∗ f 50 ∗ f 50 ∗ f 50 ∗ f 50 ;
psd = f ∗ ( (60000 .0/ x1 )+5.0/ x2+

1.07∗pow( f100 ,−3.25)+
3.7∗pow( f200 ,−1.25)+
0.9∗pow( f300 ,−0.08)+
0.85∗pow( f1000 ,0 .8 )+
0.35∗ f2000 ∗ f2000 ∗ f2000 ) ;

return psd

data = np . l oadtx t ( ’ c h i r p g a u s s i a n n o i s e . txt ’ )
n = 10000
alpha = 0 .1
m1,m2 = np . random . uniform ( 7 . 5 , 8 . 5 ) , np . random . uniform ( 6 . 5 , 7 . 5 )
samples = [ ]
i f m2 > m1:

tmp = m1
m1 = m2
m2 = tmp

samples . append ( [ m1,m2 ] )
# genera te n random updates choos ing a uniform t r a n s i t i o n p r o b a b i l i t y
# between −a lpha and a lpha
updates = [ np . random . uniform(−alpha , alpha , s i z e=n ) ,

np . random . uniform(−alpha , alpha , s i z e=n ) ]
l o g l 0 = l i k e l i h o o d (m1,m2)
for i in xrange (1 , n ) :

m1 p , m2 p = m1 + updates [ 0 ] [ i ] ,m2 + updates [ 1 ] [ i ]
i f m2 p > m1 p :

tmp = m1 p
m1 p = m2 p
m2 p = tmp

i f 7.5<m1 p<8.5 and 6.5<m2 p<7.5 :
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#acceptance p r o b a b i l i t y , the t r a n s i t i o n p r o b a b i l i t y s i m p l i f i e s
log lnew = l i k e l i h o o d (m1 p , m2 p)
aprob = loglnew−l o g l 0
u = np . l og (np . random . uniform ( 0 , 1 ) )
i f u < aprob :

m1,m2 = m1 p , m2 p
samples . append ( [ m1 p , m2 p ] )
print ”n : ” , i , ” logL : ” , l og l 0 , ”−−>” , loglnew , ”m1: ” ,m1, ”m2: ” ,m2
l o g l 0 = log lnew

#p l o t t i n g the r e s u l t s :
#t h e o r e t i c a l curve
nsamps = len ( samples )
print ” acceptance =” , len ( samples )/ f loat (n)
samples = np . array ( samples )
x1 = np . l i n s p a c e (3 , 7 , 100)
myfig = p l t . f i g u r e (1 )
ax = myfig . add subplot (311)
ax . s e t t i t l e ( ’ Metropol i s−Hast ings ’ )
ax . p l o t ( samples [ nsamps / 2 : , 0 ] )
ax . p l o t ( samples [ nsamps / 2 : , 1 ] )
ax = myfig . add subplot (312)

ax . h i s t ( samples [ : , 0 ] , b ins =30,normed=1)
ax . s e t y l a b e l ( ’ Frequency ’ )
ax . s e t x l a b e l ( ’m1 ’ )
ax . axv l i n e ( 8 . 0 , c o l o r=’ r ’ )
ax = myfig . add subplot (313)

ax . h i s t ( samples [ : , 1 ] , b ins =30,normed=1)
ax . s e t y l a b e l ( ’ Frequency ’ )
ax . s e t x l a b e l ( ’m2 ’ )
ax . axv l i n e ( 7 . 0 , c o l o r=’ r ’ )
p l t . s a v e f i g ( ’ mcmc chirp . pdf ’ , bbox inches=’ t i g h t ’ )

5 Hierarchical modeling

In this section we are to briefly introduce the concept of hierarchical modeling
which is used to infere population parameters from the observation of a set
of single events. For instance, consider the case in which the observed events
D = d1 . . . dn are sampled for a given population but each event parameters do
not depend on the parameters of the population. Define λ the parameters of
the population and θ1, . . . , n the parameters describing each single event. We
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are interested in

p(λ|DHI) = p(λ|HI)
p(D|λHI)

p(D|HI)
. (136)

However, we never observe directly the parameters λ, but only the parameters
relative to the single event. Thus, we can extend the conversation to θ1, . . . , θn
and then marginalise them away, to obtain:

p(λ|DHI) = p(λ|HI)

∫
dθ1 . . . dθnp(θ1 . . . θn|λHI)p(D|θ1 . . . θnλHI)

p(D|HI)
. (137)

Let’s concentrate on the integrand. If we assume that the events are statistically
independent, we can write

p(θ1 . . . θn|λHI)p(D|θ1 . . . θnλHI) =
∏
i

p(θi|λHI)p(di|θiλHI) (138)

therefore, we obtain the posterior for λ as

p(λ|DHI) = p(λ|HI)

∫
dθ1 . . . dθn

∏
i p(θi|λHI)p(di|θiλHI)

p(D|HI)
. (139)

The parameters λ are sometimes called hyper parameters. However, the above
nomenclature can be misleading since it can lead to the thought that there is
something special to them which distinguishes them from the standard concept
of parameter.

5.1 A worked example: measuring the cosmological pa-
rameters from GW observations

We have seen that the luminosity distance DL is directly measurable from GW
signals. This property guarantees that GW are self-calibrating sources. Thanks
to this property, and in analogy to standard candles as supernovae type IA,
they are sometimes deemed as standard sires. The key ingredients for the con-
struction of an Hubble diagram are the measurements of DL and of the redshift
z since, in a Friedmann-Robertson-Walker-Lemáitre cosmology they are related
via the luminosity distance-redshift relation: DL ≡ DL(z,Ω), where Ω are the
set of cosmological parameters. Unfortunately, GW in general cannot provide
a measurement of the redshift which has to be obtained independently, for in-
stance via spectoscopy on the host galaxy or on the eventual optical counterpart.
In what follows, we are going to assume that such a measurement is somehow
available. Let’s specify Eq. (139) to our specific case by writing it down for just
one event. Since the only relevant paramenters are DL and z, we can perform
most of the integrals and get

p(Ω|DHI) = p(Ω|HI)

∫
dDLdzp(DLz|ΩHI)p(d|DLzΩHI)

p(D|HI)
. (140)
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Further conditioning, we get to

p(Ω|DHI) = p(Ω|HI)

∫
dDLdzp(DL|zΩHI)p(z|ΩHI)p(d|DLzΩHI)

p(D|HI)
. (141)

Once we specify a given cosmological model, e.g. FRWL, z and Ω uniquely
determine DL, thus

p(DL|zΩHI) = δ(DL −DL(z,Ω)) (142)

and the posterior (141) becomes:

p(Ω|DHI) = p(Ω|HI)

∫
dzp(z|ΩHI)p(d|DL(z,Ω)zΩHI)

p(D|HI)
. (143)

5.1.1 With electromagnetic counterparts

In case of a unique EM identification, the prior for z is particularly simple:

p(z|ΩHI) = δ(z − zt) (144)

therefore, the posterior for Ω is

p(Ω|DHI) = p(Ω|HI)
p(d|DL(zt,Ω)ztΩHI)

p(D|HI)
. (145)
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